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Abstract: With the development of vehicle sensors, unmanned driving has become a research 
hotspot. Positioning is also considered to be one of the most challenging directions in this field. 
Aiming at the poor positioning accuracy of vehicles under GNSS denied environments, a lane-level 
positioning method based on inertial system and vector map information fusion is proposed. A 
dead reckoning model based on optical fiber IMU and odometer is established, and its positioning 
error is regarded as a priori information. Furthermore, a map matching model based on HMM is 
built up. Three validation experiments are carried out and experimental results show that the posi-
tioning error can be reduced to less than 30 cm when driving for about 7 min, which proves the 
effectiveness of the proposed method. Our work may provide a reference for the further improve-
ment of positioning for unmanned driving under GNSS denied environments. 
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1. Introduction 
Unmanned driving technology has become a research hotspot with the development 

and mass production of on-board sensors, which means that the vehicle can carry out 
motion control by itself according to its own perception and understanding of the sur-
rounding environmental conditions, and reach the level of a human driver [1]. In order to 
determine the position of the vehicle in the environment, the positioning module plays a 
very important role in autonomous driving [2,3]. Traditional inertial navigation methods, 
one of whose typical combinations is IMU (inertial measurement unit) and odometer can 
achieve high-precision positioning in GNSS (Global Navigation Satellite System) denied 
environment, but working for a long time will lead to error accumulation [4–6]. To solve 
this problem, an integrated positioning method using other information to assist inertia 
is proposed. Table 1 summarizes some representative integrated positioning methods. 
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Table 1. Several representative integrated positioning methods applicable to GNSS denied environ-
ments. 

Method Typical Work Advantage Disadvantage 

SINS/OD [7] 
1. High autonomy; 
2. Low cost; 

1. Error accumulation ex-
ists; 

SINS/Altimeter 
[8] 

1. Able to suppress diver-
gence of altitude channel; 
2. Low cost; 

1. Low accuracy; 

SINS/GMNS 
[9,10] 

1. No accumulated error; 
2. Work all-weather; 

1. Vulnerable to interfer-
ence; 
2. Low reliability; 

SINS + SMNS 
[11,12] 

1. Low cost; 
2. No accumulated error. 

1. Difficulty in database 
collection; 
2. Vulnerable to weather. 

In order to promote positioning accuracy, the integrated positioning method based 
on SINS/OD (Odometer) is proposed. However, it can only slow down the speed of error 
accumulation, but cannot eliminate errors. Furthermore, in order to suppress the diver-
gence of the altitude channel, the integrated positioning method based on SINS/Altimeter 
is proposed, but it still has low accuracy. Moreover, magnetic information is introduced 
to improve the positioning accuracy so that the integrated positioning method based on 
SINS/GMNS (Geomagnetic Matching Navigation System) has been developed. It can 
work in all weather and its positioning error would not accumulate over time, but it is 
sensitive to external magnetic field and has low reliability. In addition, the integrated po-
sitioning method based on SINS/SMNS (Scene Matching Navigation System) also has 
been proposed, which has the advantages of low cost and no accumulated positioning 
error. However, it is difficult to collect the database and it is vulnerable to weather. Fur-
therly, the inertial/visual integrated positioning method derived from this does not have 
the problem of database collection, and it can achieve the mapping of the environment at 
the same time, which is currently a research hotspot [13]. However, its computational 
complexity is large, and it is still affected by the environment, which is not conducive to 
large-scale promotion and application [14]. Beyond that, common sensors including lidar, 
camera and millimeter wave radar have also been adopted [15–21]. Nevertheless, these 
schemes are easily affected by the environment, resulting in larger error of positioning 
results [22]. As a consequence, it is essential to seek an active positioning method that is 
not affected by the external environment. 

As a priori information, a vector map can provide position reference for an inertial 
positioning system and is a very good auxiliary means [23]. With the development of tech-
nology, digital maps become easy to obtain and store. Therefore, the integrated position-
ing method based on inertial technology and map information fusion has great applica-
tion prospects in scenes such as underground parking lots and large-scale logistics com-
plex areas. 

Positioning based on map matching is also a mainstream method of vehicle position-
ing in the absence of satellite signal [24,25]. According to different reference information, 
it can be divided into three categories: based on geometry, based on probability statistics 
and based on road topology. Geometry-based methods can mainly be divided into three 
types: point to point [26], point to line [27] and line to line [28]. The representative work 
includes: Zeng et al. [29] proposed a method to describe the proximity of road network 
and trajectory by curvature integral value. The similarity function of two adjacent GPS 
points and corresponding candidate road segments was calculated according to the set 
rules, and the proximity between them was regarded as the criterion of map matching. 
Sharma et al. [30] restored the real track route of the vehicle through the GPS trajectory 
data. The Fréchet distance was used to denote the matching degree between the GPS point 
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trajectory and the road network [31]. However, the positioning accuracy of this method 
was 5.5 m, which could not meet the needs of automatic driving. 

