
 

 

 

 
Drones 2023, 7, 196. https://doi.org/10.3390/drones7030196 www.mdpi.com/journal/drones 

Article 

Multi-UAV Trajectory Planning during Cooperative Tracking 

Based on a Fusion Algorithm Integrating MPC and Standoff 

Bo Li 1,*, Chao Song 1, Shuangxia Bai 1, Jingyi Huang 1, Rui Ma 2, Kaifang Wan 1 and Evgeny Neretin 3 

1 School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710072, China 
2 Xi’an Electronic Engineering Research Institute, Xi’an 710100, China 
3 School of Robotic and Intelligent Systems, Moscow Aviation Institute, 125993 Moscow, Russia 

* Correspondence: libo803@nwpu.edu.cn; Tel.: +86-133-5921-2759 

Abstract: In this paper, an intelligent algorithm integrating model predictive control and Standoff 

algorithm is proposed to solve trajectory planning that UAVs may face while tracking a moving 

target cooperatively in a complex three-dimensional environment. A fusion model using model pre-

dictive control and Standoff algorithm is thus constructed to ensure trajectory planning and for-

mation maintenance, maximizing UAV sensors’ detection range while minimizing target loss prob-

ability. Meanwhile, with this model, a fully connected communication topology is used to complete 

the UAV communication, multi-UAV formation can be reconfigured and planned at the minimum 

cost, keeping off deficiency in avoiding real-time obstacles facing the Standoff algorithm. Simulation 

validation suggests that the fusion algorithm proves to be more capable of maintaining UAVs in 

stable formation and detecting the target, compared with the model predictive control algorithm 

alone, in the process of tracking the moving target in a complex 3D environment. 

Keywords: UAV trajectory planning; model predictive control; standoff algorithm; formation track-

ing control; intelligent computing 

 

1. Introduction 

The increasingly complex mission environment in recent years has given UAVs their 

favored market, seeing them widely used for reconnaissance and monitoring missions 

due to their low cost, high autonomy and reusability [1,2]. Tracking a moving target, 

whether for single or cooperative tacking, is a significant sub-problem for UAVs perform-

ing monitoring tasks. Yet, a single UAV can hardly meet its actual task requirements as it 

works on its own [3,4], because its sensor’s range of view may be easily blocked and there-

fore its ability to accomplish tasks limited. Cooperation of several UAVs, however, helps 

make target tracking and monitoring easier. Cooperative efforts made by UAVs can re-

duce the risk of target loss [5,6], and ensure the accomplishment of a task with multi-

sensor data fusion, which means multi-UAV collaboration used in trajectory planning for 

moving target tracking purposes. 

At present, multi-UAV collaborative planning mainly involves artificial potential 

field method [7,8], bionic algorithm and control algorithm. When the artificial potential 

field method is applied to the collaborative planning process, it is easy to fall into local 

optimality and difficult to establish a complete mathematical model. Bionic algorithms, 

which mainly include ant colony algorithms [9], and particle swarm algorithms [10], also 

prove to be challenging to meet the real-time demand due to their limited processing ef-

ficiency. Control algorithms mainly cover PID control [11], optimal control [12], H-infinity 

robust control [13], sliding mode control [14], and model predictive control [15,16], etc. 

Most of these algorithms, such as PID control, optimal control, H-infinity robust control 

and sliding mode control, are not suitable for complex variable control problems such as 
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cooperative planning of multiple UAVs given their limited control variables and applica-

tion scenarios that appear quite poor, while the model predictive control algorithm, as the 

only control method that can explicitly handle constraints at present, has leveled itself up 

to the acknowledged standard for handling complex constrained variable control prob-

lems. It adopts a form of rolling optimization and feedback correction, i.e., the predicted 

trajectory will be corrected online at each sampling cycle. With strong anti-interference 

ability and strong robustness, it has attracted widespread attention from scholars at home 

and abroad. Animesh Sahu [17] and others conducted a study on multi-UAV tracking of 

multiple moving targets in two dimensions based on the model predictive control algo-

rithm and developed a data-driven Gaussian process (GP) based model that relates the 

hyperparameters used in model predictive control to mission efficiency. Marc Ille [18] and 

others carried out research on multi-UAV formation collision avoidance in two-dimen-

sional environments based on the model predictive control algorithm, optimized model 

predictive control cost functions using penalty term methods, and controlled UAVs’ track 

planning as they tracked a moving target based on formation avoidance constraints. How-

ever, relevant research on [17,18] UAV formation control is rare. Tagir Z. Muslimov [19] 

and others proposed a method based on the Lyapunov vector field for multi-UAV coop-

erative tracking of the moving target in a two-dimensional environment. The method is 

grounded around dispersed guided Lyapunov vector fields for path planning. Based on 

the two-dimensional environment, Q. Guo [20] and others proposed a performance guar-

anteed 5
�

�
-approximation algorithm for the UAV scheduling problem when ignoring the 

limited flying time of each UAV, such that the maximum spent time of UAVs in their 

flyingtours is minimized. A fusion algorithm for adaptive multi-model traceless Kalman 

particle filter was adopted by Niu Yifeng [21] and others to carry out a study on coordi-

nated tracking of ground multi-target trajectory for UAV swarms in complex two-dimen-

sional environments. A pioneering exploration is Zhang Yi [22] and others who solved the 

problems regarding non-convergence of initial heading and long phase coordination time 

among UAVs in the process of cooperatively tracking a moving target based on Standoff 

method, following which Zhu Qian [23] and his team also studied two aircrafts’ coopera-

tive tracking of a moving target by means of angle measurement. 

