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Abstract: An airborne hyperspectral imaging system is typically equipped on an aircraft or unmanned
aerial vehicle (UAV) to capture ground scenes from an overlooking perspective. Due to the rotation
of the aircraft or UAV, the same region of land cover may be imaged from different viewing angles.
While humans can accurately recognize the same objects from different viewing angles, classification
methods based on spectral-spatial features for airborne hyperspectral images exhibit significant
errors. The existing methods primarily involve incorporating image or feature rotation angles into
the network to improve its accuracy in classifying rotated images. However, these methods introduce
additional parameters that need to be manually determined, which may not be optimal for all
applications. This paper presents a spectral-spatial attention rotation-invariant classification network
for the airborne hyperspectral image to address this issue. The proposed method does not require
the introduction of additional rotation angle parameters. There are three modules in the proposed
framework: the band selection module, the local spatial feature enhancement module, and the
lightweight feature enhancement module. The band selection module suppresses redundant spectral
channels, while the local spatial feature enhancement module generates a multi-angle parallel feature
encoding network to improve the discrimination of the center pixel. The multi-angle parallel feature
encoding network also learns the position relationship between each pixel, thus maintaining rotation
invariance. The lightweight feature enhancement module is the last layer of the framework, which
enhances important features and suppresses insignificance features. At the same time, a dynamically
weighted cross-entropy loss is utilized as the loss function. This loss function adjusts the model’s
sensitivity for samples with different categories according to the output in the training epoch. The
proposed method is evaluated on five airborne hyperspectral image datasets covering urban and
agricultural regions. Compared with other state-of-the-art classification algorithms, the method
achieves the best classification accuracy and is capable of effectively extracting rotation-invariant
features for urban and rural areas.

Keywords: airborne hyperspectral image; hyperspectral image classification; rotation-invariant; local
spatial feature enhancement; convolutional neural network; attention mechanism; lightweight feature
enhancement

1. Introduction

With the development of optical imaging technology and unmanned aerial vehicle
(UAV) technology, airborne hyperspectral imaging (HSI) has become increasingly abundant.
HSI differs from RGB images in that it contains a large amount of spectral and spatial
information. The continuous spectral curve of HSI can identify various objects, as different
objects have different spectral curves [1]. As a result, the airborne hyperspectral image has
been widely used in applications such as urban planning [2], agricultural monitoring [3],

Drones 2023, 7, 240. https://doi.org/10.3390/drones7040240 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7040240
https://doi.org/10.3390/drones7040240
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://doi.org/10.3390/drones7040240
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7040240?type=check_update&version=1


Drones 2023, 7, 240 2 of 30

disaster detection [4]. Table 1 shows the common airborne hyperspectral image datasets
captured by UAVs or aircraft covering urban and agricultural areas.

Table 1. The common airborne hyperspectral images datasets.

Dataset Sensor Platform Bands Range (nm) Land-Cover Area

Indian Pines AVIRIS Aerial 220 400–2500 16 Agriculture

Luojia-HSSR [5] AMMHS Aerial 249 390–980 23 Urban

Houston ITERS CASI Aerial 144 364–1046 15 Urban

Pavia Center ROSIS Aerial 102 430–860 9 Urban

Matiwan [6] VNIR UAV 250 400–1000 13 Agriculture

WHU-Hi-Longkou Headwall UAV 270 400–1000 9 Agriculture

WHU-Hi-HanChuan Headwall UAV 270 400–1000 16 Agriculture

WHU-Hi-HongHu Headwall UAV 270 400–1000 22 Agriculture

HSI classification aims to predict the corresponding category for each pixel. Based on
how features are extracted, HSI classification methods are roughly divided into traditional
and deep learning methods. The traditional methods [7,8] typically extract hyperspectral
spatial-spectral features using handcrafted features, followed by a feature-classifying mod-
ule. This paper [7] proposed using Independent Component Discriminant Analysis (ICDA)
for classification. Cao et al. [9] used the three-dimensional discrete wavelet transform
(3D-DWT) to extract the spatial-spectral feature for HSI classification. While traditional
methods [10–12] have achieved good results, the handcrafted features are generally shallow
features with limited feature representation capability, making it challenging to achieve
satisfactory performance.

In recent years, deep learning methods have been the mainstream approach in HSI clas-
sification [13]. Hyperspectral images contain rich spectral information, with each category
having unique spectral information [1]. Based on the different information methods, deep
learning methods are broadly divided into two categories: spectral feature methods [14–16]
and spectral-spatial feature methods [17–19].

Spectral feature algorithms extract features along the 1D spectral dimension. For in-
stance, Chen et al. [20] first applied deep learning to HSI classification. According to
Hu et al.’s research [14], 1D convolution neural networks (CNNs) were employed to classify
HSI based on spectral features. A novel recurrent neural network (RNN) module [21] was
employed in HSI classification. Wu et al. [15] developed an RNN-based semi-supervised
classifier for HSI classification. Hang et al. [22] utilized cascaded RNNs for HSI classifica-
tion. This work used RNNs to model the sequence and effectively represent the relationship
between adjacent spectral bands. However, while the spectral dimension can distinguish
different land-cover categories, adjacent pixels in HSI may belong to the same land-cover
categories [23,24].

In order to achieve an accurate classification of land-cover classes, it is necessary to con-
sider both spectral and spatial features [25]. The spatial-spectral feature methods [19,26,27]
have been proposed to address the issues associated with spectral feature methods. For ex-
ample, Zhang et al. [4] employed a method of learning contextual interaction features using
inputs based on different regions. Song et al. [28] introduced residual learning and fused
the output of the hierarchical features for HSI classification. To expedite the forward pro-
gression of 2D CNN, Mei et al. [18] proposed a novel step activation quantization method.
Since HSIs are 3D cubes, 3D CNN has been employed for HSI classification. Wei et al. [29]
utilized the edge-preserving sied window filters as the convolution kernels. He et al. [30]
proposed a multiscale 3D CNN for classification. A hybrid network [31] that combines
2D CNN and 3D CNN was presented to issue the classification of HSIs. Mei et al. [17]
employed an unsupervised 3D CNN autoencoder for HSI classification. Multiple spectral
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resolution 3D CNN [32] has also been introduced for classification. In addition, atten-
tion modules have been embedded in the network to extract spectral-spatial features in
HSIs. Zheng et al. [13] proposed an attention mechanism to suppress redundant bands
and improve classification accuracy. A novel spectral-spatial attention network [26] was
introduced to capture the correlation of the pixels. In most cases [33–36], these attention
modules are independent. This means these modules are flexibly put into the network.

HSIs contain rich spectral information. Meanwhile, the 2D convolution neural net-
works have significantly affected computer vision, with applications including biomedical
image classification [37], remote sensing image classification [3,38], change detection [39,40],
and image deblurring [2]. However, when convolving along the spectral dimension of HSI,
hundreds of bands need plenty of parameters. There is no doubt that this dramatically
increases computational time and cost. The number of channels is usually reduced before
using 2D convolution kernels for feature extraction and classification to solve this problem.
The mainstream methods include two main types. One is to reduce the spectral dimension.
For instance, [31,41] used PCA [42] and variants of PCA [16] to reduce the number of
spectral channels. The authors of [43] utilized the enhancing transformation reduction
(ETR) for reducing dimensionality and HSI classification. Another option is to suppress the
redundant bands using spectral attention methods [25,26]. The spectral attention methods
usually change the weights of each band.

The vision transformer (ViT) [44] has recently performed remarkably on some vision-
related tasks. As a result, some studies [45–47] have attempted to apply ViT to hyperspectral
classification. For instance, a novel local transformer [48] with an integrated spatial partition
restore module is proposed for classification. He et al. [49] utilized a spatial-spectral
transformer with a dense connection, which was proposed to capture sequential spectra
relationships. Extended morphological profiles [50] were employed for HSI classification
in a deep global-local transformer network. These transformer methods [50–53] process
the hyperspectral images in a token style. Generally, the 3D HSI is divided into patches
and treated as tokens. The transformer network extracts the features and relationships of
these tokens for hyperspectral classification.