Probability statistics-based methods give a certain probability value to each candi-
date road segment through self-designed rules, so as to determine the optimal matching 
road segment [32,33]. The representative work includes the following: Ochieng et al. [34] 
came up with an improved probabilistic map matching algorithm to balance the inaccu-
rate positioning data and digital map data. The algorithm considered the error sources 
related to the positioning sensors, the historical trajectory of the vehicle, the topology in-
formation of the road network and the heading and speed information of the vehicle, and 
used the probabilistic statistical method to identify the real road segment of the vehicle. 
Yue et al. [35] proposed a cooperative probabilistic semantic map matching method to 
realize semantic perception and cooperative localization. Semantic perception, probabil-
istic data association and nonlinear model linearization were completed in an integrated 
framework. A probabilistic semantic data association algorithm based on expectation 
maximization was put forward. The test results in the public dataset showed that the 
method had good robustness and accuracy. 

Road topology-based methods mainly limit the number of candidate road segments 
corresponding to each sampled point by using the historical sampled point parameters, 
vehicle speed and the topological relationship of spatial road network. The representative 
work includes the following: Quddus et al. [36] proposed an improved weighted topology 
matching algorithm, which combined the weights of factors such as heading, projection 
distance and correlation between segments, and selected the optimal segment with the 
largest weight by calculating the weight of each sampled point and candidate segment. 
However, the algorithm did not take the historical location point data into account, so the 
matching and positioning accuracy were not high. Velaga et al. [37] came up with a map 
matching algorithm based on weighted topology on the basis of Quddus’s work, taking 
the two factors of curve restriction and road connectivity into account. The algorithm had 
high matching accuracy in simple urban roads or suburban segments, but it could not 
achieve ideal results in complex urban road networks such as overpasses and intersec-
tions. Yang et al. [38] optimized Velaga’s method by taking the vehicle heading angle, the 
distance from the sampled point to the candidate road segment, the connectivity of the 
road in the road network and the turning restrictions as the weights. The influencing fac-
tors were added to the weight function as much as possible, and the optimal road segment 
was selected according to the weight value. However, the algorithm was still not suitable 
for datasets with complex roads and low-frequency sampling. He et al. [39] further im-
proved the algorithm proposed by Yang. A matching algorithm based on weight function 
was designed. Considering the density and complexity of the road network, the road seg-
ment near each GPS point was selected as the candidate road segment. Before assigning 
the candidate road segment to each GPS point, the confidence was calculated and consid-
ered based on the density and complexity of the road around the sampled point, but the 
algorithm could not correctly match the road segment when the vehicle was waiting for 
the traffic signal, and it was sensitive to low-speed driving in a complex matching envi-
ronment. Sharath et al. [40] proposed a dynamic two-dimensional map matching algo-
rithm based on weight. The algorithm represented the road segment information as a grid 
array with reference to the road centerline, and designed four weight coefficients: road 
connectivity, vehicle motion state, vehicle steering prediction and proximity. It could only 
use GPS and open source map data for lane level positioning, but the positioning accuracy 
was low, and the average horizontal positioning accuracy was only 2.82 m. 

With the development of intelligent transportation system (ITS), an integrated map 
matching algorithm considering many factors such as sampled point trajectory shape, 
road network topology and location and orientation system error is proposed. The most 
common method is based on Hidden Markov model (HMM). HMM-based methods were 
firstly proposed by Newson et al. in 2009 [41]. Many typical studies appeared later, such 
as map matching combining spatial analysis and temporal analysis [42], and adding 
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direction analysis [43,44]. Recently, Xie et al. [45] designed an accurate off-line map-
matching (OM2) system, which contained three key modules: pre-processing, map-
matching based on weight adaptation HMM (WA-HMM) and post-processing. Evaluation 
results showed that the positioning accuracy and matching accuracy are 1.3 m and 98% 
separately. The comparison of several typical map matching algorithms is listed in table 
2. 

Table 2. Comparison of several representative map matching algorithms. 