A comprehensive analysis of the above research found that most of the current re-

search on multi-UAV trajectory planning through cooperative formation stays in two-di-

mensional space, still challenged by problems such as large model calculation and insuf-

ficient real-time. At the same time, the current research faces great difficulty in establish-

ing a complete non-linear UAV 3D motion model, and thus fails to meet actual mission 

requirements [24]. As for traditional multi-UAV sensors, their limited detection coverage 

as well as weak formation and retention capabilities [25] prevent them from being the hot 

spot in this field, leaving UAV trajectory planning that integrates collision avoidance and 

obstacle avoidance not fully explored. 

Against such a background, this paper proposes a fusion algorithm that combines 

the model predictive control algorithm [26] and the Standoff algorithm. The model pre-

dictive control algorithm solves the problem of large-scale real-time optimal control in 

limited time [27] and uses the preview capability to achieve optimal maneuver control in 

a constrained, non-linear, model-uncertain and unpredictable environment to generate 

smooth flyable paths suitable for the actual flight of the formation [28]. The Standoff algo-

rithm [29], one of the main algorithms for formation control, maximizes sensor detection 

range and reduces the probability of target loss with safe distances as grounds [30]. Com-

pared with the traditional multi-UAV cooperative trajectory planning method, the fusion 

algorithm simplifies the mathematical modelling of UAVs’ three-dimensional motion 

[31], reduces the computational complexity which is caused by strong non-linearity as 

defined in the dynamics [32], and enhances real-time performance that an algorithm can 

show compared with the two papers [33,34]. It integrates the maximization of the sensor’s 

observation coverage to establish UAV sensors’ monitoring model, and more importantly, 
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reduces the probability that UAVs lose their moving target compared with the sensor de-

tection model proposed by the thesis [35]; Inspired by the minimum long-term operational 

cost suggested by the paper [36], the present study designs the reconfiguration planning 

of UAV formation at the minimum cost. As the distributed learning principle reported in 

the research [37] indicates, it constructs a multi-UAV track planning model using a dis-

tributed model predictive control algorithm to transform the challenge of centralized 

UAV formation mentioned in the paper [38] into that of a distributed flight control opti-

mization, verifying the effectiveness of the fusion algorithm by means of unexpected arti-

ficially implanted obstacles. 

The remainder of this paper is as follows: Section 2 introduces the trajectory planning 

model that UAVs take while they cooperatively track the moving target in a complex 

three-dimensional environment, followed by how it is configured and designed based on 

the fusion algorithm in Section 3, in addition to the cooperative formation reconfiguration 

and planning when an unexpected situation occurs to the vehicles. Simulation validation 

is carried out in Section 4 to demonstrate the effectiveness of the fusion algorithm applied 

to multi-UAV collaborative tracking of moving target trajectory planning. The following 

section conducts a study on the effectiveness and monitoring capability of multiple UAVs 

in coordinated formation to track moving targets, and illustrates that the fusion algorithm 

has better tracking effectiveness and monitoring capability in the test, while the last sec-

tion offers a conclusion. 

2. UAV Model and Environment Model 

2.1. UAV Motion Model 

Different from most of the previous literature that used the two-dimensional plane 

to establish the motion model of the UAV, this paper regards the UAV as a mass point 

and builds a three-dimensional motion model based on the inertial reference system with-

out considering the influence of external disturbances, noise and air resistance on the UAV 

dynamics, and carries out discretization processing on it. Assuming that the sampling 

time is ∆�, the UAV motion model is expressed as Equation (1). 
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where �(�) denotes the UAV state sampling at time �; � denotes the feasible state set; 

�(�) denotes the control input of the UAV at time �; � denotes the feasible input set; 

(�(�), �(�), �(�)) is the real time position of the UAV; �(�), �(�) and �(�) denote the 

real time speed, heading angle and pitch angle of the UAV respectively, and � dotes the 

acceleration of the UAV. 

2.2. UAV Collision Avoidance Model 

Since UAVs need to fly as ultra-low as possible in order to avoid radar detection, the 

complex ground environment and its obstacles become the primary threat to UAV trajec-

tory planning. This paper creates a map model based on undulating terrain topography 

to fulfill the actual task requirements, as shown in Figure 1. To improve the robustness of 

the method, a safety buffer zone is established around the UAV, and the obstacles are 

divided into static obstacle modelling and emergent obstacles. The static obstacle model 

is approximated by a cylinder whose co-ordinate center is set to ��, whose co-ordinates 
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are [���, ���], and whose radius and height are denoted by ��� and ���. A collision zone 

(denoted by ���  and ∆���) and a threat zone (denoted by ���  and ∆���) are estab-

lished around it. ��� is the minimum proximity safety distance while ∆��� is the mini-

mum height proximity distance, and if the distance between the UAV and the static ob-

stacle is less than ��� and ∆���, the UAV will collide. ��� and ∆��� are the maximum 

threat distance of the static obstacle, and if the distance between the UAV and the static 

obstacle is less than ��� and ∆���, the UAV may have the risk of collision. The sudden 

obstacle model is approximated by a sphere, the centre of which is set to ��, with specific 

coordinates [���, ���, ���] and a radius of ��. The collision zone (represented by a sphere 

with a radius of ��) and the threat zone (represented by a sphere with a radius of ��) are 

also set up, and the specific UAV collision avoidance and collision avoidance model is 

shown in Equation (2). 

 

Figure 1. Schematic diagram of modeling of 3D environment and obstacles. 
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 (2)

where (��(�), ��(�), ��(�)) denotes the current UAV position coordinates; ��  denotes 

the UAV minimum collision avoidance safety distance; (��(�), ��(�), ��(�)) denotes the 

adjacent UAV position coordinates; ����(�) denotes the height of the ground coordinates 

(��(�), ��(�)); and ∆�� denotes the UAV near-ground minimum safety distance. 