An airborne hyperspectral imaging system is typically equipped on an aircraft or UAV
to capture ground scenes from an overlooking perspective. As a result of the rotation of
the UAV, the HSI in the same area has different perspectives [13]. While spatial rotation
does not typically cause degradation of classification accuracy for spectral-based methods,
spectral feature methods do not perform as well as spectral-spatial feature methods, which
are sensitive to spatial rotation, as shown in Figure 1. For convenience, the input is set to
have one spectral band. The kernel size is 3× 3. The image size is 5× 5. The stride and
padding of convolution are 1 and 0, respectively. Figure 1 shows that different features are
extracted from the same image with different input angles using the same convolutional
kernel. transformer-based methods face similar problems. The input image rotation causes
a change in the output. Therefore, the spatial-spectral methods perform poorly when
the images are rotated. In order to address this issue, some work has made meaningful
attempts to explore it. Tao et al. [54] utilized vector sorting to extract rotation-invariant
features. Zheng et al. [13] used spectral convolution to extract spatial features to maintain
rotation invariance. Chen et al. [55] presented using feature rotation to address the rotation
invariance of UAV images. Figure 2 illustrates common methods for addressing rotation
invariance. Figure 2A shows that the image-level rotation may lose samples or changes the
image size. According to [55], the coordinates of each feature are (x, y). The rotation by θ
degrees is expressed as:

x̃=xcosθ − y sin θ

ỹ =x sin θ + y cos θ
(1)

where x̃ and ỹ denote the new coordinates of the rotated feature. However, without
additional constraint conditions, the feature-level rotation may still lose features, which are
shown in Figure 2B. For instance, according to Equation (1), the feature at the coordinate
position (−2, −2) will be lost after rotation, while the features at the coordinate positions
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(−2, 0) and (−1, 0) will have the same new coordinate position (−1, −1) after rotation,
resulting in two overlapping features. Figure 2C shows that the proposed feature-level
rotation is capable of effectively maintaining all features to address the problem of rotational
invariance without the introduction of additional conditions.

Figure 1. An example of convolution results from different angles.

Figure 2. (A) Image-level rotation may lose samples or changes the image size. (B) Without additional
constraint conditions, the feature-level rotation may still lose features. (C) The proposed feature-level
rotation maintains all the features without additional constraint conditions.

A spectral-spatial attention rotation-invariant classification network (SSARIN) is pre-
sented based on the above issues. The SSARIN can address the issue of spatial rotation
sensitivity in spectral-spatial feature methods of HSI classification. SSARIN is composed
of a Band Selection (BS) module, a Local Spatial Feature Enhancement (LSFE) module,
and a Lightweight Feature Enhancement (LWFE) module. The BS module is the initial
component that reduces redundant spectral channels. The LSFE module generates a multi-
angle parallel feature encoding network, which enhances the center pixel’s discrimination
ability and learns the positional relationship between each pixel, ensuring rotation invari-
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ance. The LWFE module enhances significant features and suppresses insignificant ones
as the final layer. At the same time, a dynamically weighted cross-entropy loss function
is employed.

This paper has the following contributions.

1. We present spectral-spatial attention rotation-invariant classification network (SSARIN)
that utilizes convolutional neural networks (CNNs) to extract spectral-spatial features.
The SSARIN not only achieves good performance in HSI classification, but is also a
rotation-invariant network. Additionally, a dynamically weighted cross-entropy loss
is introduced that considers the complexities of samples with different categories to
improve classification accuracy.

2. A local spatial feature enhancement module is proposed to address the issue of spatial
rotation sensitivity. This module not only captures spatial-spectral features but also
learns the position relationship between pixels. Doing so enhances the discriminative
power of the center pixel and alleviates the impact of spatial rotation on classification
accuracy.

The paper is divided into the following sections. Section 2 shows the proposed method
in more detail. Section 3 discusses the experimental results. The discussion is presented in
Section 4. Finally, a conclusion is drawn in Section 5.

2. Proposed Method

This section describes the various components of the proposed network in detail.
The overview of the algorithm is shown in Section 2.1. Section 2.2 contains the details of
the band selection module. The local spatial feature enhancement module is explained in
Section 2.3. Section 2.4 introduces the lightweight feature enhancement. Finally, the loss
function is reported in Section 2.5.

2.1. Overview

The HSI is a 3D cube [26]. Suppose that X ∈ RH×W×B denotes the HSIs, where
H×W represents the spatial size of the image. B is the number of channels. The Y =
[y1, y2, . . . , yc] ∈ R1×1×C represents the land-cover categories. C denotes the number of
classes. The Y is a one-hot label vector. Classification aims to make each hyperspectral
image pixel have a corresponding category.

Let Xi ∈ Rp×p×b represent the patch, a square area cut from the HSI Xp. Xp represents
the hyperspectral image after principal components analysis (PCA). Xi denotes the i-th
patch of the hyperspectral image Xp. p× p is the spatial size. The pixel xc

i represents
the center pixel of the patch Xi. Each pixel has a corresponding patch in the HSIs. Thus,
the proposed SSARIN is utilized to determine the class of the pixel xi based on patch Xi.

Figure 3 shows the proposed HSI classification method, which mainly contains a band
selection (BS) module, a local spatial feature enhancement (LSFE) module, and a lightweight
feature enhancement (LWFE) module. Hundreds of bands need many parameters. Many
bands are redundant, so PCA can be used to retain the primary spectral information and
reduce the number of bands. PCA reduces the number of channels from B to b. In this
paper, b is set to 50. Furthermore, a spectral attention mechanism is employed to recalibrate
surplus spectral bands. The spectral attention is also named the band selection (BS) in
this paper. The HSI patch Xi ∈ Rp×p×b is fed into the BS module. This module has the
effect of suppressing redundant spectral channels. The main benefits are the following.
PCA not only reduces the number of channels but also reduces the number of parameters.
The main thing is that the HSIs after PCA retains the primary information. Then, a local
spatial feature enhancement module is employed to extract the spectral-spatial features.
Meanwhile, the output of the LSFE module consists of rotation-invariant features. Finally,
a lightweight feature enhancement is leveraged to enhance essential features, suppressing
insignificance features and improving classification accuracy. The core component of
SSARIN is the LSFE module. Table 2 reports the details of the presented algorithm.
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Figure 3. The network architecture of the proposed method, named the spectral-spatial attention
rotation-invariant classification network (SSARIN), mainly contains a band selection (BS) module,
a local spatial feature enhancement (LSFE) module, and a lightweight feature enhancement (LWFE)
module.

Table 2. The architecture of the proposed SSARIN.

Module Layers Input Size Output Size Connected to

Input Patch H P× P× B / SpeA, SpeA-Conv

BS SpeA P× P× B 1× 1× B SpeA-Conv
SpeA-Conv P× P× B, 1× 1× B P× P× B Rotation

LSFE

Rotation P× P× B P× P× B LSFE-Conv-1
LSFE-Conv-1 P× P× B P× P× 256 SpaA-1, SpaA-Conv-1

SpaA-1 P× P× 256 P× P× 1 SpaA-Conv-1
SpaA-Conv-1 P× P× 256, P× P× 1 P× P× 256 LSFE-Conv-2
LSFE-Conv-2 P× P× 256 P× P× 128 SpaA-2, SpaA-Conv-2

SpaA-2 P× P× 128 P× P× 1 SpaA-Conv-2
SpaA-Conv-2 P× P× 128, P× P× 1 P× P× 128 LSFE-Conv-3
LSFE-Conv-3 P× P× 128 K× K× 64 Mean

Mean K× K× 64 K× K× 64 LSFE-Conv

LWFE LSFE-Conv K× K× 64 K× K× 64 AP
AP K× K× 64 1× 1× 64 FC

Classifier FC 1× 1× 64 16 LogSoftmax
LogSoftmax 16 C /

2.2. Band Selection Module

The band selection module contains three layers: one average pooling and two con-
volution layers. This module emphasizes the useful bands and suppresses the redundant
ones by adaptive weights. The BS module recalibrates the spectral bands and adjusts the
weight of each band. Figure 4 shows the details of the BS module. Table 3 lists detailed
information on the BS module. The formulation of this module is defined as Equation (2):

IS
P×P = σ(Conv(ReLU(Conv(AP(IP×P)))))� IP×P (2)

where AP(·) represents the global average pooling; Conv(·) denotes the 2D convolutional
layer; ReLU(·) denotes the activate function, which is defined as ReLU(x) = max(0, x); σ(·)
is the SigMoid activate function, which is formulated as σ(x) = 1/(1 + e−x); � denotes the
channel-wise multiplication; IP×P denotes the corresponding p× p image patches cropped
from the original hyperspectral image; and IS

P×P denotes spectral-spatial feature after the
band selection.

The BS module has the following functions. First, the module suppresses redundant
bands by recalibrating the band weights. Second, the principal components analysis and
1× 1 convolution kernel only needed a small number of parameters. Furthermore, the most
important thing is that the 1× 1 convolution has rotation invariance [13].
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Figure 4. The architecture of the band selection (BS) module.

Table 3. The detailed structures of the band selection (BS) module.