Specific 
Algorithm 

Typical 
Work 

Type 
Information 

Source 
Positioning 

Accuracy 
Line to line [24] Geometry-based GPS 5.5 m (80%) 

Enhanced probability 
statistics 

[29] 
Probability statis-

tics-based 
GPS  —— (85%) 

Weighted topology 
matching 

[33] 
Road topology-

based 
GPS 2.82 m (84%) 

HMM [38] 
Integrated map 

matching 
GPS 1.3 m (98%) 

It should be noted that the satellite positioning system also includes Beidou, Galileo 
and GLONASS. However, the information provided by these satellite navigation systems 
is the same as GPS. As a consequence, the matching process is similar regardless which 
global navigation satellite system is used. Therefore, only typical map matching methods 
related to GPS are introduced. It can be seen from Table 2 that the positioning error of 
typical map matching methods based on GPS are several meters, which cannot meet the 
requirements of automatic driving. 

To summarize, currently, most of the map matching algorithms take GNSS data as 
the analysis basis, and cannot complete the map matching work in a GNSS denied area, 
such as “urban canyon” and underground garages [46]. Moreover, the existed integrated 
positioning methods based on map matching select road segments through experience for 
the reason that the positioning error of satellites does not exhibit certain mathematical 
laws. Compared with MEMS (Micro-Electro-Mechanical System) inertial measurement 
unit, the short-term accuracy of optical fiber inertial measurement unit is higher, but the 
long-term error will still accumulate greatly. Using a high-performance fiber optic IMU 
makes a major difference in terms of dead-reckoning, which together with the data from 
the vehicle, makes the solutions easier when compared with low-cost MEMS-type IMUs. 
Inspired by those ideas, a lane level positioning method for unmanned driving based on 
inertial system and vector map information fusion applicable to GNSS denied environ-
ments has been put forward. The main contributions are listed as follows: 
(1) An integrated positioning method based on inertial technology and vector map in-

formation fusion is proposed, which is applicable for GNSS denied environments 
such as underground parking lots and large logistics complex areas; 

(2) The matching strategies are established, and the inertial positioning error model is 
used as a basis to select candidate road segments; 

(3) Validation experiments have been conducted out in an underground parking lot, and 
the results show that the positioning error for driving 5 km has been reduced from 
the meter level to within 30 cm. 
The remainder of this article is arranged as follows: Section 2 defines the coordinate 

system; Section 3 introduces the scheme of integrated positioning method based on iner-
tial system and vector map information fusion; the dead reckoning principle and map 
matching model are explained in Sections 4 and 5, respectively; Sections 6 and 7 introduce 
the optimal path selection and evaluation method separately; experiments and analysis 
are carried out in Section 8; conclusions are drawn in Section 9. 
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2. Definition of the Coordinate System 
Vehicle body coordinate system (oxbybzb, b-frame): The origin is located in the center 

of gravity of the vehicle, with xb axis pointing to the right along the horizontal axis, yb axis 
pointing forward along the longitudinal axis, and zb axis pointing upward along the ver-
tical axis, completing the right-hand set. 

Navigation frame (oxnynzn, n-frame): xn points to the east, yn points to the north, and zn 
points to the sky, which composes the right-hand coordinate. 

Inertial frame (oxiyizi, i-frame): The origin is located in the center of Earth, with oxi and 
oyi axes in the equatorial plane. oxi points to the vernal equinox and ozi is Earth’s rotation 
axis, pointing to the Arctic. 

3. Overall Design of the Lane Level Positioning Method 
Figure 1 shows the overall scheme of the proposed positioning method, which 

mainly contains three parts. Firstly, the sampled point sequence can be obtained by the 
inertial navigation system, which consists of optical fiber IMU and odometer. Secondly, 
the map matching model based on HMM is established, which contains data prepro-
cessing and candidate segment selection. The input of this part is the vector map and the 
sampled point sequence. Its output are the candidate segments. Finally, the optimal path 
is solved based on Viterbi algorithm, and the positioning results are given. 

Dead reckoning
Sampled Point 

Sequence 
 Vector Map

Map and Trajectory Data 
Preprocessing

Selection of candidate road 
segment set

Transition 
probability

Observation 
probability

Distance  Topology

 Viterbi algorithm for optimal 
segment selection

Point projection 
matching

Real Position 
Coordinates

Optimal 
Path 

Matching

True Position 
Estimation of 

Vehicles

①

②

③

Establishing H
idden 

M
arkov M

odel

 
Figure 1. The overall framework of the proposed lane level positioning method. 
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4. Dead Reckoning Principle Based on Optical Fiber IMU/Odometer 
Dead reckoning is a process of estimating the vehicle’s trajectory and the coordinates 

of the current position relative to the initial position by using the navigation parameters 
such as the carrier’s attitude and speed, which are shown in Figure 2. 

 
Figure 2. The principle of dead reckoning. 