2.3. Moving Target Model 

The establishment of a rationalized moving target motion model is the prerequisite 

for the successful track planning of UAVs when they cooperatively track the moving tar-

get. This paper defines the target motion model as Equation (3). To simplify the operation, 

the moving target’s trajectory is compressed from the three-dimensional space to the two-

dimensional yoz plane, i.e., the � coordinate of the moving target is set to a constant 

value. 



Drones 2023, 7, 196 5 of 26 
 

 

0 0 0
( )cos ( )sin ( )

( ) 0 0 0
( ) cos ( ) cos ( )

( ) 0 0 0
( )sin ( )

( ) 1 0 0
sin ( )

( ) 1
0 0cos ( )

( )( )
( )

1( )
0 00

( )cos ( )

u u u
u

u u u
u

u u
u

u
u

u
uu

u

u

u u

v k k k
x k

v k k k
y k

v k k
z k

g k
v k

g k
v kk

v k
k

v k k

 

 












     

   
   
   
    
      
   
    

 














1

2

3

a

a

a




 
 

  
  
  
    

 
 
 
 

  (3)

where ��(�) denotes the velocity of the moving target at �, ��(�) denotes the pitch an-

gle of the moving target, ��(�) denotes the heading angle of the moving target (��(�) =

0), � is the acceleration of gravity, �� denotes the horizontal acceleration of the moving 

target, �� denotes the vertical acceleration of the moving target and �� denotes the an-

gular acceleration of the moving target, and the motion constraint of the target can be 

completed by adjusting according to parameter � = [��, ��, ��]. 

2.4. Target Observation Coverage Modelling 

The modeling of target observation coverage is based on the UAV sensors. In this 

paper, the mathematical modeling of target observation coverage is based on four factors: 

��, ��, ���� and ����. �� indicates the probability that the sensor detects the target ef-

fectively, �� indicates the probability that the sensor detects the target incorrectly, and 

��,�� ∈ (0.1]. ���� indicates the maximum detection distance of the sensor, and ���� in-

dicates the effective distance that the sensor detects completely. When the distance be-

tween the sensor and the target is less than ����, �� = 1. Given the influence of multiple 

obstacles encountered during UAV trajectory planning, it does not meet the actual needs 

to only use the maximum detection distance of the sensor as the measurement standard. 

Based on this, this paper defines that the UAV is only likely to detect a target when the 

target enters an area where it can be seen by the vehicle, and the sensor is only capable of 

detecting the target when the target is within its coverage. The intersection of the area 

where the target is visible and the sensor’s coverage area is defined as the target observa-

tion coverage, which circumvents the obstruction of the UAV’s line of sight by environ-

mental obstacles and ensures effective monitoring of the moving target by multiple UAVs 

in formation, as shown in Figure 2, whose discretization modelling is expressed as Equa-

tion (4). Define the effective detection range of UAV sensors and the radius of the target 

coverage area to be the same, both of which are ���� = 40 �. The UAV can monitor the 

moving target when it is within the sensor’s detection range. 

 

Figure 2. Schematic diagram of observation coverage. 
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where �(��) denotes the probability of the sensor effectively monitoring the target and 

�� denotes the real-time distance between the UAV sensor and the target. 

3. Designing a Multi-UAV Cooperative Tracking System Based on the Fusion Algo-

rithm 

3.1. System Design 

After each UAV receives the tracking task, it initializes the system model according 

to the prior obstacle information, target movement information and its own motion infor-

mation. In view of constraints such as obstacle avoidance and collision avoidance, the 

model predictive control algorithm is used to predict the trajectory of multiple UAVs at 

the minimum planning cost. In terms of formation and maintenance of multi-UAV for-

mation, the Standoff algorithm is used to complete the multi-UAV formation control, so 

that the UAV swarm is evenly distributed around the target, and then multi-UAV sensors 

can maximize the monitoring of the moving target. The specific system framework is 

shown in Figure 3. The cooperative collision avoidance control module is mainly respon-

sible for obstacle collision avoidance and inter-UAV collision avoidance, taking into ac-

count the UAV motion state, obstacle information, map boundaries and other factors to 

plan a safe and collision-free flight path. The model prediction control module is respon-

sible for predicting the UAV trajectory at the minimum flight cost, and the distributed 

cooperative controller plans and coordinates the global trajectory. Standoff control mod-

ule is mainly responsible for UAV formation maintenance, real-time acquisition of multi-

UAV phase distribution, and maximizing UAV sensors’ coverage. The formation recon-

figuration module means that during the flight of multiple UAVs in accordance with the 

established formation, the formation needs to carry out reconstruction planning due to 

unexpected situations. 
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Figure 3. Framework diagram of how UAVs make track planning as they track the moving target 

through cooperative formation. 

3.2. Multi-UAV Cooperative Trajectory Planning Based on the Fusion Algorithm 

In this paper, a fusion of model predictive control algorithm and Standoff algorithm 

is used to promote UAVs’ trajectory planning as they reach cooperative formation when 

tracking the moving target, as illustrated by Figure 4. 

 

Figure 4. Framework diagram of multi-UAV trajectory planning based on the fusion algorithm. 