Layers Input Size Output Size Kernel Size

AP P× P× N 1× 1× N /
Conv+ReLU 1× 1× N 1× 1× N/4 1× 1× N/4

Conv 1× 1× N/4 1× 1× N 1× 1× N
σ(·) 1× 1× N 1× 1× N /
� 1× 1× N/P× P× N P× P× N /

2.3. Local Spatial Feature Enhancement

In order to obtain the class of the pixel xi, the spectral and spatial features are taken
into account [26,56]. The method based on spatial-spectral features is widely used for HSI
classification [19,57]. Meanwhile, the adjacent samples may belong to the same class [58].
Thus, the spatially adjacent pixel of the center pixel xc

i can be used to help to classify pixel
xi [59]. However, the methods based on spatial-spectral features are sensitive to spatial
rotation [13]. The existing spatial-spectral feature methods do not sufficiently consider the
position relationship between pixels. For the same area, the rotation of the imaging devices
causes the collected hyperspectral images to have various viewing angles. The change in
spatial location between pixels leads to a decline in classification accuracy.

This paper proposes a simple and effective module named Local Spatial Feature
Enhancement (LSFE) to solve the above problem. The LSFE module contains a rotate
operator, a feature coding module, and an average pooling layer, as shown in Figure 5.

Specifically, each spatial-spectral feature is divided into eight non-overlapping regions
using the center pixel as a reference. It also means that the center angle of each area is 2π/8.

Let I
S, i(2π)

8
P×P denote the i-th region, where i = ([0, 1, . . . , 7]). Then, each time, all regions are

rotated 2π/8 to produce a new spectral-spatial feature. It needs to rotate seven times to
produce eight different spectral-spatial features.

Figure 6 shows an example. The blue area has a central pixel angle of 2π/8. The radius
of this area is r = dP/2e. P represents the size of the spectral-spatial feature. d·e stands for
rounding up. For instance, the size of the spatial-spectral feature is 5× 5. The radius of
the rotation area is 3. After determining the region’s size, each rotation of 2π/8 produces a
new spatial-spectral feature. As shown in the second spatial-spectral feature in Figure 6,
the blue region rotates to the corresponding position, and other regions rotate similarly.
Therefore, the original spatial-spectral feature generates eight spatial-spectral features. This
approach has the following benefits. (1) This approach is intuitive and straightforward to
understand. (2) It can extract the position relationship between pixels without changing
the shape of spatial-spectral features. (3) New spatial-spectral features can be directly fed
into the network to extract features. (4) This module enhances the spatial features of the
central pixel and improves the accuracy for the central pixel category.

After rotation, these spectral-spatial features are fed into a weight-shared feature
coding module to obtain the corresponding spectral-spatial feature. The feature encoding
network mainly includes two spatial attention layers and multi-layer feature extraction
layers. Table 4 lists the detailed structures of the feature encoding network.
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Figure 5. The architecture of the proposed local spatial feature enhancement (LSFE) module and the
lightweight feature enhancement (LWFE) module.

Table 4. The detailed structures of the local spatial feature enhancement (LSFE) module.

Layers Input Size Output Size Kernel Size S/P 1

Conv + ReLU P× P× N P× P× 256 3× 3× 256 1/1
SpaA 2 P× P× 256 P× P× 256 / /

Conv + ReLU P× P× 256 P× P× 128 3× 3× 128 1/1
SpaA P× P× 128 P× P× 128 / /

Conv + ReLU P× P× 128 P× P× 256 1× 1× 256 /
Conv + ReLU P× P× 256 P× P× 512 3× 3× 512 1/1
Conv + ReLU P× P× 512 P× P× 256 5× 5× 256 1/1
Conv + ReLU K× K× 256 K× K× 128 3× 3× 128 1/1
Conv + ReLU K× K× 128 K× K× 64 1× 1× 64 /

1 S/P represents Stride/Padding; 2 SpaA represents Spatial-Attention.

Figure 6. An example of the spatial-spectral feature rotation.

Each pixel surrounding the center pixel may have different effects on the center pixel.
Thus, the weights of different pixels on the center pixel need to be recalibrated through
the spatial attention mechanism. The spatial attention mechanism is shown in Figure 7.
Different spectral curves represent different land-cover categories. Thus, spectral features
can be used to change the pixel weights. The formula is as follows:

Fm = max( f (F)) (3)
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Fa = average( f (F)) (4)

where Fm and Fa represent the features after max pooling and average pooling and f (F) is
the spectral-spatial feature. Next, concatenate these features along the spectral dimension.

Fc = concat[Fm, Fa] (5)

where Fc is the feature after concatenation. Then, spatial attention can be calculated as
follows:

FSpaA = σ(Conv(Fc))� ( f F) (6)

where FSpaA represents spectral-spatial features after spatial attention. Then, this feature is
fed to multi-layer feature extraction layers. The output of the multi-layer feature extraction
layers is Fi

v:

Fi
v = FCM

(
I

S, i(2π)
8

P×P

)
(7)

where FCM(·) denotes the weight-shared feature coding module, which includes two
spatial attention layers and multi-layer feature extraction layers and Fi

v represents the
output feature of the i-th branch. Finally, Fi

v is pooled into a feature vector, and the
operation is defined with Equation (8):

FLSFE =
1
8

7

∑
0=1

Fi
v (8)

The output features of the LSFE module have the following functions. First, the output
features extract the influence of surrounding pixels on the center pixel. Second, these
features also contain the position relationship of each pixel and have rotation invariance.

Figure 7. The structures of the spatial attention module.

2.4. Lightweight Feature Enhancement

A lightweight feature enhancement module (LWFE) is proposed to enhance the output
features of the local spatial feature enhancement module. This module mainly focuses
on enhancing important features, suppressing insignificance features, and improving
classification accuracy.

The LWFE is shown in Figure 5. The output feature of the LSFE is fed to the LWFE
module. Table 5 lists the datails of the LWFE module. Its formulation is defined with
Equation (9):

FLWFE
1×1 = Ave

(
ReLU

(
Conv

(
ReLU

(
Conv

(
FLSFE

K×K

)))))
(9)

where Ave(·) denotes the average pooling; Conv(·) represents the 2D convolutional layer;
ReLU(·) is the activate function, which is defined as ReLU(x) = max(0, x); FLSFE

K×K denotes
the output feature of the LSFE module, and K× K denotes the size of the feature; and FLWFE

1×1
represents the output feature of the LWFE module, which is also an enhanced feature.
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Table 5. The detailed structures of the lightweight feature enhancement (LWFE) module.

Layers Input Size Output Size Kernel Size

Conv + ReLU K× K× 64 K× K× 256 1× 1× 256
Conv + ReLU K× K× 256 K× K× 64 1× 1× 64

AP K× K× 64 1× 1× 64 /
FC 1× 1× 64 1× 16 /

The kernel size of all convolutional layers of LWFE is 1× 1. The reasons for using
a convolution kernel of this size are as follows. (1) This convolution kernel can reduce
the network parameters while enhancing the features. (2) It also maintains rotational
invariance. Therefore, the whole LWFE module also retains rotation invariance. The output
feature of the lightweight feature enhancement module is rotation invariant, while the
LWFE module is also rotation invariant, so the whole network is also rotation invariant.

Finally, the enhanced feature is fed into a classifier to complete the classification.

Cp = max

(
eFi

∑16
j eFj

)
(10)

where Cp is the predicted category. Fi and Fj are the i-th and j-th features of the feature
vector of the LWFE module, respectively; that is, the category with the highest probability
value is the prediction category of the network.

2.5. Loss Function

Due to the imbalance of samples, the feature of small samples may be lost during
network training, which leads to the low classification accuracy of small samples. Therefore,
this paper presents a dynamically weighted cross entropy loss according to the complexities
of samples with different categories to improve the accuracy.

The proposed dynamical weighted cross entropy loss in m-th training epoch is defined
as Equation (11):

J(m)
({

x(t), y(t)
}∣∣∣θ, ξ(m,c)

)
= − 1

T

T
∑

t=1

C
∑

c=1
ξ(m,c) · I

{
y(t) = c

}
log

exp(θT
c x(t))

∑C
k=1 exp(θT

k x(t))

(11)

where J(m) represents the loss; x(t) and y(t) denote the t-th patch cube and corresponding
category label; θ denotes the parameters of the softmax layer; T denotes the number of
samples in a training batch; C denotes the number of categories of the dataset; I{·} denotes
the indicator function, which equals one if the condition is satisfied and zero otherwise;
and ξ(m,c) denotes the weight coefficient of the c-th category in the m-th training epoch,
defined by Equation (12):

ξ(m,c) =
∑C

k=1 A(m−1,k)

C · A(m−1,c) + τ
(12)

where A(m,k) denotes the validated accuracy of the k-th category in the m-th training epoch
and τ is a small constant to avoid dividing by zero, which is set to 10−9 in this work.

The proposed SSARIN consists of the above three modules BS, LSFE, and LWFE.
The corresponding loss functions are proposed according to the network characteristics.
We introduce the experiments to demonstrate the proposed algorithm in the following.