Taking n-frame as a reference, the attitude differential equation can be written as: 

( )n n b
b b nb= ×C C ω  (1) 

where 
b
nbω  denotes the angular rate under b-frame relative to n-frame, ( )×  represents 

the antisymmetric operation and ( )⋅   means the differential operation. 
n
bC   represents 

the transformation matrix from b-frame to n-frame. 
The output of the fiber optic gyroscope is the carrier’s angular rate under i-frame, 

which can be expressed as: 

b b b n
ib nb n inCω ω ω= +  (2) 

where 
b
ibω  means the carrier’s angular rate under i-frame, 

n
inω  is the angular rate under 

n-frame relative to i-frame and ( )Tb n
n bC C= . 

The odometer obtains the speed and displacement of the vehicle by measuring the 
wheel speed information during the vehicle driving process, taking the speed constraint 
into consideration; that is, there is speed only in the front direction. As a consequence, the 
speed of the vehicle can be written as: 

T T
0 0b b b b b

D D DE DN DUv v v v   = =   v  (3) 

where b
Dv  denotes the vehicle’s speed and the superscript b indicates that it is under b-

frame. b
Dv  refers to the forward speed measured by the odometer and b

DUv  is the verti-

cal component. b
DNv   and b

DEv   are the east and the north component of the vehicle’s 

speed under b-frame, respectively. 

Equation (4) can be obtained by converting 
b
Dv  to n-frame: 

0

0

n
DE

n n b n
D b D DN

n
DU

v
C v v

v

  
  = =   
     

v  (4) 
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where n
Dv  is the output velocity output by the odometer under n-frame. n

DEv , n
DNv  and 

n
DUv  are the east, the north and the vertical component of the vehicle’s speed under n-

frame separately. 
The differential equation of dead reckoning can be obtained according to the odom-

eter’s output, which can be expressed as follows: 

sec

n
DN

D
MhD

n
DE D

D
NhD
n

D DU

vL
R

v L
R

h v

λ


=


 =

 =









 

(5) 

Changing Equation (5) into vector form: 

 (6) 

where [ ]TD D D DL hλ=p , DL  is the latitude calculated by dead reckoning, Dλ  is the 

longitude computed by dead reckoning and Dh  is the height determined by dead reck-
oning. 

The following relationship comes into existence: 

MhD MD D

NhD ND D

R R h
R R h

= +
 = +

 
(7) 

where MDR  and NDR  are the radius of curvature in prime vertical in meridian circle and 

prime vertical separately. On the other hand, pvDM  can be obtained by Equation (8): 

0 1/ 0
sec / 0 0

0 0 1

MhD

pvD D NhD

R
L R

 
 =  
  

M

 

(8) 

In the attitude differential equation (Equation (1)), the speed of IMU is replaced by 
the speed output by the odometer, and the latitude estimated by IMU is replaced by that 
of dead reckoning. So, the attitude matrix differential equation of dead reckoning can be 
obtained as follows: 

( ) ( )n n b n n
b b ib in b= × − ×C C ω ω C  (9) 

Furthermore, Equation (10) also holds: 

[ ]T
T

0 cos sin

tan
DN DE DE

n n n
in ie en

n
ie ie D ie D

n n n
Dn

en
MhD NhD NhD

L L

v v v L
R R R

ω ω




= +


=


  = − 
  

ω ω ω

ω

ω

 (10) 

n
D pvD D=p M v
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where 
n
ieω  is the angular rate caused by the Earth’s rotation under n-frame and 

n
enω  de-

notes the angular rate caused by the change of carrier’s speed. ieω
 denotes the velocity of 

the earth’s rotation, which is usually taken as 15°/h. 
In combination with Equations (3)–(10), the attitude and position update of the vehi-

cle can be obtained. 

5. Map Matching Model Based on HMM 
HMM is often used in time series data modeling in various fields. Usually, the obser-

vation sequence and transition relationship are known to solve the hidden sequence, and 
the Viterbi algorithm is a typical solution algorithm. The model diagram applicable to the 
application scenario of this paper is shown in Figure 3. 

Hidden sequence

Optimal road segments

Vector map

Candidate road segments
Vector map

Road segments

Observation sequence

Sampled points

Positioning
circle

 Viterbi 
algorithm

Positioning 
error

 
Figure 3. Hidden sequence solving model. 

As shown in Figure 3, the observation sequence and the hidden sequence correspond 
to the sampled point and the optimal road segments, respectively. The purpose of this 
paper is to set up a reasonable transfer relationship, so as to solve the optimal road seg-
ments. Different from the existing methods, we take the positioning error of the inertial 
system as a priori information to select the candidate road segments. The specific imple-
mentation of the model will be described in detail below. 

5.1. Selection of Candidate Road Segments 
In order to limit the number of candidate road segments, only the road segments near 

the sampled points sequence are taken as the hidden state set. The candidate road seg-
ments set is obtained by establishing the positioning circle, which is shown in Figure 4. 

