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Abstract: Unmanned aerial vehicles (UAVs), commonly known as drones, have found extensive
applications across diverse sectors, such as agriculture, delivery, surveillance, and military. In recent
times, drone swarming has emerged as a novel field of research, which involves multiple drones
working in collaboration towards a shared objective. This innovation holds immense potential in
transforming the way we undertake tasks, including military operations, environmental monitoring,
and search and rescue missions. However, the emergence of drone swarms also brings new security
challenges, as they can be susceptible to hacking and intrusion. To address these concerns, we propose
utilizing a timed probabilistic automata (TPA)-based intrusion detection system (IDS) to model the
normal behavior of drone swarms and identify any deviations that may indicate an intrusion. This
IDS system is particularly efficient and adaptable in detecting different types of attacks in drone
swarming. Its ability to adapt to evolving attack patterns and identify zero-day attacks makes it an
invaluable tool in protecting drone swarms from malicious attacks.

Keywords: drones; intrusion detection; probabilistic automata; timed automata; swarming;
behavioral model

1. Introduction

A drone swarm is a group of unmanned aerial vehicles (UAVs) or flying robots that
work as a team to achieve a specific goal. A drone swarm has several advantages over a
single drone. The entire system is robust, meaning that the failure or loss of a single UAV
does not affect the performance of the entire system. The flexibility of the drone swarm
is extensively increased by dynamically adapting the various configuration styles and
standards. Communication plays a significant role in UAV swarm control and coordination.
The communication architecture characterizes how the data are exchanged between UAVs
or between UAVs and the central control center. Due to the adaptation of UAV drone
swarming technology, one of the main considerations is to monitor the drones in the open
space and their states in both spatial and temporal aspects.

The worldview of a multitude of advanced robotics expects it to rise above the limits
of a single robot by empowering the collaboration of bigger groups. This is enlivened
by the collective of animals, where creatures and bugs have been seen to join powers
toward a shared objective that is excessively perplexing. Depending on the application
paradigm, an entire drone swarm that is highly scalable, is one in which the number of
drones in the collection that can be increased or decreased [1]. The manufacturing cost of
unmanned aerial vehicles (UAVs) is becoming cheaper and UAVs are available to a larger
extent, and utilization of this technology keeps on increasing, and this has opened several
research challenges. UAVs are adopted for applications, including agriculture, military
rescue operations, supply chain management, inventory control, emergency operations,
and surveillance [2,3].

During natural calamities, such as floods, fires, earthquakes, and storms, it is difficult
to access locations, and there is a delay in performing rescue operations [4,5]. Rescue
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operations are crucial for mankind, as they involve the lives of living beings. UAVs utilized
for rescue operations can speed up rescue operations. These mini-flying robots are mounted
with many sensors, such as cameras and night vision cameras, that are useful to make
disaster estimations, and find and locate flood survivors. Furthermore, they capture and
send real-time aerial images to the ground station for better clarity and visualization. Some
UAVs are designed to carry a few kilograms to supply the essential items most needed
during emergency situations. With the use of drone swarms, search and rescue operations
are sped up. In the affected areas, there is no hope for communication due to damage to
mobile towers. Using a UAV swarm, temporary communication channels are built to help
survivors communicate with rescue teams [6].

The drone swarm model in Figure 1 refers to the design and organization of a group
of drones to work together in a coordinated manner. It typically involves a central control
system that communicates with each individual drone and directs their behavior based
on a set of predefined rules or algorithms. The architecture may include different types
of drones, such as leader and follower drones, and may use a variety of communication
protocols to ensure efficient and reliable communication between the drones and the control
system. Some drone swarm architectures also incorporate artificial intelligence and machine
learning algorithms to enable the drones to adapt and learn from their environment and
improve their performance over time. Overall, the goal of drone swarm architecture is
to create a system that performs complex tasks more efficiently and effectively than a
single drone, while also providing greater flexibility and scalability for a wide range of
applications, including military, industrial, and civilian use cases.
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Figure 1. Drone Swarm Model.

Drones in swarming configurations are vulnerable to various types of attacks that
compromise their operation and mission. Some common types of attacks in drone
swarming include:

Jamming Attacks: In a jamming attack, an intruder sends a strong radio signal that
interferes with the drone’s wireless communication, causing it to lose communication
with the rest of the swarm. This results in the loss of coordination and control of the
drone swarm.