3.2.1. Multi-UAV Formation Control Based on the Standoff Algorithm 
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Multi-UAV formation control research using the Standoff algorithm is carried out in 

the following steps: introduce UAV-target relative desired distance and UAV sensors’ ob-

servation coverage information; use Lyapunov vector field guidance algorithm to guide 

the UAVs’ trajectory planning during moving target tracking to ensure that the moving 

target is within UAV sensors’ detection range to the maximum extent possible; control the 

UAV trajectory rotation characteristics to make it more flexible when optimizing the tra-

jectory, and then better approach the desired position to reduce the probability of target 

loss. Figure 5 shows a schematic diagram of the UAV swarm model for tracking the mov-

ing target based on the Standoff algorithm. 

 

Figure 5. Schematic of formation control using the Standoff algorithm. 

Set the target motion state is known, the multi-UAV cooperative formation moves 

around the target circular motion through the Lyapunov function, and the multi-UAV 

speed adjustment is assisted by the feedback-correction mechanism, so as to maintain the 

ideal tracking of the multi-UAV formation and the moving target. In this paper, the radius 

of circular distribution is set as ��, and the corresponding Lyapunov energy function is 

the distance function, as shown in Equation (5). 

2 2 2( , , ) ( )d r

r

L x y z r D

r D 

  


 
 (5)

where � is the radial distance between UAV position (��, ��, ��) and moving target posi-

tion (��, ��, ��), � = �(�� − ��)� + (�� − ��)� + (�� − ��)�, and � denotes the formation 

coordination error. 

Assuming that three UAVs are performing a moving target tracking task at the same 

time, the positioning process requires any two UAVs to be positioned in comparison to 

each other to maintain the relative balance of the three UAVs’ positions. In order to sim-

plify the operation, this paper sets three UAVs distributed in the same plane, so only the 

influence of phase angle positioning needs to be considered. Assuming that the phase 

angles of any two UAVs are i and j respectively, and the expected relative phase angle 

is z , the phase distribution function of multi-UAV cooperative formation is calculated 

based on the Lyapunov stability theory as shown in Equation (6). 

2( )

2
, 2

p i j z

z N
N
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 (6)

where � denotes the number of drones and � = 3. 

The speed calculation of any two UAVs is shown in Equation (7). 
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where � represents the real-time velocity of the moving target. 

The phase angular velocity of any two UAVs is calculated as Equation (8). 
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where � is the function coefficient. 

Assuming that the moving target position and velocity are known, the optimal de-

sired velocity of the UAV formation can be calculated by combining the multi-UAV pre-

dicted velocity with the moving target velocity correction term, which is calculated as 

Equation (9). 
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where (�̇�, �̇�, �̇�) is the predicted velocity value of the UAV and (�̇, �̇, �̇) is the target ve-

locity correction value. 

The predicted speed ��, heading angle �� and pitch angle �� of the multi-UAV for-

mation can be calculated according to equation 10. 

2 2 2
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 (10)

3.2.2. Track Planning UAVs Take during Cooperative Tracking of the Moving Target 

Based on the Fusion Algorithm 

Inspired by the fact that the model predictive control algorithm can predict UAV tra-

jectories in real time, and the applicability of the Standoff algorithm to UAV formation 

control, this paper reports on the trajectory planning UAVs take during cooperative track-

ing of the moving target based on the fusion of the two algorithms. Taking the i-th UAV 

as an example, given constraints such as multi-UAV collision avoidance and collision 

avoidance, the predicted motion state of the UAV in the finite time domain is constructed 

based on the model predictive control framework, the UAV cooperative trajectory plan-

ning model is constructed based on minimizing the UAV trajectory planning cost, while 

the fusion Standoff algorithm is used to carry out formation control, based on a “feedback-

correction” mechanism using a moving target speed correction term to correct the optimal 

desired speed of the UAV in real time. With the scaling factor of UAV speed and angular 

speed added, the predicted velocity �� and predicted angular velocity �� of the multi-

UAV formation are calculated in real time, as shown in Equation (11). Each UAV is solved 

at each sampling moment using the quadratic programming method to obtain its own 

optimal control sequence and local predicted trajectory, and the information at the current 

sampling moment is calculated on the basis of control sequence. The specific algorithm 

flow is displayed in Algorithm 1. 
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where ��
�(� + �|�) and ��

�(� + �|�) are the velocity and angular velocity control inputs 

of the i-th UAV in the predicted time domain; ��(�|�) is the UAV velocity; ��(�|�) is the 

UAV angular velocity; (��(� + � + 1|�), ��(� + � + 1|�), ��(� + � + 1|�)) is the three-di-

mensional position coordinates of this UAV in the predicted time domain; �� and �� are 

the UAV velocity and angular velocity scaling factors respectively; ��
� is the UAV moni-

toring target coverage, ��
� is the control input cost, and ��

� is the formation planning cost, 

consisting of two parts: regular planning and reconfiguration planning. Set the formation 

planning cost in the interval [0, �) for predicted trajectory flight, in the interval [�, �), re-

configuration planning is required based on the unexpected situation multi-UAV for-

mation, in the interval [�, �), the UAV completes the formation planning and continues to 

fly in accordance with the established formation, as shown in Equation (12). 

3 1 2 3
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1
2 2

1 2 3
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( ( ) ( ) )

( )

ii

j
i i i i

L H T
i

J

i g i BA
i j
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f w f w f w f

x k j k x u k j k

w f w f w f











   

    

 







 (12)

where ��(� + �|�)  denotes the UAV � − 1  step state; ��  denotes the terminal target 

state; ��(� + �|�) denotes the UAV � − 1 step control input; �  and �  are symmetric 

positive definite weight matrices; � = (��, ��, ��)� is the weight vector; ��
� denotes the 

environmental threat cost, calculated by Equation (13); ��
� denotes the energy consump-

tion cost, calculated by Equation (14); and ��
�  denotes the UAV altitude cost, which is 

calculated by Equation (15). 