 
Figure 4. The schematic diagram of the positioning circle. 

Assuming that point to  is the sampled point of dead reckoning system at time t, we 

can obtain the positioning circle with point to  as the center and r as the radius. It can be 
seen from Figure 4 that segment q1 and q2 intersect with the positioning circle, so they 
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are selected as candidate segments. Obviously, the value of the radius determines the 
number of candidate road segments. In order to be more reasonable, the radius of the 
positioning circle is designed according to the positioning error of the dead reckoning 
system. 

5.2. Initial Distribution Probability 
By designing the positioning circle, the candidate road segments that meet certain 

conditions are selected as the hidden state set in HMM. On the premise of knowing the 
set of hidden states Q , it is essential to compute the initial distribution probability to 
obtain the complete parameter of HMM. The initial distribution probability means the 
possibility of observing the first sampled point in each segment at the initial time, which 
can be expressed by the Euclidean distance to each candidate segment. Figure 5 explains 
its principle. 

 
Figure 5. The schematic diagram of initial probability calculation. 

As shown in Figure 5, the road segment 3 4e e  is equal to MN. 1o , 2o  and 3o  are 
three sampled points obtained by the dead reckoning system. Their coordinates are 

( )1 1,x y
, ( )2 2,x y

 and ( )3 3,x y
, respectively. M and N are the two endpoints of the road 

segment, whose coordinates are ( )1 1,m n
  and ( )2 2,m n

  separately. When calculating 
the Euclidean distance from the sampled point to the candidate road segment, it is mainly 
divided into two cases: the foot point of the dead reckoning sampled point is on the road 

segment or on the extension line on both sides of the road segment. When the point is 1o  
in Figure 5, its foot point is P, which is on the line MN. Consequently, the Euclidean dis-

tance from 1o  to the candidate road segment is the length of 1h , which can be com-
puted by Equation (11): 

( ) ( ) ( )
( ) ( )

1 2 1 1 2 1 1 2 2 1
1 2 2

2 1 2 1

x n n y m m m n m n
h

m m n n

− − − − −
=

− + −

 

(11) 

When the projection of the sampled point is on the extension line of the candidate 
segment, for the reason that the extension line of the road segment has only mathematical 
meaning and no physical meaning, and does not exist in the actual vector map, the Eu-
clidean distance between the positioning point and the foot point on the extension line of 
the line segment cannot be used as the distance between the sampled point and the can-
didate segment. At this time, the distance from the sampled point to the candidate seg-
ment is calculated according to the distance between the sampled point and the nodes at 

both ends of the candidate segment. Taking 3o   for example, it is obvious that its 
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projection 3h   is smaller than 2h  . Therefore, the Euclidean distance between 3o   and 

the candidate segment is 3h , which can be calculated by Equation (12): 

( ) ( )2 2
3 3 1 3 1h x m y n= − + −  (12) 

After obtaining the distance information, the initial distribution probability function 
is defined as: 

1/ h∏ =  (13) 

where h is the Euclidean distance between the sampled point and the candidate segment. 

5.3. Transition Probability 
Transition probability describes the probability of transition from one state value to 

another at the current time. In our proposed method, transition probability 

( )1t j t ip i q i q+ = =   means the probability of transition from segment iq   to jq  . 
1ti +

means the sampled point at time t + 1. The frequency of the sampled points sequence 
obtained by the dead reckoning system is 10 Hz, illustrating that the average distance 
between two adjacent sampled points is about 1.4 m~2.2 m. Furthermore, the average 
length of road segments in the vector map is generally more than 10 m. As a consequence, 
the correct matching segment corresponding to the sampled point at the current time is 
the same or directly connected with the matching segment at previous time. So, the tran-
sition probability of the situation that two adjacent sampled points belong to the same 
candidate segment can be calculated by Equation (14): 

( )1
1( ) mean t t

t t
mean

D d o o
p i i

D
+

+

− →
=  (14) 

where meanD  denotes the average length of the candidate segments set, ( )1t td o o +→
 

means the distance between two adjacent sampled points. 
On the contrary, the transition probability of the situation that the two adjacent sam-

pled points belong to two directly connected segments can be computed by Equation (15): 

( )1
11 ( ) t t

t t
mean

d o o
p i i

D
+

+

→
− =  (15) 

5.4. Observation Probability 

The observation probability ( )| jt tP o i q=   is defined as the probability that the 

sampled point ti  belongs to the candidate segment jq , which can be expressed as Equa-
tion (16): 

( ) ( )
( )

1

1/

1/

t j
t j N

t j
l

d o q
p o q

d o q
=

→
=

→∑

 

(16) 

where N means the number of candidate segments, ( )t jd o q→
 represents the Euclid-

ean distance between the sampled point ti  and the candidate segment jq . 
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6. Optimal Path Selection Based on Viterbi Algorithm 
The Viterbi algorithm recurses the state value probability at each time, and takes the 

last time as the termination condition to obtain the joint probability of the optimal path at 
the previous time, which can be described as Equation (17): 

intjo T OP P P= Π ⋅ ⋅  (17) 

where intjoP
 is the logarithmic joint probability; TP

 and OP
 are transition probability 

and observation probability, respectively. 