Spoofing Attacks: In a spoofing attack, an intruder sends false signals to the drone,
tricking it into accepting fake information. This causes the drone to deviate from its
intended path, potentially putting it and others at risk.
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Hijacking Attacks: In a hijacking attack, an intruder gains unauthorized access to the
drone’s control system and takes control of the drone. This results in the drone being used
for malicious purposes, such as for espionage or to carry out attacks on targets.

Man-in-the-Middle Attacks: In a man-in-the-middle attack, an intruder intercepts and
manipulates the communication between the drone and the swarm, causing the drone to
behave differently from its intended behavior.

Denial of Service Attacks: In a denial-of-service attack, an intruder floods the drone’s
communication channel with false data, causing it to become overwhelmed and unable to
process legitimate data.

These attacks have significant consequences, such as compromising the confidentiality,
integrity, and availability of the drone swarm’s mission and data. It is crucial to implement
effective security measures, including intrusion detection systems (IDSs), to protect against
these and other types of attacks. IDSs are designed to detect and respond to unauthorized
access attempts on computer systems, networks, or applications. In the context of drone
swarming, IDSs are used to detect unauthorized access attempts by intruders who seek
to compromise the swarm’s mission or steal sensitive information. There are two main
types of intrusion detection systems: signature-based and anomaly-based. Signature-based
IDSs use a database of known attack patterns, also known as signatures, to detect intrusion
attempts. Anomaly-based IDSs, however, monitor normal system behaviors and flag any
activity that deviates from the norm as suspicious.

In the context of drone swarming, anomaly-based IDSs are preferred as they detect
unknown and evolving attacks that signature-based IDSs cannot. Implementing IDSs in
drone swarming presents several challenges, including: Resource Constraints: Drones
have limited resources, such as power and computational capacity, which limit the im-
plementation of IDSs. Network Latency: Drone swarms rely on wireless communication
for coordination, and network latency impacts the accuracy of the intrusion detection.
Interference: Interference from other devices, such as other drones, impacts the accuracy
of the intrusion detection. Dynamic Environment: Drone swarms operate in dynamic
environments, and the system’s normal behavior changes rapidly, making it challenging to
accurately detect intrusions.

The main contributions of this system are as follows:

(i) TPA is a mathematical model used to represent probabilistic systems with timing
constraints. By utilizing TPA, the proposed IDS is able to accurately model and
analyze the behavior of drone swarms;

(ii) The proposed IDS coordinates the behavior of multiple drones by monitoring the
behavior of the individual drones in the swarm. This enables the system to detect and
respond to potential security threats in real-time;

(iii) The proposed IDS monitors the behavior of individual drones in the swarm, which
allows for the detection of anomalous behavior that may indicate a security breach;

(iv) The proposed IDS provides real-time monitoring and detection of anomalous be-
haviors. This allows for rapid response and mitigation of potential security threats,
making drone swarming a safer technology.

The article is structured as follows: Section 2 reviews existing intrusion detection
systems (IDSs) in the context of drone swarming. Section 3 introduces the fundamentals
of timed probabilistic automata (TPA) and their relevance to the proposed IDS. Section 4
presents the architecture of the proposed intrusion detection system for drone swarming
scenarios. Section 5 discusses the results of the experimental evaluations of the proposed
IDS. Finally, Section 6 summarizes the contributions of this work and discusses potential
future research directions in this field.

2. Literature Survey

Alfeo. et al. [7] developed an optimized model for coordinating drone swarms in a
target space. The model was developed and tested with various simulations and real-time
scenarios. Asbach. et al. [8] defined a method to devise a plan for exploration during
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natural disasters based on interesting measures. It allows the drone swarm to travel in the
optimized path and find the survivors without further delays. Queralta et.al [9] proposed
a layered architecture for reconfigurability in heterogeneous flying robots. The real-time
application of UAV swarms is in view of a mix of ideas and procedures from the advanced
mechanic’s space, multi-specialist frameworks area, and edge-cloud processing space. This
work clarified how to build a reconfigurable drone swarm and the diverse equipment and
programming required to make reconfigurability and flexibility conceivable.