( , , )
1

i
T i i if x y z


 


No f l y zones

Saf et y zones
 (13)

where (��, ��, ��) denotes the coordinates of the current UAV track point. 

2 2 2( ) ( ) ( )i
L i l i l i lf x x y y z z       (14)

where (��, ��, ��) denotes the coordinates of the current moving target. 
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 (15)

where �� denotes the current track point altitude; ∆���� denotes the maximum flight al-

titude; and �� and �� denote the altitude penalty values. 

Assuming a fully connected communication topology between UAVs, where each 

real UAV can obtain information sent by others in real time and without delay within a 

sampling period, the inter-aircraft communication distance constraint needs to be consid-

ered, and the specific fusion algorithm constraint is shown in Equation (16). 
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where (��(� + � + 1|�), ��(� + � + 1|�), ��(� + � + 1|�))  is the three-dimensional posi-

tion coordinates of formation j-th UAVs in the predicted time domain; (��(� + � +

1|�), ��(� + � + 1|�), ��(� + � + 1|�))  is the three-dimensional position coordinates of 

formation i-th UAVs in the predicted time domain; �� is the maximum communication 

radius of the formation UAVs; ��
���� and ��

���� are the maximum and minimum veloc-

ity constraints of the UAVs and ��
���� is the maximum angular velocity constraint of the 

UAVs. At moment � , the optimization problem above is solved and the first term 

��(�|�) of the control sequence is applied to the UAV system,, and the process above is 

repeated at moment � + 1. 

Algorithm 1: Fusion Algorithm Based on MPC and Standoff  

1. Initialize map environment information 

2. Initialize fusion algorithm information 

3. Initialize multi-UAV movement information 

4. For step = 1, 2, ..., N: 

5.    Obtain the initial state of UAVs in environments ( , , )r r rx y z , v  and z  

6.         For k = 1, …, J: 

7.             if multi-UAV formations encounter no surprises: 



Drones 2023, 7, 196 12 of 26 
 

8.                 Comprehensive consideration of UAV trajectory planning constraints: maxvu , minvu , maxwu  

9                 Input prediction of velocity and angular velocity control in the time domain ( )vu k p k , 

( )u k p k   

10.               “red” UAV in the environment executing the previous control input of the drone
1( )u k j k  and 

correcting speed variables
1 1 1( ( 1 ), ( 1 ), ( 1 ))x k p k y k p k z k p k        based on the Standoff algorithm, and obtains the 

next state 
1 ( 1 )u k j k j    

11.                “yellow” UAV in the environment executing the previous control input of the drone 2 ( )u k j k  

and correcting speed variables 2 2 2( ( 1 ), ( 1 ), ( 1 ))x k p k y k p k z k p k        based on the Standoff algorithm, and ob-

tains the next state 2 ( 1 )u k j k j    

12.               “green” UAV in the environment executing the previous control input of the drone 3 ( )u k j k  

and correcting speed variables 3 3 3( ( 1 ), ( 1 ), ( 1 ))x k p k y k p k z k p k        based on the Standoff algorithm, and 

obtains the next state 3 ( 1 )u k j k j    

13.                 Store the above track planning information in the model predictive control module 

14.             if multi-UAV formations encounters an unexpected obstacle: 

15.                  UAV reconfiguration planning based on Computational (12) 

16.                  Update drone location information ( , , )i i ix y z  based on minimum generation value 

17.            end if 

18.            else: break 

19.            end if 

20.        end for 

21.   step = step + 1 

22. end for 

3.3. Application Steps of Multi-UAV Cooperative Tracking of the Moving Target Based on the 

Fusion Algorithm 

The following steps are taken to plan the coordinated tracking of the moving target 

by multiple UAVs. 

Step 1: Consider the UAV’s own constraints, collision avoidance constraints and 

other conditions, and determine the number of participating tracking UAVs and UAV 

formation according to the type of the moving target and tracking needs. 

Step 2: The Standoff algorithm and the model predictive control algorithm are fused 

to complement each other and form a fusion algorithm with more optimized performance. 

The specific fusion algorithm is as follows: given the basic information of prediction time 

domain, sampling period, UAV control input ��(� − 1|�) and UAV state quantity 

[��(�|�), ��(�|�), ��(�|�)] at the current � moments, build the planning model that UAVs 

follow when tracking the moving target, carry out UAV finite time domain prediction 

trajectory based on collision avoidance constraint, at the same time use the Standoff algo-

rithm to calculate UAV formation phase distribution value, and then build the multi-UAV 

formation model to reach cooperative tracking of the moving target. 

Step 3: In the process of multi-UAV formation movement, determine in real time 

whether the UAV formation encounters an unexpected situation. If yes, go to step 4; if no, 

continue to track the moving target. 

Step 4: When the UAV formation encounters an unexpected situation during the 

tracking process, UAVs need to use the fusion algorithm to carry out real-time trajectory 

planning, and the ‘feedback-correction’ mechanism to correct the trajectory until they re-

sume the formation after the unexpected situation is resolved to continue tracking the 

moving target. 
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4. Simulation Verification 

With parameters of UAVs and the moving target initialized according to the known 

information, simulation results have verified that UAVs are able to make trajectory plan-

ning through coordinated formation to track the moving target, under the premise that 

each UAV’s own constraints as well as constraints related to collision avoidance and ob-

stacle avoidance are all considered. Under this verification, an ideal distance and angle 

between the UAV formation and the moving target is maintained, which makes the UAVs’ 

monitoring possible and effective. Simulation verification on reconfiguration of multi-

UAV formation and trajectory replanning is also carried out, in which different contin-

gencies are handled at the minimized formation planning cost so that UAV trajectory 

planning can be less dependent on priori information. Initialization information is shown 

in Table 1. 