3. Results

In order to verify the performance of the different methods for HSI classification,
extensive experiments have been carried out in this section. Section 3.1 introduces the
dataset and evaluation metrics used in the experiment. Section 3.2 describes the compared
methods and experiment design. Finally, the experimental results are drawn in Section 3.3.
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3.1. Data Description and Evaluation Metrics

There are five public airborne hyperspectral image datasets (Indian Pines, Salinas,
Pavia University, Pavia Center, and Houston) that were used to evaluate the methods.

3.1.1. Data Description

• Indian Pines (IP): As shown in Figure 8a, the IP dataset is composed of 145 × 145 pixels
with 200 bands. Figure 8b shows the ground truth map of the IP dataset. This dataset
has 16 different land-covers classes in the agriculture areas. It also includes 10,249 sam-
ples. The number of training and testing pixels is listed in Table 6.

Figure 8. Indian Pines dataset. (a) Pseudo-color image. (b) Ground truth.

Table 6. Training/testing samples of the Indian Pines (IP) dataset.

Class No. Class Name Training Testing

1 Alfalfa 4 46
2 Corn-Notill 142 1428
3 Corn-Mintill 83 830
4 Corn 23 237
5 Grass-Pasture 48 483
6 Grass-Trees 73 730
7 Grass-Pasture-Mowed 2 28
8 Hay-Windrowed 47 478
9 Oats 2 20

10 Soybean-Notill 97 972
11 Soybean-Mintill 245 2455
12 Soybean-Clean 59 593
13 Wheat 20 205
14 Woods 126 1265
15 Buildings-Grass-Trees-Drives 38 386
16 Stone-Steel-Towers 9 93

Total - 1018 10,249

• Salinas (SA): Figure 9a shows the pseudo-color image of the SA dataset. It contains
512 × 217 pixels with 204 bands. Similar to the IP dataset, this dataset also has
16 categories and 54,129 samples in the agriculture areas, as shown in Figure 9b.
In total, 2% of the pixels are randomly selected as training data. All samples are
used as testing data. Table 7 lists the class name and the number of training and
testing samples.
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Figure 9. Salinas dataset. (a) Pseudo-color image. (b) Ground truth.

Table 7. Training/testing samples of the Salinas (SA) dataset.

Class No. Class Name Training Testing

1 Brocoli-Green-Weeds-1 40 2009
2 Brocoli-Green-Weeds-2 74 3726
3 Fallow 39 1976
4 Fallow-Rough-Plow 27 1394
5 Fallow-Smooth 53 2678
6 Stubble 79 3959
7 Celery 71 3579
8 Grapes-Untrained 225 11,271
9 Soil-Vinyar-Develop 124 6203

10 Corn-Senesced-Green-Weeds 65 3278
11 Lettuce-Romaine-4wk 21 1068
12 Lettuce-Romaine-5wk 38 1927
13 Lettuce-Romaine-6wk 18 916
14 Lettuce-Romaine-7wk 21 1070
15 Vinyard-Untrained 145 7268
16 Vinyard-Vertical-Trellis 36 1807

Total - 1076 54,129

• Pavia University (PU): The PU dataset includes 103 available spectral channels. The
height and width of PU are 610 and 340. There are 42,776 samples from nine different
land-cover categories in the PU database. Figure 10 shows the pseudo-color image
and the ground truth classification map. Table 8 lists the training and testing data of
the PU dataset.

Table 8. Training/testing samples of the Pavia University (PU) dataset.

Class No. Class Name Training Testing

1 Asphalt 132 6631
2 Meadows 372 18,649
3 Gravel 41 2099
4 Trees 61 3064
5 Painte-Metal-Sheets 26 1345
6 Bar-Soil 100 5029
7 Bitumen 26 1330
8 Self-Blocking-Bricks 73 3682
9 Shadows 18 947

Total – 849 42,776
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Figure 10. Pavia University dataset. (a) Pseudo-color image. (b) Ground truth.

• Pavia Center (PC): The PC database comprises 1096 × 715 pixels with 102 available
bands. Same as the PU dataset, it includes nine classes and 148,152 samples in the
urban area. The pseudo-color image and the ground truth are shown in Figure 11. We
randomly selected 0.5% of the data for each category as the training pixels. The entire
dataset is the test set. Table 9 shows the number of testing and training samples.

Figure 11. Pavia Center dataset. (a) Pseudo-color image. (b) Ground-truth.

Table 9. Training/testing samples of the Pavia Center (PC) dataset.

Class No. Class Name Training Testing

1 Water 131 65,971
2 Trees 15 7589
3 Asphalt 6 3090
4 Self-Blocking-Bricks 5 2685
5 Bitumen 13 6584
6 Tiles 18 9248
7 Shadows 14 7287
8 Meadows 85 42,826
9 Bare-Soil 5 2863

Total – 292 148,152
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• Houston: Houston is widely used as a benchmark database to evaluate the perfor-
mance of HSI classification. It comprises 349 × 1905 pixels with 144 channels. Table 10
lists the number of training and testing data. There are 15 challenging land-cover
classes and 15,029 samples. Similarly, the visualization of the image is given in
Figure 12.

Figure 12. Houston dataset. (a) Pseudo-color image. (b) Ground truth.

Table 10. Training/testing samples of the Houston dataset.

Class No. Class Name Training Testing

1 Grass-Healthy 125 1251
2 Grass-Stressed 125 1254
3 Grass-Synergic 69 697
4 Tree 124 1244
5 Soil 124 1242
6 Water 32 325
7 Residential 126 1268
8 Commercial 124 1244
9 Road 125 1252
10 Highway 122 1227
11 Railway 123 1235
12 Parking-Lot-1 123 1233
13 Parking-Lot-2 46 469
14 Tennis-Court 42 428
15 Running-Track 66 660

Total – 1496 15,029

3.1.2. Evaluation Metrics

Three metrics were used to measure the performance of all algorithms. Let M ∈ Rn×n

denote the confusion matrix and n represent the number of classes.

• Average Accuracy (AA) is the mean accuracy:

AA =
∑n

i=1
Mi,i

∑n
j=1 Mi,j

n
(13)

• Overall Accuracy (OA) denotes the ratio of the number of correct samples to the total
samples:

OA =
∑n

i=1 Mi,i

∑n
i=1 ∑n

j=1 Mi,j
(14)
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• Kappa coefficient (κ) is the consistency between forecast results and ground truth:

κ =
OA− pe

1− pe
(15)

pe =
∑n

k=1

(
∑n

i=1 Mi,k ·∑n
j=1 Mk,j

)
(

∑n
i=1 ∑n

j=1 Mi,j

)2 (16)

where Mi,j represents the i-th row and j-th column of the matrix M; the value of Mi,j
denotes the i-th category is classified as the j-th class; and ∑ stands for summation.
Larger values represent better results.

3.2. Compared Methods and Experimental Design

This section briefly introduces the details of each compared method, mainly including
the details and the experimental design.

3.2.1. Compared Methods

Several representatives and the most widely used deep learning algorithms are em-
ployed as compared methods. According to the different networks used, these methods
are divided into CNN-based and transformer-based. CNN-based networks include 1D
CNN [14], 2D CNN [60], 3D CNN [61], RNN [21], SSRN [27], HybridSN [31], and RIAN [13].
Transformer-based methods contain SF [45], SSFTT [46], and GAHT [47].

These algorithms are described as follows.

• 1D CNN [14]: This method uses two 1D convolutional layers to extract features.
• 2D CNN [60]: The spectral-spatial features are stacked to a 2D matrix. The matrix is

considered as an image to feed into CNN.
• 3D CNN [61]: This method utilized the 3D convolutional layers to extract classification

features.
• RNN [21]: The authors use RNN with the new activate function named parametric

rectified tanh for HSI classification.
• SSRN [27]: A spectral-spatial residual network is proposed to classify hyperspectral

samples.
• HybridSN [31]: This algorithm utilizes three layers of 3D CNN to extract spectral-

spatial features. The output features are fed into a 2D CNN to classify hyperspectral
pixels.

• RIAN [13]: The center spectral attention module recalibrates the spectral channels of
image patches. The rectified spatial attention modules extract spectral-spatial features.
A residual network connects these modules.

• SF [45]: A transformer-based backbone network.
• SSFTT [46]: A 3D and a 2D convolution layer are employed to extract spectral-spatial

features. The output features are fed into a Gaussian-weighted tokenizer for feature
transformation. Finally, an encoder module is utilized for feature learning to classify
HSI samples.

• GAHT [47]: This work utilizes the hierarchical transformer network with the grouped
pixel embedding module. This module confines the multi-head self-attention for
extracting the spatial-spectral feature.

3.2.2. Experiment Design

Let X ∈ RH×W×N be the original HSI, where H and W represent the height and
width and N denotes the channel number. In the data preprocessing, all HSI datasets are
normalized by:

X′ =
X−min(X)

max(X)−min(X)
(17)
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where min(X) and max(X) represent the minimum and maximum value of the original
HSI data R.