Peng et al. [10] discussed multi-dimensional programming for UAV complex com-
munication. The communication boundaries and strategies vary based on the application.
This method uses recurrent neural networks to communicate during jamming conditions.
Fabra et al. [11] specified methods for an efficient take-off with coordination. Chen et al. [12]
surveyed various network topologies and their communications. They proposed various
routing protocols in drones. Hildmann et al. [13] executed algorithms, such that drones
cover the maximum area for real-time monitoring applications. Kusyk et al. [14] applied
game theory to control drones, and this leads to the way to produce autonomous drones.
Arnold et al. [15] devised algorithms for the behavior of drones. These behaviors are made
intelligent through artificial intelligence-based techniques, such that the drones do not
collide in mid-air. There are numerous research studies have been carried out in the field
of wireless sensor networks (WSNs) and their relative challenges, such as energy saving,
energy efficiency, portability, and interoperability. This research direction is very much
related to the functionality and operation of drones.

Olfati-Saber [16] provides an explanation for flocking and swarming algorithms. Flock-
ing behavior is not directed towards a specific objective, and therefore lacks a high level
of control, whereas swarming can offer clear means of control to guide the swarm to-
wards accomplishing a particular task, such as navigating towards a designated tree while
avoiding obstacles along the path. Lawton et.al [17] proposed three strategies for behav-
ior control, namely: formation control using coupled dynamics, formation control using
coupled dynamics with inter-robot damping based on passivity, and saturated control. A
heterogeneous system in [18] makes use of the parallelism, redundancy, and distributed
solutions of swarming coordination. Additionally, such a system can incorporate mission
specifications because each agent has different skills and payloads. [19] Ramadan et.al
surveyed intrusion detection systems for the internet of drones, also known as FANETs
(flying ad hoc networks) using RNN-LSTM. Jiang et al. [20] studied types of attacks in UAVs
by considering datasets available to the public. They even concluded that the limitations of
the model were due to insufficient datasets.

Based on Table 1, an IDS technique is a crucial component in protecting drone swarm-
ing systems from various types of attacks. The IDS technique detects different types of
attacks by monitoring and analyzing the behavior of the drones and their communication
within the swarm. By detecting anomalies and suspicious activity, the IDS technique alerts
the operators and prevents potential harm to the swarm. The IDS technique implemented
uses various algorithms, such as rule-based systems, machine learning, and statistical
analysis. Each of these algorithms has its own strengths and weaknesses, and the choice of
algorithm depends on the specific requirements of the drone swarming system. In addition,
the IDS technique is further improved by integrating it with other security measures, such
as encryption, authentication, and access control. This provides a more comprehensive
defense against attacks and increases the overall security of the drone swarming system.
Overall, the IDS technique plays a vital role in ensuring the security and reliability of drone
swarming systems. By detecting and preventing attacks, it helps to maintain the integrity
and functionality of the swarm, which is essential for successful drone operations.
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Table 1. Advanced IDS strategies for combating drone swarming attacks.

Attacks Detection Techniques Drone Swarm Size Sensor
Configuration Data Rate Detection

Accuracy Advantage Disadvantage

Man-in-the-Middle
(MITM) attacks

Encryption Analysis [21] Small Encryption sensors High Medium Detect encryption
anomalies

Limited range,
susceptible to
false alarms

Packet Sniffing [22] Medium Network sensors High High Detect unusual packet
patterns

More expensive, limited
field of view

Signature Analysis [23] Large Multiple sensors Medium Low
Detect unusual
communication

signatures

High false alarm rate,
limited accuracy

Denial of Service
(DoS) attacks

Network Traffic
Analysis [24] Small Network sensors High Medium Detect unusual network

traffic patterns

Limited range,
susceptible to
false alarms

Resource Utilization
Monitoring [25] Medium Resource utilization

sensors High High Detect resource
utilization anomalies

More expensive, limited
field of view

Pattern Recognition [26] Large Multiple sensors Medium Low Detect unusual behavior
patterns

High false alarm rate,
limited accuracy

Hijacking attacks

Radio Frequency
Interference

Detection [27]
Small Radio frequency

sensors High Medium Detect unauthorized
control signals

Limited range,
susceptible to
false alarms

GPS Spoofing
Detection [28] Medium GPS sensors High High Detect GPS

spoofing attacks
More expensive, limited

field of view

Video Stream
Analysis [29] Large Cameras Medium Low Detect visual changes in

the drone’s environment
High false alarm rate,

limited accuracy
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3. Background