Table 1. Initialization of system parameters. 

Serial Number Parameters Name Parameter Value 

1 UAV1 starting position (200 m, 5 m, 115 m) 

2 UAV2 starting position (160 m, 5 m, 75 m) 

3 UAV3 starting position (240 m, 5 m, 75 m) 

4 Target starting position (200 m, 5 m, 95 m) 

5 UAV initial speed 25 m/s 

6 UAV speed range [20 m/s, 40 m/s] 

7 Maximum yaw angle of UAV π/4 rad 

8 Maximum pitch angle of UAV π/4 rad 

9 Minimum turning radius for UAV 10 m 

10 Number of UAVs � 3 

11 Maximum speed constraint for UAVs ��
���� 40 m/s 

12 Minimum speed constraint for UAVs ��
���� 10 m/s 

13 Maximum angular velocity constraint for UAVs ��
���� 0.25 rad/s 

In this paper, the simulation environment is based on MATLAB R2020b software. 

The map modelling is based on the undulating terrain of the mountainous landscape, the 

terrain obstacle composition is mainly derived from the original terrain and the threat of 

mountain peaks, and the mathematical model of the terrain is artificially formulated. To 

further approximate the real flight scenario, a safety buffer zone is set up around the UAV 

and the obstacles are divided into static obstacle modelling and emergent obstacles, with 

the static obstacle model being approximated by a cylinder and the emergent obstacle 

model by a sphere. In addition, to further enhance the accuracy of the simulation, the 

rasterised map environment, i.e., taking into account terrain obstacles, no-fly zones, threat 

zones, etc., rasterises the map, with each grid called a cell, converts the 3D mathematical 

model of the map into vector structure data and then into a raster structure, giving each 

raster cell unique attributes to represent entities. In this paper, the rasterized map unit 

length is determined to be 5 m with an accuracy of 0.1 m, and its 3D height information is 

formulated by human. 

In this paper, the moving target is set as a low altitude slow speed target, the UAV 

collision avoidance safety distance is defined as 15 m, the maximum communication ra-

dius between UAVs is 90 m, and the UAV detection coverage range is 40 m. For specific 

sudden obstacle model information, see Table 2. The simulation system randomly selects 

the established sudden obstacle model for testing the fusion algorithm applied to UAV 

trajectory planning and its formation reconfiguration capability. When the simulation sys-

tem selects the sudden obstacle 1, UAVs in formation follow the way as planned by con-

ventional trajectory in their flight, taking into account constraints such as collision avoid-

ance and obstacle avoidance, and maximizing multi-UAV sensors’ monitoring coverage. 
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For simulation details, see Figure 6. When the simulation system selects the sudden ob-

stacle 2, it needs to use the fusion algorithm to quickly develop a reconfiguration plan for 

UAV cooperative formation. Simulation results are shown in Figure 7. To verify the effec-

tiveness of the fusion algorithm, this paper uses the model predictive control algorithm to 

carry out comparative simulations of same-state trajectory planning, as shown in Figures 

8 and 9. 

Table 2. Sudden obstacle information. 

Serial number Coordinate position Radius size of obstacle 

1 (100 m, 270 m, 250 m) 50 m 

2 (200 m, 300 m, 250 m) 50 m 

 

  

(a) Front view (b) Overhead view 

Figure 6. Scene 1-simulation of multiple UAVs using the fusion algorithm for coordinated formation 

tracking. 

  

(a) Front view (b) Overhead view 

Figure 7. Scene 1-simulation of multiple UAVs using the fusion algorithm for reconfiguration of 

cooperative formation. 
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(a) Front view (b) Overhead view 

Figure 8. Scene 1-simulation of multi-UAV coordinated formation tracking using the model predic-

tive control algorithm. 

  

(a) Front view (b) Overhead view 

Figure 9. Scene 1-simulation of multiple UAVs for reconfiguration of cooperative formation using 

the model predictive control algorithm. 

The black trajectory in Figure 6 to Figure 9 is the trajectory of the moving target, and 

the red, yellow, and green trajectories respectively represent the trajectory planning re-

sults of UAV1, UAV2, and UAV3 tracking the moving target. According to the figures, it 

can be seen that the three UAVs can satisfy several conditions such as their own flight 

constraints, constraints related to collision avoidance and obstacle avoidance, and carry 

out real-time stable formation tracking of the moving target. As illustrated by Figures 6 

and 7, the simulation of the fusion algorithm makes it possible for UAVs to stably track 

the target that moves along the established trajectory. Four static obstacles, together with 

some sudden obstacles, are avoided, which justifies advantages and effectiveness of the 
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fusion algorithm. Unlike the Standoff algorithm that proves to be poor in real-time obsta-

cle avoidance, the fusion algorithm works well in this regard: the three UAVs are distrib-

uted around the moving target to maximize the detection coverage of UAV sensors. Thus, 

the formation reconfiguration task is effectively completed and the unexpected obstacle 

is successfully bypassed. Figures 8 and 9 only use a single model predictive control algo-

rithm to carry out track planning. Although the vehicles can continue tracking the moving 

target, their formation is unstable, and the detection coverage for the moving target is 

insufficient, as shown in Figures 10 and 11. 

  

(a) Fusion algorithm  (b) Model predictive control algorithm 

Figure 10. Scene 1-simulation of real-time distance data with the moving target during formation 

reconstruction of multiple UAVs tracking the moving target. 