In order to ensure the best performance of the compared algorithms, we introduce the
following experimental designs. All the methods are implemented on Pytorch 1.12.1 with
Python 3.9.13. The graphics processing unit (GPU) is an NVIDIA GeForce RTX 3090 with
24 GB memory, which was used to accelerate the experiments. The experiment designs
are identical to the original literature and code, including the learning rate scheduler,
the optimizer, and the HSI patches. In our methods, the initial learning rate of the learning
rate scheduler is 0.001. It multiplies by 0.6 after every 10 epochs. The Adaptive Moment
Estimation (Adam) optimizer with the default value is employed. Furthermore, a weight
decay of 0.00005 is used to update the training parameters. The training and testing batch
size of all methods is 64. The number of training epoch is 200.

Five airborne hyperspectral image datasets (IP, SA, PU, PC, and Houston) covering
urban and agricultural regions are used to evaluate the algorithms. Different proportions
are employed for each database. For the IP and Houston databases, 10% of samples are
randomly selected as training data, and all samples are used for testing. For the SA and PU
datasets, the train proportions are 2%. 0.5% of the samples for the PC database are selected
for training. Tables 6–10 list the number of training and testing pixels of five datasets.

3.3. Experimental Results

We analyze the experimental results of the methods on the public datasets in detail,
mainly including the patch size, the ablation experiment, and the performance of each
algorithm in this section.

3.3.1. Size of HSI Patches

The size of the patch decides how much information is used for classification. There-
fore, the patch size has a crucial impact on classification accuracy. The effects of different
spatial sizes are first explored in this experiment. A series of patch sizes {7, 9, 11, 13, 15}
has been considered.

As shown in Figure 13, the accuracy does not always get better when the size increases.
For IP and SA datasets, when the patch size is from 9 to 15, the accuracy of the proposed
algorithm generally increases. The main reason is that the sample area is regular and dense,
so as the local spatial information increases, it can provide more effective classification in-
formation. In other words, the IP and SA database has more significant smooth regions [47].
Thus, the patch size of the SA dataset is set to 15 × 15. Moreover, the IP dataset is set to
13 × 13. For PU, PC, and Houston datasets, the image of these databases has small and
separate regions of land cover. Thus, the OAs of these datasets drop when the patch size
exceeds the upper limit. The PC and Houston datasets’ patch size is 9 × 9. The spatial size
of the PU dataset is set to 13 × 13.

3.3.2. Ablation Experiment

The proposed method consists of three parts (BS, LSFE, and LWFE). In order to verify
the effect of each part, ablation experiments are conducted. Details of the experiments are
as follows:

• Baseline network: This network only contains seven 2D convolution layers and one
fully connected layer.

• Spectral-Spatial Attention (SSA) network: The spectral and spatial attention modules
are added to the baseline network.

• Lightweight feature enhancement (LWFE) network: Based on the SSA network,
the lightweight feature enhancement (LWFE) module is added to the network be-
fore the fully connected layer.

• SSARIN: Based on the LWFE network, a local spatial feature enhancement (LSFE) mod-
ule is added to the network. This module is the key to ensuring rotation invariance.
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Figure 13. OAs (%) of different spatial sizes on the different databases.

Tables 11 and 12 show the results of the ablation experiment. As shown in Table 11,
each module improves the classification OAs on different datasets. Compared to the base-
line network, SSA improves the OAs by 0.21%, 0.72%, 1.15%, 0.44%, and 0.09%. It proves
that the redundant bands do not provide adequate classification information. Sometimes, it
reduces the accuracy of classification. It also illustrates that the weights of each channel are
different for the spectral-spatial features. Thus, the BS module suppresses the redundant
channels by recalibrating the weights of the different bands.

The OAs of the LWFE network are 0.17%, 0.14%, 0.12%, 0.08%, and 0.22% better than
the SSA network. The LWFE module is primarily used to boost the output feature of the
LSFE module to improve classification accuracy. The SSARIN network only promotes
accuracy by 0.06%, 0.03%, 0.02%, 0.05%, and 0.11% compared to the LWFE network.
However, the LSFE module added to the LWFE network can effectively maintain rotation
invariance. Table 12 displays the OAs for different rotation degrees. It can be seen that
when rotating at different degrees, the OAs of the LWFE network drop on all datasets,
while the SSARIN remains stable. The ablation experiment indicates that the LSFE module
improves the classification accuracy and retains the rotational invariance of the features.
Therefore, the ablation experiment has demonstrated the role of each module and its impact
on accuracy.

Table 11. The OAs (%) of the ablation experiment on the public dataset.

Dataset Baseline SSA LWFE SSARIN

IP 98.15 98.36 98.53 98.59
SA 98.92 99.64 99.78 99.81
PU 97.73 98.91 99.03 99.05
PC 98.51 98.95 99.03 99.08

Houston 98.88 98.97 99.19 99.30
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Table 12. OA (%) with different rotation angles for the ablation experiment on the public dataset.

Rotation Network IP SA PU PC Houston

0 LWFE 98.53 99.78 99.03 99.03 99.19
SSARIN 98.59 99.81 99.05 99.08 99.30

90 LWFE 95.98 99.37 98.51 98.98 98.98
SSARIN 98.59 99.81 99.05 99.08 99.30

180 LWFE 92.95 98.77 97.78 98.92 98.78
SSARIN 98.59 99.81 99.05 99.08 99.30

270 LWFE 96.22 99.46 98.40 98.97 99.14
SSARIN 98.59 99.81 99.05 99.08 99.30

3.3.3. Performance of the Compared Methods

To evaluate the methods, the IP, SA, PU, PC, and Houston datasets are employed.
The compared algorithms include 1D CNN [14], 2D CNN [60], 3D CNN [61], RNN [21],
SSRN [27], HybridSN [31], RIAN [13], SF [45], SSFTT [46], and GAHT [47].

1. Indian Pines: OAs of 1D CNN, 2D CNN, 3D CNN, RNN, SSRN, HybirdSN, RIAN,
SF, SSFTT, GAHT, and RIRF at different rotation degrees are listed in Table 13. When
the rotation degree is 0, the performance of the spectral-spatial algorithms is better
than the spectral methods. Meanwhile, the difference in OAs between the CNN-
based classification model and the transformer-based model is insignificant. The OAs
of 1D CNN, RNN, RIAN, and SSARIN at 0, 90, 180, and 270 degrees are 85.73%,
78.73%, 94.56%, and 98.59%. At the same time, these methods are both rotation
invariant. 1D CNN, RNN, and RIAN are rotation invariant because these methods’
convolution kernel sizes are all 1 × 1. The 1 × 1 convolution is rotation invariant [13].
Among them, 1D CNN and RNN are based on spectral features and are not sensitive
to spatial rotation. Thus, the above methods attain rotation invariance. In contrast,
SSARIN is a method based on spatial-spectral features. SSARIN does not rely on 1
× 1 convolution to achieve rotation invariance. SSARIN obtains the position of the
center pixel with the surrounding pixels through the LGFE module.
The OAs of 2D CNN, 3D CNN, SSRN, HybridSN, SF, SSFTT, and GAHT significantly
decrease at 90 degrees, 180 degrees, and 270 degrees. At a 90-degree rotation, the per-
formance of these methods decreased by 5.5%, 16.65%, 1.1%, 7.29%, 15.24%, 11.25%,
and 18.03%. The main reason is that these spectral-spatial convolutions ignore the
position information between pixels. Therefore, the rotation causes the change of
pixel position information, which leads to incorrect classification of the network.
To further evaluate the compared algorithms, the accuracy in each class is listed
in Tables 14 and 15. At 0 degrees, the proposed SSARIN achieves state-of-the-art
compared with other methods. It significantly improves the OAs of the “Corn”,
“Hay-Windrowed”, “Oats”, “Soybean-Notill”, and “Buildings-Grass-Trees-Drives”,
classes. At 90 degrees, it not only maintains the best OAs in the above categories,
but also achieves the best OAs in the “Corn-Notill”, “Corn-Mintill”, “Grass-Pasture”,
“Soybean-Mintill”, and “Woods” categories. For instance, the SSRN achieves the best
accuracy in seven classes without rotation. It only attains the best performance of the
four categories after rotating 90 degrees.
Figure 14 shows the classification maps on the IP dataset. It intuitively displays the
performance of each method. When the image is rotated, the edge information of the
HSI patch changes. Therefore, the compared methods that do not sufficiently extract
the spatial edge position information have a drop in test accuracy. The sufficient
learning of spatial edge position information shows that the proposed SSARIN has
superior classification results and is invariant to the rotation.
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Table 13. OA (%) with different rotation angles for the different methods on the IP dataset.