The timed probabilistic automata (TPA) [30] mathematical model combines the con-
cepts of probabilistic automata and timed automata. TPAs extend the traditional probabilis-
tic automata by adding the notion of time to the model, allowing the transitions between
states to be associated with a time delay. In TPAs, the time delay is either deterministic or
probabilistic, meaning that it has a fixed or a random value. This allows TPAs to model
systems with time-sensitive behavior, such as communication protocols, performance and
reliability of systems, and the behavior of complex systems. The time delays in TPAs are
either discrete or continuous, depending on the application. Discrete time delays represent
the time in terms of time steps or clock ticks, while continuous time delays represent the
time in real-time units. TPAs are used to analyze various properties of systems, such as
reachability, stability, and performance. TPAs are used to model complex systems, such as
distributed systems, network protocols, and control systems. In summary, timed proba-
bilistic automata is a powerful mathematical model that allows the for modelling and the
analysis of systems with time-sensitive behavior. It combines the concepts of probabilistic
automata and timed automata to provide a comprehensive framework for modeling and
analyzing complex systems.

TPA is a mathematical model used to represent probabilistic systems with timing
constraints. Formally, a TPA is defined as a tuple (Q, Σ, ∆, q0, F, E), where:

Q is a finite set of states.
Σ is a finite set of input symbols.
∆ is a finite set of real-valued time intervals.
q0 ∈ Q is the initial state.
F ⊆ Q is the set of accepting states.
E is a set of edges, where each edge e = (q, a, ∆′, q′, p) represents a transition from

state q to state q′ on input symbol a with a probability p, where p is a value between 0 and
1, and ∆′ is a set of time intervals that must elapse before the transition can be taken.

A TPA operates as follows: at each step, the TPA reads input symbol a and determines
which transition to take probabilistically based on the probabilities associated with each
outgoing edge from the current state. In addition, the TPA keeps track of the amount
of time that has elapsed since the last transition, and the timing constraints specified on
the outgoing edges determine when the next transition can be taken. The TPA accepts
a given input sequence if there exists a path from the initial state to an accepting state
that satisfies the timing constraints on each transition along the path. TPAs are useful
for modeling and analyzing real-time systems that exhibit probabilistic behavior, such as
communication protocols, sensor networks, and control systems. They can be analyzed
using formal verification techniques to ensure that the system meets certain performance
or safety requirements.

Surveillance drones are designed to gather and transmit information from the air. The
operational behaviors of surveillance drones include the following: Takeoff and Landing:
The drone must be able to take off and land safely and efficiently, often autonomously.
Navigation: The drone must be able to navigate to specific locations and fly along pre-
determined flight paths, either autonomously or under human control. Sensing: The drone
must be equipped with various sensors, such as cameras, microphones, and environmental
sensors, to gather information about the environment. Data Transmission: The drone must
be able to transmit the data gathered by its sensors in real-time to a ground control station
or to a remote cloud-based server. Power Management: The drone must be able to manage
its power consumption to ensure that it has enough power to complete its mission, either
by using rechargeable batteries or by refueling in flight. Obstacle Avoidance: The drone
must be able to avoid obstacles in its path, such as trees, buildings, and other objects, to
ensure safe and efficient flight. Mission Management: The drone must be able to manage its
mission, including starting and stopping missions, changing its flight path, and responding
to external commands, either autonomously or under human control.
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Security: The drone must be able to implement security measures to protect against
unauthorized access and tampering, such as encryption and secure communication proto-
cols. Maintenance: The drone must be designed for easy maintenance, including regular
inspections, cleaning, and replacement of components, to ensure its continued operation.
Finally, the operational behaviors of surveillance drones are diverse and complex, requiring
a combination of hardware, software, and control systems to ensure their effective and
efficient operation. The use of drones in swarming applications presents new security
challenges, and intrusion detection systems play a crucial role in securing these systems.
However, implementing IDSs in drone swarming is challenging due to resource constraints,
network latency, interference, and the dynamic environment in which these systems oper-
ate. Despite these challenges, continued research in this area is critical to ensure the secure
deployment of drone swarms for various applications.