  

(a) Fusion algorithm  (b) Model predictive control algorithm 

Figure 11. Scene 1-simulation of real-time distance data between multiple UAVs during formation 

reconfiguration. 

A comparison of the simulated data in Figures 10 and 11 verifies that the fusion al-

gorithm is effective in avoiding unexpected obstacles when applied to the trajectory plan-

ning process UAVs take through cooperative formation when tracking the moving target. 
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Compared with the model predictive control algorithm alone, the fusion algorithm shows 

its advantage in formation control with the help of the Standoff algorithm, allowing mul-

tiple UAVs to move in a circular motion around the target, maximizing UAV sensors’ 

monitoring range and enabling cooperative formation to track the target. As can be seen 

in Figure 10, the fusion-based algorithm results in a smaller distance between the UAV 

and the moving target in real time, and a tighter formation which can be maintained after 

emergency obstacle avoidance. In Figure 11, the fusion-based UAV spacing remains more 

stable and less volatile regarding the distance each UAV keeps from the other. 

In order to further verify the effectiveness of the fusion algorithm applied to UAVs’ 

tracking of a moving target, and to verify the real-time obstacle avoidance capability of 

the fusion algorithm, the number of static obstacles is increased to six in this paper, and 

the specific system simulation results are shown in Figures 12 and 13. At the same time, 

the same state comparison simulation experiments are carried out using the model pre-

dictive control algorithm, as shown in Figures 14 and 15. 

 
(a) Front view (b) Overhead view 

Figure 12. Scene 2-simulation of multiple UAVs using the fusion algorithm for coordinated for-

mation tracking. 

  
(a) Front view (b) Overhead view 
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Figure 13. Scene 2-simulation of multiple UAVs using the fusion algorithm for reconfiguration of 

cooperative formation. 

  

(a) Front view (b) Overhead view 

Figure 14. Scene 2-simulation of multi-UAV coordinated formation tracking using the model pre-

dictive control algorithm. 

  
(a) Front view (b) Overhead view 

Figure 15. Scene 2-simulation of multiple UAVs for reconfiguration of cooperative formation using 

the model predictive control algorithm. 

As can be seen from the figure above, by increasing the number of static obstacles to 

six in the scenario, the three UAVs can still satisfy multiple conditions such as their own 

flight constraints and obstacle avoidance constraints, and be distributed around the mov-

ing target in a class circle to maximize the UAV sensor’s detection coverage, and effec-

tively complete the task of formation reconstruction and real-time stable formation track-

ing of the moving target on the basis of collaborative formation trajectory planning in 

complex environments. A comparison between Figures 13 and 15 shows that the single 

model predictive control algorithm for track planning, although also capable of continu-

ously tracking moving targets, has an unstable formation and thus insufficient detection 
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coverage for moving targets. Specific tracking accuracy parameters are shown in Figures 

16 and 17. 

  

(a) Fusion algorithm (b) Model predictive control algorithm 

Figure 16. Scene 2-simulation of real-time distance data with the moving target during formation 

reconstruction of multiple UAVs tracking the moving target. 

  

(a) Fusion algorithm (b) Model predictive control algorithm 

Figure 17. Scene 2-simulation of real-time distance data between multiple UAVs during formation 

reconfiguration. 

In order to test the effectiveness of the fusion optimization algorithm applied to UAV 

cooperative formation tracking moving target trajectory planning for different trajectory 

targets, this paper changes the established motion trajectory of the moving target, in-

creases the degrees of freedom of the moving target, expands the 2-dimensional motion 

of the moving target to 3-dimensional motion, and at the same time adjusts the complex 

3-dimensional environment model and changes the dynamic obstacle position, the spe-

cific simulation results are shown in Figures 18 and 19. Using the model predictive control 
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algorithm to carry out the same state comparison simulation experiments, as shown in 

Figures 20 and 21. 

  

(a) Front view (b) Overhead view 

Figure 18. Scene 3-simulation of multiple UAVs using the fusion algorithm for coordinated for-

mation tracking. 

  

(a) Front view (b) Overhead view 

Figure 19. Scene 3-simulation of multiple UAVs using the fusion algorithm for reconfiguration of 

cooperative formation. 
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(a) Front view (b) Overhead view 

Figure 20. Scene 3-simulation of multi-UAV coordinated formation tracking using the model pre-

dictive control algorithm. 

  

(a) Front view (b) Overhead view 

Figure 21. Scene 3-simulation of multiple UAVs for reconfiguration of cooperative formation using 

the model predictive control algorithm. 

According to the figure above, in the context of changing the complex map environ-

ment and changing the trajectory of the moving target, the UAVs can still satisfy multiple 

conditions such as their own flight constraints, collision avoidance and obstacle avoidance 

constraints, etc., and distribute around the moving target in a class circle to maximize the 

detection coverage of the UAV sensors, and effectively complete the task of formation 

reconstruction based on the realization of trajectory planning of multi-UAVs in coopera-

tive formation in a complex environment, and carry out real-time stable formation track-

ing of the moving target. This demonstrates the effectiveness of the fusion algorithm for 

tracking moving targets in a complex and variable environment. Specific tracking accu-

racy parameters are shown in Figures 22 and 23. 
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(a) Fusion algorithm (b) Model predictive control algorithm 

Figure 22. Scene 3-simulation of real-time distance data with the moving target during formation 

reconstruction of multiple UAVs tracking the moving target. 

  

(a) Fusion algorithm (b) Model predictive control algorithm 

Figure 23. Scene 3-simulation of real-time distance data between multiple UAVs during formation 

reconfiguration. 