Rotation 1D CNN 2D CNN 3D
CNNN RNN SSRN HybridSN RIAN SF SSFTT GAHT SSARIN

0 85.73 72.29 83.11 78.73 98.15 98.48 94.56 79.54 98.13 97.53 98.59
90 85.73 66.79 66.46 78.73 97.05 91.19 94.56 64.30 86.88 79.50 98.59
180 85.73 66.62 65.12 78.73 95.14 87.17 94.56 69.76 84.73 78.76 98.59
270 85.73 65.84 67.05 78.73 96.97 91.30 94.56 63.99 85.81 80.08 98.59

Table 14. Accuracy in each class, OA (%), AA (%), and κ at 0 degrees on the IP dataset.

Class No. 1D CNN 2D CNN 3D
CNNN RNN SSRN HybridSN RIAN SF SSFTT GAHT SSARIN

1 45.65 19.57 26.09 32.61 95.65 82.61 93.48 0.00 89.13 78.26 91.30
2 82.00 60.57 76.54 72.76 96.22 98.11 92.37 72.97 99.58 96.85 98.25
3 73.01 54.58 70.36 61.81 99.76 98.19 95.18 68.92 98.55 99.28 99.64
4 72.15 41.35 52.32 48.10 99.16 98.73 91.98 56.54 91.56 97.89 99.58
5 90.68 81.37 92.75 87.58 98.55 97.93 95.86 87.58 99.17 98.76 98.96
6 95.58 97.81 94.75 97.81 95.34 99.73 99.45 87.67 98.36 97.53 97.53
7 17.86 7.14 28.57 21.43 89.29 57.14 64.29 0.00 100.00 50.00 96.43
8 98.74 94.56 100.00 100.00 100.00 100.00 99.16 100.00 100.00 100.00 100.00
9 45.00 30.00 25.00 15.00 100.00 100.00 75.00 0.00 100.00 45.00 100.00

10 85.18 59.88 75.31 67.70 96.30 98.05 87.96 73.15 95.06 97.74 98.46
11 85.34 77.88 88.96 78.86 99.51 99.80 96.09 99.69 98.94 98.13 98.66
12 88.70 43.68 67.12 78.25 94.10 98.65 86.17 54.30 91.74 98.15 94.44
13 99.51 100.00 84.39 96.10 100.00 100.00 99.51 100.00 100.00 99.51 99.51
14 95.18 93.75 96.68 94.94 100.00 99.37 98.74 93.91 99.68 98.58 99.84
15 65.54 55.18 78.76 85.81 100.00 89.90 93.52 96.64 99.48 93.52 100.00
16 83.87 64.52 68.82 87.10 96.77 100.00 92.47 88.17 95.70 83.87 95.70

AA 76.56 61.36 70.37 68.68 97.54 94.89 91.33 63.28 97.31 89.57 98.02
OA 85.73 72.29 83.11 78.73 98.15 98.48 94.56 79.54 98.13 97.53 98.59

Kappa 83.71 68.11 80.61 75.65 97.88 98.26 93.78 76.45 97.86 97.18 98.39

Table 15. Accuracy in each class, OA (%), AA (%), and κ at 90 degrees on the IP dataset.

Class No. 1D CNN 2D CNN 3D
CNNN RNN SSRN HybridSN RIAN SF SSFTT GAHT SSARIN

1 45.65 2.17 0.00 32.61 80.43 78.26 93.48 0.00 15.22 71.74 91.30
2 82.00 55.05 57.56 72.76 95.66 92.79 92.37 49.23 91.81 64.85 98.25
3 73.01 42.41 28.43 61.81 96.87 86.99 95.18 43.49 50.24 52.65 99.64
4 72.15 37.97 30.38 48.10 97.47 79.32 91.98 24.47 74.26 79.75 99.58
5 90.68 70.19 66.87 87.58 92.96 87.16 95.86 82.40 88.82 77.43 98.96
6 95.58 96.85 81.23 97.81 96.30 99.73 99.45 85.62 97.81 96.85 97.53
7 17.86 0.00 0.00 21.43 42.86 14.29 64.29 0.00 35.71 100.00 96.43
8 98.74 93.31 99.79 100.00 100.00 100.00 99.16 100.00 100.00 100.00 100.00
9 45.00 0.00 0.00 15.00 75.00 10.00 75.00 0.00 30.00 0.00 100.00

10 85.18 50.93 59.16 67.70 96.30 98.05 87.96 73.15 95.06 97.74 98.46
11 85.34 75.52 81.38 78.86 96.19 84.36 87.96 60.70 76.54 96.73 98.66
12 88.70 26.48 40.64 78.25 96.29 83.14 86.17 28.33 75.04 55.14 94.44
13 99.51 84.39 0.00 96.10 100.00 100.00 99.51 0.00 99.51 62.93 99.51
14 95.18 93.99 94.70 94.94 99.84 98.42 98.74 90.67 98.50 95.81 99.84
15 65.54 54.66 54.15 85.81 94.56 80.57 93.52 9.84 96.89 66.32 100.00
16 83.87 48.39 72.04 87.10 98.92 100.00 92.47 91.40 93.55 72.04 95.70

AA 76.56 52.02 47.90 68.68 91.37 80.48 91.33 46.57 79.96 69.12 98.02
OA 85.73 66.79 66.46 78.73 97.05 91.19 94.56 64.30 86.88 79.50 98.59

Kappa 83.71 61.72 61.21 75.65 96.64 89.94 93.78 58.48 84.96 76.43 98.39
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Figure 14. The results of all algorithms in testing samples of the IP dataset.

2. Salinas: Table 16 reports the performance of these methods at different rotation de-
grees. Similar to the IP dataset, the OAs of 1D CNN, RNN, RIAN, and SSARIN as
different angles are 91.61%, 88.83%, 97.13%, and 99.81%, respectively. The perfor-
mance of SSARIN is better than other networks in terms of OA. When the angles
are 90, 180, and 270, the OAs of 2D CNN, 3D CNN, SSRN, HybridSN, SF, SSFTT,
and GAHT significantly decrease. At a rotation degree of 180, the performance of
these methods decreased by 2.93%, 11.32%, 0.58%, 1.8%, 5.34%, 6.24%, and 10.78%. It
is a smaller drop compared to the IP dataset. The reason is that the sample area of the
SA dataset is more regular and smooth than the IP dataset. According to the experi-
ment, the transformer-based method is more sensitive to rotation invariance than the
CNN-based method. The reason is that the CNN-based convolutional layer focuses on
local information, while the transformer-based approach focuses more on global infor-
mation. Rotation changes the local information of HSI, resulting in the performance
of the transformer-based method being worse than the CNN-based method.
To further evaluate the compared algorithms, the accuracy in each category at 180 de-
grees is listed in Table 17. At 180 degrees, SSARIN maintains the best OAs in 11 classes.
Figure 15 shows the classification maps on the SA dataset. The performance of each
method is represented intuitively. The compared methods are weak in the perfor-
mance of the “Vinyard-Untrained” and “Grapes-Untrained” classes. At the same time,
the proposed algorithm has superior performance in the above categories. Moreover,
the classification map of the SSARIN is also smooth.

Table 16. OA (%) with different rotation angles for the different methods on SA dataset.

Rotation 1D CNN 2D CNN 3D
CNNN RNN SSRN HybridSN RIAN SF SSFTT GAHT SSARIN

0 91.61 89.72 88.73 88.83 99.67 99.65 97.13 96.27 99.36 98.46 99.81
90 91.61 87.02 79.42 88.83 99.19 99.05 97.13 89.57 94.77 89.79 99.81
180 91.61 86.79 77.41 88.83 99.09 97.85 97.13 90.93 93.12 87.68 99.81
270 91.61 86.88 78.68 88.83 99.45 99.11 97.13 87.37 93.32 88.06 99.81
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Figure 15. The results of all algorithms in testing samples of the SA dataset.

3. Pavia University: Table 18 lists the OAs of all methods at various rotation angles.
1D CNN, RNN, and SSARIN achieve rotation invariance because these methods’
convolution kernel sizes are all 1 × 1. The OAs of these methods at 0, 90, 180, and
270 degrees are 89.64%, 88.83%, and 98.05%. The performance of the SSARIN is
99.05%. When the rotation degree is 0, the performance of SSARIN is second only
to that of SSRN. When the rotation degrees change, the OAs of 2D CNN, 3D CNN,
SSRN, HybridSN, SF, SSFTT, and GAHT drop significantly. At a rotation degree of
270, the performance of these methods decreased by 3.33%, 11.19%, 1%, 1.58%, 9.36%,
4.71%, and 5.6%.
To further evaluate the compared algorithms, the quantitative indicators at the rotation
of 270 degrees are shown in Table 19. SSARIN maintains the best OAs in four classes.
Meanwhile, it has the best performance of the OA, AA, and Kappa. Figure 16 shows
the performance of each method intuitively. Furthermore, the classification map of
SSARIN is smooth.