4. Proposed Model

The design of TPAs for intrusion detection in drone swarming involves the
following steps:

Modeling the Normal Behavior: The first step in designing a TPA for intrusion de-
tection is to model the normal behavior of the drone swarm. This involves specifying the
states, transitions, and probabilistic time constraints that describe the swarm’s normal
behavior. Specifying the Intrusion Behavior: Once the normal behavior of the drone swarm
has been modeled, the next step is to specify the intrusion behavior that the TPA should
detect. This involves defining the states, transitions, and time constraints that describe the
behavior of the swarm in the event of an intrusion. Probabilistic Analysis: Once the normal
and intrusion behaviors have been modeled, the next step is to perform a probabilistic
analysis to determine the probability of the drone swarm’s behavior deviating from the
normal behavior and entering the intrusion behavior. This analysis is used to determine
the false positive and false negative rates of the intrusion detection system, which is used
to fine-tune the TPA to meet the desired performance requirements.

Integration with the Drone Swarm: The final step in designing a TPA for intrusion
detection in drone swarming is to integrate the TPA with the drone swarm. This involves
implementing the TPA on the drone swarm’s onboard computer system and configuring
it to monitor the swarm’s behavior in real-time, and detect deviations from the normal
behavior that may indicate an intrusion. In assumption, TPAs are an effective tool for
intrusion detection in drone swarming by combining temporal logic with probabilistic
analysis to model and analyze the behavior of the drone swarm. The design of TPAs
for intrusion detection involves modeling the normal and intrusion behavior, performing
probabilistic analysis, and integrating the TPA with the drone swarm.

Let S be a set of states, where s_i represents the state of drone i. Let T be a set of
transitions between the states, where t_ij represents the transition from state s_i to state
s_j. Let R be a set of probabilistic rates, where r_ij represents the probability of transition
t_ij occurring.

Each state s_i defined by a vector (x_i, y_i, z_i, θ_i, v_i, w_i), where:
x_i, y_i, and z_i are the drone’s position coordinates in 3D space.
θ_i is the drone’s heading angle.
v_i is the drone’s velocity.
w_i is the drone’s angular velocity.
Each transition t_ij can be defined by a time interval [t_start, t_end], where t_start

represents the time at which the transition begins, and t_end represents the time at which
the transition ends. The probability of transition t_ij occurring is defined by function r_ij(t),
where r_ij(t) is the probability of the transition occurring at time t. Using these definitions,
our proposed TPA algorithm for drone swarming is as follows:

1. Initialize the system with an initial state set S_0;
2. Compute the set of possible transitions T_i that can be made from each state s_i in S_0;
3. Compute the transition probability r_ij(t) for each transition t_ij in T_i;
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4. Calculate the expected value E_ij of the transition time as: E_ij =
∫

t_startˆt_end t *
r_ij(t) dt;

5. Compute the next state S_1 as the set of all possible next states reachable from any
transition in T_i;

6. Repeat steps 2–5 for each state in S_1 to determine possible transitions and their
probabilities;

7. Continue the process for a specified number of time steps or until a desired condition
is met.

Our proposed TPA algorithm is used to model the behavior of a swarm of drones,
where each drone has its own state and can transition between states based on probabilistic
rates. The algorithm was adapted to include additional factors, such as sensor data, commu-
nication delays, and environmental conditions to model more complex swarm behaviors.

A state transition diagram is a graphical representation of the behavior of a system
that shows the possible states that the system is in and the transitions between these states.
A state transition diagram for surveillance drone operations may include the following
states. Standby: The drone is in standby mode, waiting for a command to start a mission.
Takeoff: The drone is taking off and ascending to its operating altitude. Navigation: The
drone is flying to its designated location and following its predetermined flight path. Data
Collection: The drone is collecting data using its sensors and transmitting this data to
a ground control station or remote server. Obstacle Avoidance: The drone is avoiding
obstacles in its path and rerouting its flight path as necessary. Emergency Landing: The
drone is descending to the ground and landing in response to an emergency.

A state transition diagram for surveillance drone operations may include the following
transitions: Start Mission: The transition from Standby to Takeoff, triggered by a command
to start a mission. Complete Takeoff: The transition from Takeoff to Navigation, triggered
by the drone reaching its operating altitude. Start Data Collection: The transition from
Navigation to Data Collection, triggered by the drone reaching its designated location. En-
counter Obstacle: The transition from Navigation or Data Collection to Obstacle Avoidance,
triggered by the drone detecting an obstacle in its path. Avoid Obstacle: The transition
from Obstacle Avoidance to Navigation or Data Collection, triggered by the drone success-
fully avoiding the obstacle and resuming its flight path. Emergency: The transition from
Navigation, Data Collection, or Obstacle Avoidance to Emergency Landing, triggered by
the drone detecting an emergency. Complete Emergency Landing: The transition from
Emergency Landing to Standby, triggered by the drone successfully landing on the ground.