As can be seen in Figure 22, the fusion-based algorithm has a smaller distance be-

tween the UAV and the moving target in real time and maintains a tighter formation, 

which can be maintained even after emergency obstacle avoidance. In Figure 23, the fu-

sion-based UAV spacing remains stable and less volatile when comparing distances be-

tween UAVs. 

5. Discussion 

In order to evaluate the proposed fusion algorithm, this paper makes a judgment 

about the sensors’ detection coverage during multi-UAV tracking of a moving target in 

coordinated formation, while maximizing their detection range and minimizing the prob-

ability of target loss in UAV formation, and compares it with the use of a single model 



Drones 2023, 7, 196 23 of 26 
 

predictive control algorithm to verify that the fusion algorithm helps to improve UAV 

target monitoring capabilities. 

For the target tracking effect and monitoring capability, this paper compares the fu-

sion algorithm and the single model predictive control algorithm in the same environ-

ment, guiding multiple UAVs to cooperate in formation as they track the moving target, 

counting the frequency of UAV sensors to effectively monitor the moving target. Experi-

mental results are shown in Table 3, according to which, the three UAVs effectively mon-

itored target coverage using the fusion algorithm a total of 286 times in Scene 1, compared 

with 268 effective monitoring times using the single model predictive control algorithm, 

resulting in a 6.72% increase in combined monitoring coverage; in Scene 2 the three UAVs 

effectively monitored target coverage a total of 283 times with the help of the fusion algo-

rithm, compared with 264 effective monitoring times using the single model predictive 

control algorithm, resulting in a 7.20% increase in combined monitoring coverage; and in 

Scene 3 three UAVs effectively monitored target coverage a total of 287 times with the 

fusion algorithm, while the effective number of monitoring using a single model predic-

tive control algorithm was 269, with a 6.69% increase in comprehensive monitoring cov-

erage, which in turn can be derived from the advantages of the fusion algorithm in terms 

of tracking and monitoring effectiveness. The improvement of monitoring ability comes 

from the effective integration of the model predictive control algorithm and the Standoff 

algorithm in Section 3.2.1 and Section 3.2.2. The former uses a ‘feedback-correction’ mech-

anism to correct UAV trajectories, ensuring real-time tracking of moving target trajectory 

planning, while enabling reconfiguration and planning of multiple UAVs in formation 

reaching the least-cost goal. The latter ensures cooperative formation control of multiple 

UAVs, builds UAV sensor monitoring models, maximizes sensors’ monitoring range and 

reduces the probability of UAVs losing the moving target. Clearly, the fusion algorithm 

displays a better tracking effect and monitoring capability in the test. 

Table 3. Count of effective detection UAV sensors. 

UAV Category Usage 

Effective Number of 

Detected Steps  

(Scene 1-Total: 100) 

Effective Number of 

Detected Steps 

(Scene 2-Total: 100) 

Effective Number of 

Detected Steps  

(Scene 3-Total: 100) 

UAV1 

Fusion algorithm 100 100 100 

Model predictive control al-

gorithm 
100 100 100 

UAV2 

Fusion algorithm 89 88 92 

Model predictive control al-

gorithm 
86 84 88 

UAV3 

Fusion algorithm 97 95 95 

Model predictive control al-

gorithm 
82 80 81 

The fusion algorithm promotes the construction of a multi-UAV track planning 

model, which obtains a more adaptive tracking strategy and effectively solves the prob-

lem of multi-UAV formation reconfiguration and obstacle avoidance in emergency situa-

tions. From the experimental results, it can be seen that the algorithm has great advantages 

in terms of tracking effectiveness and monitoring capability, and can support UAV target 

tracking in uncertain environments. Although some work has been done in this paper on 

UAV tracking effectiveness and monitoring capability, there are still some challenges in 

deploying the algorithm to real UAVs. In practice, external interference, noise and air re-

sistance have a dynamic effect on UAV trajectory planning, making it difficult to keep the 

UAV maneuvering at all times, and time delays in communication between multiple 

UAVs may occur. No matter how good the UAV’s trajectory planning is in the simulation 
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environment, it is still far from real application. However, we can keep increasing the re-

alism of the scenarios and models in the simulation environment, and thus get closer to 

the real environment. For future research, we will consider implementing more detailed 

UAV control, including controlling the UAV with motor speed, acquiring target infor-

mation through the UAV’s vision sensors and acquiring range information through LI-

DAR as status information, thus achieving target tracking in a more realistic 3D scene. 

6. Conclusions 

In this paper, a fusion and optimization method is proposed for trajectory planning 

UAVs make through cooperative formation when tracking the moving target, a frame-

work for the multi-UAV tracking system is designed, and research on stable tracking is 

carried out to maximize UAV sensors’ coverage as they monitor the moving target, which 

in turn reduces the probability of target loss in the tracking process. Against a complex 

three-dimensional environment in which priori information is insufficient, the fusion al-

gorithm promotes the reconfiguration and planning of multi-UAV formation at the mini-

mum cost, and thus ensures the existence and maintenance of the multi-UAV formation. 

The simulation verifies the effectiveness of the fusion algorithm applied to multi-UAV 

cooperative formation, keeping off deficiency in avoiding real-time obstacles facing the 

Standoff algorithm. 

Some future work includes implementing more detailed UAV control for 3D spatial 

and target tracking in more complex environments, setting up more realistic scenarios 

(different flight scenarios with different numbers of tracked targets) for extensive simula-

tion validation, and adding on-board sensors to obtain more data as status information, 

allowing multiple UAVs to carry out collaborative tracking of a moving target closer to 

realistic scenarios, so that fusion optimization algorithms can find their market in actual 

UAV trajectory planning in the future. 
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