4. Pavia Center: Table 20 lists the OAs of all the algorithms at different rotation degrees.
The OAs of 1D CNN, RNN, RIAN, and SSARIN at 0, 90, 180, and 270 degrees are
97.44%, 97.34%, 98.35%, and 98.05%. The above methods are both rotation invariant.
When the rotation degree is 0, the performance of SSARIN has the best performance.
When the rotation degrees change, the OAs of 2D CNN, 3D CNN, SSRN, HybridSN,
SF, SSFTT, and GAHT drop significantly. At a rotation degree of 90, the performance
of these methods decreased by 0.88%, 1.79%, 0.13%, 0.05%, 1.08%, 1.18%, and 0.86%.
Compared to the IP, SA, and PU datasets, these algorithms do not have much accuracy
degradation on the PC dataset. Our analysis is due to the small number of categories
in the PC dataset and the concentration of sample areas.
To further evaluate the compared algorithms, the metrics at 90 degrees are shown in
Table 21. SSARIN maintains the best performance of the OA, AA, and Kappa. At the
same time, the performance of each method is represented intuitively in Figure 17.
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Table 17. Accuracy in each class, OA (%), AA (%), and κ at 180 degrees on the SA dataset.

Class No. 1D CNN 2D CNN 3D
CNNN RNN SSRN HybridSN RIAN SF SSFTT GAHT SSARIN

1 99.50 98.36 90.84 99.30 100.00 100.00 99.70 99.90 100.00 98.71 100.00
2 99.06 96.46 92.27 99.97 100.00 99.68 99.81 99.62 100.00 99.95 100.00
3 99.24 95.55 95.14 98.28 100.00 100.00 99.04 99.44 100.00 99.34 100.00
4 97.70 95.55 80.42 99.35 100.00 93.54 99.28 99.71 96.77 18.44 99.86
5 98.84 90.03 90.72 94.47 96.27 96.45 98.81 83.53 93.99 88.87 99.14
6 99.75 97.47 81.66 99.85 100.00 99.95 100.00 100.00 100.00 99.90 99.97
7 99.55 96.54 94.86 99.61 100.00 99.80 100.00 95.64 99.86 85.00 100.00
8 82.71 81.45 68.00 65.68 99.48 96.72 94.45 84.77 87.57 87.98 99.42
9 99.79 99.45 97.02 99.82 100.00 100.00 99.11 99.85 99.50 99.92 100.00

10 92.13 79.56 54.85 94.94 99.60 97.56 97.62 92.28 92.71 79.99 99.91
11 95.51 75.09 86.24 91.29 100.00 91.48 95.69 68.26 72.65 76.59 99.81
12 99.69 99.58 86.20 99.95 99.64 99.58 99.64 98.75 98.18 51.69 100.00
13 97.60 90.61 1.75 99.56 92.69 99.78 99.02 97.27 86.35 96.94 99.24
14 92.80 88.32 62.80 95.33 99.44 94.86 97.76 99.16 98.69 91.87 100.00
15 73.78 60.83 76.49 78.10 96.73 95.28 92.43 74.26 81.18 81.59 100.00
16 93.85 88.05 79.25 98.01 99.89 99.61 95.30 98.12 99.61 99.94 100.00

AA 95.09 89.56 74.91 94.59 98.98 97.77 97.98 93.16 94.19 84.79 99.83
OA 91.61 86.79 77.41 88.83 99.09 97.85 97.13 90.93 93.12 87.68 99.81

Kappa 90.66 85.27 74.80 87.61 98.99 97.61 96.80 89.90 92.34 86.28 99.79

Table 18. OA (%) with different rotation angles for the different methods on the PU dataset.

Rotation 1D CNN 2D CNN 3D
CNNN RNN SSRN HybridSN RIAN SF SSFTT GAHT SSARIN

0 89.64 93.00 85.28 88.83 99.38 98.97 98.05 95.38 98.83 98.00 99.05
90 89.64 88.53 74.93 88.83 98.73 97.51 98.05 85.04 95.83 90.06 99.05
180 89.64 85.69 74.53 88.83 97.79 95.55 98.05 87.50 93.70 87.99 99.05
270 89.64 89.67 74.09 88.83 98.38 97.35 98.05 86.02 94.12 92.40 99.05

Table 19. Accuracy in each class, OA (%), AA (%), and κ at 270 degrees on the PU dataset.

Class No. 1D CNN 2D CNN 3D
CNNN RNN SSRN HybridSN RIAN SF SSFTT GAHT SSARIN

1 90.68 87.86 86.93 86.31 98.40 99.16 98.46 85.46 90.27 94.92 100.00
2 95.66 97.61 90.67 95.79 99.74 99.92 99.40 94.21 99.7 99.27 99.80
3 64.46 74.27 25.82 73.03 99.09 82.71 88.76 72.75 92.09 64.89 97.38
4 85.70 79.18 71.41 88.90 93.05 92.89 96.83 86.59 95.04 83.09 96.67
5 99.70 99.63 13.46 99.48 99.85 100.00 99.78 99.70 98.66 97.84 99.93
6 76.85 84.21 65.48 80.97 100.00 99.03 98.67 94.97 99.68 97.65 100.00
7 84.89 79.17 43.53 72.18 100.00 98.95 97.82 62.71 79.62 91.88 99.62
8 87.75 76.56 57.77 77.24 93.54 89.38 95.06 74.45 68.25 69.42 95.82
9 99.89 94.51 11.72 99.26 97.71 97.57 99.89 72.23 95.99 85.22 94.40

AA 87.29 85.89 51.87 85.91 97.39 95.49 97.14 79.56 91.04 97.13 98.18
OA 89.64 89.67 74.09 88.83 98.38 97.35 98.05 86.02 94.12 92.40 99.05

Kappa 86.16 86.19 65.36 85.15 97.85 96.49 97.42 81.62 92.22 89.90 98.74



Drones 2023, 7, 240 23 of 30

Figure 16. The results of all algorithms in testing samples of the PU dataset.

Figure 17. The results of all algorithms in testing samples of the PC dataset.
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Table 20. OA (%) with different rotation angles for the different methods on the PC dataset.

Rotation 1D CNN 2D CNN 3D
CNNN RNN SSRN HybridSN RIAN SF SSFTT GAHT SSARIN

0 97.44 97.34 97.22 97.34 98.43 98.63 98.35 98.25 98.35 98.61 99.08
90 97.44 96.46 95.43 97.34 98.30 98.58 98.35 97.17 97.17 97.75 99.08
180 97.44 96.93 96.00 97.34 98.34 98.30 98.35 97.33 96.97 97.61 99.08
270 97.44 96.39 96.29 97.34 98.40 98.51 98.35 97.33 97.15 97.34 99.08

Table 21. Accuracy in each class, OA (%), AA (%), and κ at 90 degrees on the PC dataset.

Class No. 1D CNN 2D CNN 3D
CNNN RNN SSRN HybridSN RIAN SF SSFTT GAHT SSARIN

1 99.96 99.76 99.98 99.99 99.99 99.99 99.90 99.83 99.96 99.98 100.00
2 94.81 96.43 96.46 91.73 98.67 92.25 94.67 96.33 96.25 90.00 96.37
3 81.03 69.19 82.88 90.97 83.69 90.74 90.55 77.12 69.19 75.76 91.26
4 75.61 73.74 53.07 57.28 97.58 75.90 78.44 81.82 72.03 92.74 95.38
5 89.87 81.12 83.25 98.34 91.83 98.12 96.69 93.77 93.41 92.27 97.28
6 93.46 92.52 92.54 98.71 99.91 99.42 99.28 92.63 94.87 99.37 99.76
7 92.18 91.03 82.85 92.19 84.66 96.12 92.19 88.71 88.45 88.34 97.86
8 99.35 98.73 99.26 98.58 99.94 99.84 99.83 99.83 99.14 99.89 99.59
9 99.72 95.28 97.42 99.93 99.51 94.48 93.89 86.57 97.07 93.99 94.24

AA 91.78 88.64 87.52 91.00 95.09 94.10 93.94 90.74 90.04 92.48 96.86
OA 97.44 96.39 96.29 97.34 98.40 98.51 98.35 97.33 97.15 97.34 99.08

Kappa 96.38 94.88 94.72 96.24 97.73 97.89 97.66 96.22 95.97 96.79 98.69

5. Houston: OAs of 1D CNN, 2D CNN, 3D CNN, RNN, SSRN, HybirdSN, RIAN, SF,
SSFTT, GAHT, and SSARIN at different rotation degrees are listed in Table 22. The OAs
of 1D CNN, RNN, RIAN, and SSARIN are 91.96%, 91.90%, 97.33%, and 99.30%. At a
rotation degree of 180, the performance of these methods decreased by 11.48%, 6.87%,
0.76%, 0.64%, 2.78%, 1.48%, and 3.2%. To further evaluate the compared algorithms,
the OA, AA, and Kappa at 180 degrees are shown in Table 23. SSARIN maintains
the best OAs in 12 classes. Meanwhile, it has the best performance of the OA, AA,
and Kappa. Through Figure 18, it is very intuitive to conclude that the classification
map of SSARIN is smoother than other compared methods.