A state transition diagram is a useful tool for representing the complex behavior of
surveillance drones and for understanding the transitions between the various states that
the drone is in during its operations.

Consider Figure 2. Timed Probabilistic Automaton of a drone, that models a simple
system with nine states: “OFF”, “ON”, “Standby”, “Takeoff”, “Navigation”, “DataCollection”,
“ObstacleAvoidance”, “EmergencyLanding”, and “ReturntoLaunch”. The TPA has a clock
variable “X” that represents the time elapsed since a particular event. In the transition from
State “Takeoff” to State “Navigation”, there is a clock constraint of “60 <=X <= 300| seconds”,
meaning that the transition will occur between 60 s to 300 s after the Takeoff event. The
probability of this transition is 0.95, indicating that there is a 95% chance that the transition
will occur between 60 s to 300 s. When the transition arrives at the destination state, the
clock variable “X” is reset.

Figure 3 illustrates the design approach of an intrusion detection system (IDS) using
timed probabilistic automata (TPA) based automata controller strategy for identifying
malicious activities in a drone swarm system. The TPA approach considers the operational
constraints of resource-limited drone systems, and establishes a set of normal behavior
activities for the drone devices. The TPA acts as an event-driven operator for each drone
device, while the automata controller/monitor serves as the adaptive knowledge engine
that defines the agile interplay between the basic TPA instances. The proposed IDS using
TPA detects trends of deviation in the sequential occurrence of activities, and the system
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uses coordinated automaton to maintain the duration for all potential combinations of drone
swarm scenarios. Event orchestration in a drone swarm environment involves extracting
a new service or activity by integrating atomic events produced by drone devices during
execution and discovery. However, detecting intrusions results in high energy consumption
and significant computing overhead, which uncovers policy breaches and anomalies in
the drone swarm environment. To address these vulnerabilities, we propose an efficient
solution to orchestrate different intrusion detection patterns that perform functions similar
to safety and protection policies.
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Detection of Denial-of-Service Attacks:
To detect a Denial-of-Service (DoS) attack based on the number of incoming packets

in a given time window. Assuming that the number of incoming packets received by
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the ith drone within a time window of T is represented by Ni(T), the probability of a
Denial-of-Service (DoS) attack can be calculated as follows:

Probability of DoS in drone swarm = Pr [Ni(T) > T_max]

where T_max is the maximum number of packets each drone in the drone swarm can
handle within the time window T. If the calculated probability exceeds a certain threshold,
then conclude that a DoS attack is likely to be occurring.

Detection of Hijack Attacks:
A hijack attack occurs when a malicious entity takes control of one or more drones

in the swarm. To detect a hijack attack based on the deviation of drone behavior from the
expected behavior. Consider the expected behavior of a drone i at time t as E_i(t). This
behavior is modeled using TPA that takes into account the drone’s mission, environment,
and other factors. The actual behavior of the drone at time t is denoted by A_i(t), then
calculate the probability of a hijack attack as follows:

Probability of Hijack attack = Pr [∃i: |E_i(t) − A_i(t)| > ε]

where ε is a threshold value that represents the maximum acceptable deviation from the
expected behavior. If the calculated probability exceeds a certain threshold, then conclude
that a hijack attack is likely to be occurring.

Detection of Replay Attacks:
A replay attack occurs when an attacker intercepts and re-transmits a legitimate

message between two drones in the swarm. To detect a replay attack, with the use of a time-
based approach that takes into account the freshness of messages. We denote the time at
which message m is received by drone i as t_i(m) then maintain set R_i of recently received
messages by drone i. If a new message m′ is received by drone i, then check whether m′

has already been received by i or any other drone within a certain time window:

Probability of Replay attack = Pr [∃i, j: t_i(m′) − t_j(m) ≤ ∆]

where ∆ is the maximum allowable time difference between the reception of m and m′. If
the calculated probability exceeds a certain threshold, then conclude that a replay attack is
likely to be occurring.