According to the known candidate road segment set { }1 2, , , NQ q q q= 

 and sam-

pled point sequence obtained by dead reckoning system { }1 2, , , TI i i i= 

, based on the 
Viterbi algorithm, through local state recursion and state backtracking, the real road seg-
ment that the vehicle has traveled can be obtained. Algorithm 1’s pseudo code is shown 
as below. 

Algorithm 1: Viterbi Algorithm 

Input: Collection of candidate road segments { }1 2, , , NQ q q q=  , 

Sampled points set { }1 2, , , TI i i i=   

Output: Optimal Segment Sequence ( )' ' ' '
1 2, , , TQ q q q=   

1: Let P denote the highest score; 
2: Let Q [ ] denote the set of the optimal segments; 
3: 1t ←  
4: Set i 
5: for 1j ←  to N  do 
6: 1 jP = Π  
7: '

1 jq q=
 

8: Q = Q + '
1q ; 

9: end for 
10: for 2t ←  to T  do 
11:     for 1j ←  to N  do 

12: 
     

j j j
T OP P P= ⋅

 
13: 

     
'
t jq q=

 
14:      Q = Q + '

tq  

15:      end for 
16: end for 

17: return ( )' ' ' '
1 2, , , TQ q q q=   

After the optimal matching road segments are obtained, the sampled point needs to 
be projected on the road segment to obtain the final positioning result. In this paper, the 
sampling frequency of the sampled point obtained by the dead reckoning system is 10 Hz, 
which belongs to high-frequency positioning data in the field of map matching. Therefore, 
the vertical projection method is finally used to project the sampled point to the optimal 
matching road segment. When the pedal is on the road segment, then it is the final esti-
mated position corresponding to the sampled point. When the pedal is on the extension 
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line of the road segment, then the end point of the road segment closest to the sampled 
point is the final estimation position. 

7. Evaluation Method 
Combined with the established model, three evaluation methods are used to evaluate 

the correctness of the model. Firstly, the driving route of the test vehicle has been planned 
in advance, so the real road segments that the test vehicle traveled are manually marked 
as the ground truth. In addition, they are matched with the optimal matching path iden-
tified by the Viterbi algorithm. For comparison, the correct rate of road segment matching 
is measured by defining the recall rate, which can be written as: 

100%
TP

Recall
TP FP

= ×
+

 
(18) 

where TP  is the number of the correctly identified road segments; 
FP

 is the number 
of the wrongly identified road segments on the contrary. 

In order to measure the projection accuracy of the sampled point in the optimal 
matching road segment, the correct matching percentage (CMR) is defined as: 

100% 
 

T

T F

C N
N N

MR
+

= ×  (19) 

where TN  is the number of correctly matched points and FN  is the number of wrongly 
matched points. 

The positioning error of the whole method is defined as Equation (20): 

1

3 
 SPE
N

=  (20) 

where 1S  is the sum of the distance between the sampled pointed and the ground truth 

after or before matching, 3N  is the total number of sampled points. 

8. Experiment and Discussion 
Based on the above analysis, this section carries out the verification experiment. The 

verification experiments are implemented in the park of an automobile company in Bei-
jing, and the vector map, which is shown in Figure 6, is also provided by the company. 
The specific forms of the vector map are high-precision longitude and latitude coordinate 
pairs, which are collected and calibrated by laser radar and a high-precision optical fiber 
inertial measurement unit. The accuracy of the vector map can reach the centimeter level. 
The segments concluded in the red box in Figure 6, shown in Figure 7, are the under-
ground garage, where the proposed positioning scheme is verified. 
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Figure 6. The whole vector map and its road network structure. 

 
Figure 7. The detailed structure of the red box in Figure 6. 

The vehicle used in the experiment and the detailed device configuration are shown 
in Figures 8 and 9, respectively. The specific parameters of the optical fiber IMU used in 
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the validation experiments are listed in Table 3. The odometer used in the experiment is 
provided by the vehicle itself. 

 
Figure 8. The test vehicle. 

 
Figure 9. The detailed experimental setup. ①: Fiber optic IMU, ②: Power supply, ③: Data transfer 
unit, ④: CAN module, ⑤: MOXA module, ⑥: Acquisition computer. 
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Table 3. The specific parameters of the optical fiber IMU used in the validation experiments. 