Table 22. OA (%) with different rotation angles for the different methods on the Houston dataset.

Rotation 1D CNN 2D CNN 3D
CNNN RNN SSRN HybridSN RIAN SF SSFTT GAHT SSARIN

0 91.96 95.22 90.45 91.90 99.23 98.81 97.33 96.75 98.53 97.78 99.30
90 91.96 93.21 77.12 91.90 97.91 98.35 97.33 86.97 91.96 89.13 99.30
180 91.96 83.74 83.58 91.90 98.47 98.17 97.33 93.97 96.05 94.58 99.30
270 91.96 93.61 76.23 91.90 97.99 97.87 97.33 87.42 90.50 88.85 99.30
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Figure 18. The results of all algorithms in testing samples of the Houston dataset.
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Table 23. Accuracy in each class, OA(%), AA(%), and κ at 180 degrees on the Houston dataset.

Class No. 1D CNN 2D CNN 3D
CNNN RNN SSRN HybridSN RIAN SF SSFTT GAHT SSARIN

1 97.04 100.00 94.16 90.73 98.96 97.92 99.04 96.40 98.32 92.25 100.00
2 99.36 98.25 90.99 97.77 99.28 99.36 98.41 97.69 98.64 98.48 98.88
3 98.85 97.85 96.56 100.00 100.00 99.86 100.00 99.86 100.00 99.86 100.00
4 98.79 95.82 95.66 98.71 99.68 99.76 97.51 93.49 99.28 95.50 99.84
5 98.63 99.68 97.58 99.19 100.00 100.00 99.76 99.76 100.00 99.60 100
6 98.77 92.31 82.15 99.69 98.15 99.69 95.38 93.54 97.23 96.62 98.15
7 86.51 87.54 74.53 87.38 99.53 96.29 97.87 90.14 87.38 96.29 98.82
8 85.29 87.14 64.79 92.36 97.11 98.31 97.51 90.35 89.95 92.52 100.00
9 77.32 83.15 88.66 76.36 94.65 92.01 92.01 88.50 92.33 92.65 96.25

10 92.99 97.64 72.78 95.27 99.35 99.35 96.09 97.23 99.51 93.56 100.00
11 88.58 93.12 71.17 85.91 97.09 97.98 96.19 92.15 96.68 88.91 99.51
12 95.30 95.38 72.69 89.53 98.86 98.62 98.38 89.05 94.08 87.75 98.95
13 59.91 81.45 79.74 72.92 94.03 96.59 92.54 88.06 92.54 94.88 99.58
14 98.13 96.96 81.78 100.00 100.00 100.00 97.43 98.36 100.00 99.77 100.00
15 99.85 96.62 98.03 98.94 99.55 99.70 99.70 98.79 99.85 99.85 100.00

AA 91.69 93.52 84.08 92.32 98.42 98.36 97.19 94.22 96.39 95.23 99.33
OA 91.96 83.74 83.58 91.90 98.47 98.17 97.33 93.97 96.05 94.58 99.30

Kappa 91.30 93.23 82.24 91.25 98.35 98.02 97.11 93.48 95.73 94.15 99.24

4. Discussion

Figures 14–18 illustrate the classification maps of different methods on five datasets.
Tables 13–23 detail the class accuracy, AA, OA, and kappa coefficient for these algorithms on
corresponding datasets. Our algorithm not only delivers superior results, but also maintains
consistent overall accuracy at varying rotation angles. Building upon this analysis, we
explore the time efficiency of the models.

Table 24 outlines the training and testing time for each algorithm. Notably, 3D CNN
consistently exhibits the fastest training times across all datasets. 1D CNN emerges as the
model with the fastest testing times for each dataset, indicating that it performs well in
terms of time efficiency during the testing phase. In contrast, SSARIN displays the longest
training and testing times. There are two main reasons for this. (1) The network contains
eight branches, resulting in a more complex structure. (2) When rotating the features, it is
necessary to load the features from the GPU to the CPU for rotation and then reload the
rotated features from the CPU back to the GPU.

Table 25 enumerates the parameters for each method. SSARIN possesses a relatively
high parameter count (41,694,672), making it the second most complex model in this
list. The main reason is that the network contains eight branches, and the structure of
each branch is the same. Therefore, the network requires a larger number of parameters.
This complexity is a factor in its longer training and testing times, as observed in the
previous analysis.

1D CNN has the fewest parameters (74,196), indicating that it is the simplest model in
terms of architecture. This simplicity contributes to the model’s previously observed fast
testing times, as there are fewer parameters to compute during the testing phase. However,
the trade-off is a limited capacity to capture complex patterns in the data, which impacts
performance in classification. 2D CNN has the highest number of parameters (109,613,786),
indicating that this model has the most complex architecture among the models listed.
The main reason is that it uses multiple fully connected layers, and the fully connected
layers contain many network nodes. This intricacy results in heightened computational
demands during training and testing and increased processing times.

The parameter numbers and training time for other algorithms do not differ signif-
icantly. This section discusses the classification performance of various algorithms on
different datasets. Although the proposed SSARIN requires more parameters and compu-
tation time, it is within a reasonable and acceptable range.
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Table 24. The training and testing time of the different methods.

Dataset Time (s) 1D CNN 2D CNN 3D CNN RNN SSRN HybridSN RIAN SF SSFTT GAHT SSARIN

IP Training 16.53 194.61 15.11 26.62 70.08 47.03 51.31 105.70 55.90 125.17 594.51
Testing 0.19 0.69 0.22 0.21 0.67 0.29 0.40 1.42 0.41 0.82 6.59

SA Training 18.01 162.33 17.20 28.63 81.99 44.50 49.99 110.16 59.50 129.16 674.84
Testing 0.68 2.09 1.12 1.08 3.52 1.76 2.06 7.96 1.97 5.29 27.61

PU Training 16.47 60.69 15.14 18.51 56.08 34.95 42.03 81.31 56.07 104.51 563.91
Testing 0.46 1.05 0.62 0.80 1.91 1.41 1.61 6.19 1.58 4.08 24.617

PC Training 14.62 29.63 11.13 15.76 45.93 33.23 35.54 85.75 41.44 92.54 510.75
Testing 0.79 3.36 2.07 2.72 5.54 3.88 5.53 5.01 5.30 11.72 66.78

Houston Training 20.33 87.89 26.70 34.65 95.62 37.62 76.89 156.66 83.28 165.53 976.77
Testing 0.24 0.63 0.26 0.30 0.75 0.41 0.72 1.94 0.54 1.18 7.88

Table 25. The parameters of the different methods.

Method 1D CNN 2D CNN 3D
CNNN RNN SSRN HybridSN RIAN SF SSFTT GAHT SSARIN

Parameters 74,196 109,613,786 115,564 235,024 129,068 108,912 89,260 99,640 950,280 1,228,940 41,694,672

5. Conclusions

This paper proposes a spectral-spatial attention rotation-invariant classification net-
work for the airborne hyperspectral image. The SSARIN is specifically designed to explore
rotation-invariant features for hyperspectral classification. It mainly contains a band se-
lection module, a local spatial feature enhancement module, and a lightweight feature
enhancement module.

In the data pre-processing stage, using PCA to reduce the spectral dimensions can
effectively reduce the network parameters and training time. However, PCA is not manda-
tory. After pre-processing, the HSI patch is fed into the band selection module for feature
extraction. The band selection (BS) module achieves redundant band suppression by re-
calibrating the weights of each band. Furthermore, a local spatial feature enhancement
(LSFE) module is introduced to extract spectral-spatial features while maintaining rota-
tional invariance. The LSFE module not only extracts spatial-spectral features but also
records position information to maintain rotational invariance, providing a robust solution
for hyperspectral classification. The proposed method is capable of extracting rotation-
invariant spectral-spatial features without requiring additional parameters or constraints.
Finally, a lightweight feature enhancement (LWFE) module enhances significant features
and suppresses insignificant ones.

Extensive experiments conducted on five airborne hyperspectral image datasets
demonstrate the superior performance of SSARIN compared to other methods, prov-
ing its robustness against spatial rotations. Moreover, SSARIN effectively extracts urban
and countryside features, showcasing its versatility in various scenarios.

However, it is worth noting that the SSARIN network is more complex than the
compared methods, resulting in increased computational time and a larger number of
parameters. To address this issue, future research will focus on developing new lightweight
rotational invariance features for hyperspectral classification, aiming to strike a balance
between performance and computational efficiency.
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