The use of formal methods [31,32] in intrusion detection systems for drone swarming
is a logical approach that provides a high level of assurance in the system’s correctness and
security. Formal methods refer to mathematical techniques for modeling, analyzing, and
verifying computer systems. These methods involve rigorous mathematical reasoning and
logic, which helps ensure the correctness and completeness of the system’s behavior. In the
case of intrusion detection systems for drone swarming, formal methods are particularly
useful because they allow for the specification of complex behaviors and interactions among
multiple drones. Formal methods can help identify and prevent potential vulnerabilities,
such as attacks on the communication channels or manipulation of drone behavior, that
could compromise the security of the swarming system.

5. Experimental Analysis

Energy efficiency refers to the ratio of the amount of useful work performed by a
system to the amount of energy consumed by the system. In the context of drone swarming,
energy efficiency is defined as the ability of the swarm to achieve its objectives while
minimizing the energy consumption of individual drones. Detection DOS, hijack, and
replay attacks are security threats that compromise the energy efficiency of a drone swarm
by causing individual drones to consume more energy than necessary or by causing the
swarm to fail to achieve its objectives. Detection DOS, hijack, and replay attacks are security
threats that can compromise the energy efficiency of a drone swarm by causing individual
drones to consume more energy than necessary or by causing the swarm to fail to achieve
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its objectives. One way to model the impact of these attacks on energy efficiency is to use
a cost function that takes into account the energy consumption of individual drones and
the success rate of the swarm in achieving its objectives. The cost function is expressed
as follows:

C = E + α (1 − S)

where C is the cost of the swarm, E is the total energy consumption of individual drones,
S is the success rate of the swarm in achieving its objectives, and α is a weight factor that
balances the importance of energy consumption and success rate. Detection of DoS, hijack,
and replay attacks are modeled by increasing the energy consumption of individual drones
when they are forced to perform extra computations to detect and mitigate the attacks. This
is modeled as follows:

E = E + β_DoS + β_hijack + β_replay

where β_DoS, β_hijack, and β_replay are the extra energy consumption due to doS, hijack
and replay attacks respectively.

The proposed TPA-based IDS system was tested using a drone swarm setup in Gazebo9
simulator. The drone rules were written in C++ to create plugins that extended Gazebo’s
functionality, while XML was used to define the simulation environment. The swarm
consisted of small and medium drones with a ground control station, installed with the
proposed TPA-based IDS. The approach had two modules: the first module analyzed the
packet header details to classify packets as malicious or not, while the second module used
an automata controller (AC) to check the operational behaviors of all drone devices. The
drone swarm environment was accessed by legitimate drone pilots via a wireless ground
station, where few legitimate and intruder drones generated different types of malicious
events. Table 2 shows the various types of anomalous traffic generated by two drone
systems equipped with remote controlled (RC) transmitters. These systems were used to
simulate malicious clients that disrupt the network by sending and receiving messages.
Additionally, the proposed TPA-based IDS also accounts for malicious activities, such as
replay, insert, and modify that are generated by a few legitimate drone systems. The impact
of an attack-generating model on the performance of a proposed IDS depends on several
factors, including the quality of the attack-generating model, the nature and complexity of
the attacks it generates, and the effectiveness of the TPA-based IDS. If the attack-generating
model is of high quality and generates realistic and diverse attacks, it can help identify
vulnerabilities in the TPA-based IDS and highlight areas for improvement.

Table 2. Test dataset attributes.

Test Dataset (TD) Legal Events False/Anomaly
Events Overall Events False Events

Ratio (%)

TD1 3800 800 4600 17.39

TD2 10,000 3500 13,500 25.92

TD2 16,750 4900 21,650 22.63

Our results are evaluated using performance metrics that include precision, recall,
F-measure, and accuracy, which are commonly used in assessing malicious behavior.
Precision, recall, F-measure, and accuracy are defined in Equations (1)–(4), respectively,
as follows:

Precision = (TP/(TP + FP)) × 100 (1)

Recall = (TP/(TP + FN)) × 100 (2)

F-Measure = 2 × (Precision × Recall)/(Precision + Recall) (3)

Accuracy = (TN + TP)/((TN + FP) + (TP + FN)) × 100 (4)
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where TP (True Positive) and TN (True Negative) represent the number of events correctly
classified as malicious events and normal events, respectively. FN (False Negative) and FP
(False Positive) refer to the number of malicious payloads misclassified as legitimate events
and legitimate events misclassified as malicious events, respectively.