Device Parameter Value 

Fiber optic 
gyroscope 

Range ±400°/s 
Bias stability ≤0.1°/h (1 σ ) 

Bias repeatability ≤0.1°/h (1 σ ) 
Random walk coefficient ≤0.02°/√h 
Scale factor nonlinearity ≤100 ppm 
Scale factor repeatability ≤100 ppm 

Bandwidth ≥200 Hz 

Accelerometer 

Range ±20 g 
Bias stability ≤0.2 mg (1 σ ) 

Bias repeatability ≤0.2 mg (1 σ ) 
Random walk coefficient ≤100 ppm 
Scale factor nonlinearity ≤100 ppm 
Scale factor repeatability ≥200 Hz 

In addition, the test vehicle is equipped with a high-precision inertial navigation sys-
tem whose output trajectory is regarded as the ground truth to measure the error of the 
proposed method. Its gyroscope and accelerometer bias are 0.01°/h and 50 ug, respec-
tively. 

A total of two validation experiments have been carried out, and the specific condi-
tions are described as follows: 
Case 1: The vehicle starts from the northeast corner of the map and drives along the lane 

line to the southwest corner of the map. The vehicle drives eight laps in the un-
derground garage. The red line in Figure 10 represents the track of the vehicle. A 
curve is selected in the lower right corner of Figure 10 and enlarged locally for 
better visualization. 

Case 2: The vehicle drives one lap in the underground garage. There are more curves and 
more complicated road conditions. 

 
Figure 10. Trajectories of the test vehicle obtained by dead reckoning in case 1. 
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In both cases, the vehicle’s speed is about 30 km/h. 
The initial positions of the two cases are the positions when the satellite signal is 

missing, which can be judged according to the flag of the data. The trajectories obtained 
by the inertial system of the second and eighth lap in case 1 are selected for verification. 
Similarly, the trajectory in case 2 is also selected for verification. For convenience, we de-
fine that S1 and S2 denote the trajectories obtained by the inertial system of the second 
and eighth lap in case 1, respectively. S3 represents the trajectory in case 2. The frequency 
of the trajectory obtained by the inertial system in this paper is 10 Hz. 

Based on the characteristics of inertial system error accumulation over time, the ra-
dius of the positioning circle of S1, S2 and S3 is set to 5 m, 10 m and 5 m, respectively. The 
candidate road segment set is obtained according to the inertial trajectory, positioning 
circle and vector map. Among them, the set of candidate segments corresponding to S2 
are shown in Figure 11. The number of sampled points, actual driving distance, inertial 
calculation distance, positioning circle radius and the number of candidate segments cor-
responding to the three trajectories are summarized in table 4. 

 
Figure 11. The set of candidate segments corresponding to trajectory S2. 

Table 4. Some parameters of three experiments. 

Trajectory 
Number of 

Sampled Points 
Real Driving 
Distance (m) 

The Radius 
of the 

Positioning 
Circle (m) 

Number of 
Candidate Segments 

S1 1457 420 5 67 
S2 1368 420 10 78 
S3 2230 550 5 71 

It can be seen from table 4 that the radius of the positioning circle directly affects the 
number of candidate segments and indirectly affects the execution time of the algorithm. 
Obviously, the sampled points corresponding to trajectory S2 are the least, but the 
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candidate segments are the most for the reason that the radius is the largest. Furthermore, 
the number of sampled points of trajectory S3 is obviously more than S1, but there is little 
difference between the candidate segments, illustrating that one candidate road segment 
contains many sampled points. It also proves the rationality of the principle of transition 
probability. 

After obtaining the candidate segments set, it is necessary to further calculate the 
initial distribution probability, transition probability and observation probability, so as to 
obtain the optimal matching segments set. The initial distribution probability and obser-
vation probability are calculated based on the Euclidean distance from the sampled point 
to the candidate road segment, which has been described in Section 5. The parameters 
required to calculate the transition probability are summarized in table 5. As can be seen 
from table 5, the distance between adjacent sampled points corresponding to trajectory S2 
is greater than trajectory S1 and S3. The potential reason may be that the error of trajectory 
S2 is relatively large, because the test vehicle has been driving for a long time in the un-
derground garage. 

Table 5. The parameters required to calculate the transition probability. 

Trajectory 
Average Length of Candidate Seg-

ments (m) 
Average Distance between Adja-

cent Sampled Points (cm) 
S1 27.0 30.8 
S2 30.2 49.8 
S3 27.7 26.3 

The Viterbi algorithm is used to optimize the path of the candidate segments set of 
three experiments, and the optimal matching segments set is obtained. Among them, the 
optimal matching segments corresponding to trajectory S2 is shown in Figure 12. Finally, 
the final location results can be obtained by projecting the sampled points onto the optimal 
candidate road segments. 