Comparative Analysis of the Performance Metrics for Our TPA-Based IDS

The evaluation of three test datasets uses three different intrusion detection systems
(IDS) based on different automata models. The performance of each system is measured in
terms of precision, recall, F-measure, and accuracy for different numbers of drones.

Figure 4 shows the Timed Automata-based IDS: The system performs reasonably
well with all three numbers of drones, achieving an average F-measure of 85.18% and an
accuracy of 85.46%. The system shows a slightly better performance with 10 and 30 drones.
Probabilistic Automata-based IDS: This system outperforms the other two systems with a
significantly higher F-measure of 94.11% and an accuracy of 93.98%. The performance of
the system slightly decreases with the increase in the number of drones. Timed Probabilistic
Automata-based IDS: The system performs the best among all three IDSs with an F-measure
of 99.10% and an accuracy of 99.14%. However, the system shows a significant decrease in
performance with 30 drones.
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Figure 5 shows the Timed Automata-based IDS: The system performs moderately well
with an average F-measure of 75.70% and an accuracy of 75.79%. The performance of the
system slightly decreases with an increase in the number of drones. Probabilistic Automata-
based IDS: The system shows a better performance than the Timed Automata-based IDS,
achieving an F-measure of 87.33% and an accuracy of 87.22%. The performance of the
system slightly decreases with the increase in the number of drones. Timed Probabilistic
Automata-based IDS: The system shows the best performance among all three IDSs with
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an F-measure of 98.60% and an accuracy of 98.64%. The performance of the system slightly
varies with the number of drones, with the best performance at 20 drones.
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Figure 5. Performance metrics of our TPA-based IDS for test dataset-2.

Figure 6 shows the Timed Automata-based IDS: The system performs moderately
well with an average F-measure of 85.31% and an accuracy of 85.43%. The performance
of the system slightly varies with the number of drones, with the best performance at
10 drones. Probabilistic Automata-based IDS: The system performs relatively better than
the Timed Automata-based IDS, achieving an F-measure of 94.37% and an accuracy of
94.32%. The performance of the system slightly varies with the number of drones, with the
best performance at 20 drones. Timed Probabilistic Automata-based IDS: The system shows
the best performance among all three IDSs with an F-measure of 98.28% and an accuracy of
98.24%. The performance of the system slightly varies with the number of drones, with the
best performance at 10 drones.

Overall, each of these models has its own strengths and weaknesses when it comes to
detecting malicious events in drone swarms. Timed automata are useful for systems with
time-dependent behaviors, probabilistic automata are useful for systems with probabilistic
behaviors, and time probabilistic automata are useful for systems with both temporal
and probabilistic behaviors. Ultimately, the choice of model will depend on the specific
characteristics of the system being analyzed and the types of malicious events that are being
targeted. Abstraction techniques are used to reduce the state the exhaustive nature in our
proposed TPA-based IDS in drone swarming. It involves grouping together similar states
or behaviors in the TPA to create a smaller and more manageable model. This reduces the
number of states in the TPA and improves the efficiency of the IDS.
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6. Conclusions

Our proposed TPA-based intrusion detection system (IDS) is designed to safeguard
drone swarming against various types of attacks, including Playback, DDoS, Zero-day,
Mischievous series assaults, Hijacking, and Spoofing-Jamming assaults. The IDS operates
in the ground control station of the drone swarm, which eliminates resource limitations
and provides ample capacity to detect new and complex attack scenarios that may arise.
The proposed algorithm for the intrusion detection system (IDS) is evaluated on three test
datasets using three different models: timed automata-based IDS, probabilistic automata-
based IDS, and timed probabilistic automata-based IDS. The performance of the algorithm
is measured in terms of precision, recall, F-measure, and accuracy, and the results are
presented for different numbers of drones (N), ranging from 10 to 30 drones. The results
show that the timed probabilistic automata-based IDS outperforms the other models for
all test datasets and all values of N. The algorithm achieved the high accuracy, precision,
recall, and F-measure, indicating its effectiveness in detecting intrusions in drone swarming.
These results suggest that the proposed algorithm is a promising approach for developing
an efficient and reliable IDS for drone swarming.
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