 
Figure 12. The set of optimal segments corresponding to trajectory S2. 
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In the process of optimal segment matching, there will be mismatching. The black 
circle in Figure 12 represents a typical example. The place represented by the black circle 
is a trigeminal intersection, which is composed of two segments into one segment. Figure 
13 shows the specific situation of the black circle. As can be seen in Figure 13, the red 
points denote the sampled points; on the other hand, the black points represent the pro-
jection points. It can be seen from the trajectory of the red points that the test vehicle is 
driven in a straight line. However, the result of our algorithm is from straight line to curve, 
which is definitely unreasonable. In more detail, when approaching the curve, the sam-
pled points are closer to the curved segment than the straight segment, which directly 
causes the wrong matching result. 

 
Figure 13. A typical mismatching example of trajectory S2. 

In general, the current model depends on the distance to select the road segments, 
which has limitations. As a consequence, the wrong matching result specifically provides 
ideas for the improvement of the model. For instance, if the direction information of the 
test vehicle were taken into consideration, the situation shown in Figure 13 would not 
occur. 

According to the evaluation method proposed in Section 7, the results of the three 
experiments are summarized in Table 6. Based on the gyroscope and accelerometer in ta-
ble 3 and the odometer provided by the vehicle, we can obtain the driving trajectory of 
the carrier. Comparing this trajectory with the ground truth, we can compute the posi-
tioning error of the inertial system, which is the ‘PE before matching’ in table 6. Obviously, 
without map matching, the positioning errors of three experiments are 0.59 m, 1.03 m and 
0.84 m, respectively. Then, we use the proposed integrated positioning method to estimate 
the vehicle’s driving trajectory, which is compared with the ground truth. As a conse-
quence, the corresponding positioning error of the proposed method can be obtained, 
which is the ‘PE after matching’ in table 6. It is not difficult to see that the positioning 
errors of the proposed integrated positioning methods corresponding to trajectory S1, S2 
and S3 are 0.12 m, 0.24 m and 0.18 m, respectively. 
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Table 6. Comparison of positioning accuracy of three test experiments. 

Trajectory Recall CMP 
PE before 

Matching (m) 
PE after Match-

ing (m) 
Time of 

Running (s) 
S1 100% 100% 0.59 0.12 29.38 
S2 94.4% 98.57% 1.03 0.24 20.18 
S3 100% 99.1% 0.84 0.18 47.43 

Compared to inertial system, the positioning error is greatly reduced, demonstrating 
the effectiveness of the proposed method. In addition, the proposed method is not affected 
by the environment. As long as the vector maps are collected in advance, they can be re-
used, facilitating large-scale promotion and application in GNSS denied environments 
such as underground parking lots and large logistics complex areas. 

Furthermore, it can be seen that the recall corresponding to trajectory S1 and S3 is 
100%, which represents that all the optimal road segments are the actual driving segments 
of the test vehicle. Actually, the inertial positioning errors of these two trajectories are 
small because the test vehicle does not travel for a long time. The positioning errors after 
matching have been reduced to lower than 20 cm, which also exactly proves the superior 
performance of the proposed method when the inertial error is small. For trajectory S3, 
more complex road conditions directly lead to lower accuracy. On the other hand, the 
inertial error of trajectory S2 is large, so the recall is 94.4%, which is smaller than others. 

The experimental results show that the proposed method can achieve lane level po-
sitioning accuracy under the GNSS denied environments. In terms of running time, the 
number of sampled points play a decisive role, which also brings a new problem. If there 
is a need for real-time performance, the proposed algorithm still needs to be further opti-
mized. 

9. Conclusions 
At present, most map matching algorithms take GNSS trajectory as a priori infor-

mation to estimate the real driving trajectory of vehicles, which is not applicable under 
GNSS denied environments. However, the error of inertial system will accumulate over 
time and it cannot provide good performance for a long time. Aiming at the demand of 
unmanned driving for high-precision positioning, this paper puts forward a lane level 
positioning method based on inertial system and vector map information fusion. The tra-
jectory obtained from dead reckoning and vector map are regarded as priori information; 
lane level positioning results are obtained based on the established map matching model. 
Experimental results show that the positioning error of the proposed method is less than 
30 cm when driving for about 7 min, which meets the application requirements of un-
manned driving. However, the proposed method can be optimized by adding heading 
information to avoid false matches and improving real-time performance. Moreover, fur-
ther optimization and evaluation of the proposed method through longer distance and 
more reasonable probability function will be carried out in the next work. 
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