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Abstract: To enable a carrier-based unmanned aerial vehicle (UAV) to track the desired glide trajectory
and safely land on the deck with the presence of system faults, this paper proposes a neural network-
based adaptive sliding mode fault-tolerant control (NASFTC) method. Firstly, the dynamic model
of the carrier -based UAV, the actuator fault model, the additional unknown fault model, and the
control framework of the automatic carrier landing system (ACLS) were developed. Subsequently,
controllers for both longitudinal and lateral channels were designed by using the NASFTC method.
The controller consists of three parts: the adaptive laws for compensating the actuator faults, the
RBF neural network for compensating the additional unknown faults, and the sliding mode method
for ensuring overall trajectory tracking. Then, the Lyapunov function theorem was applied to carry
out the stability analysis. Finally, comparative simulations under three different scenarios were
conducted. The comparative results show the effectiveness of the proposed NASFTC method, which
has fault-tolerant ability and can successfully control the aircraft to execute carrier landing task
regardless of the actuator partial loss fault and the additional unknown fault.

Keywords: carrier-based unmanned aerial vehicle; system fault; sliding mode; fault-tolerant control

1. Introduction

Carrier-based unmanned aerial vehicles (UAVs) have attracted wide attention because
they can take the place of humans to perform dangerous tasks, and the presence of an
aircraft carrier has greatly improved their combat range. However, the carrier landing task
is known as “dancing on the knife point” due to its severe difficulty. To land the aircraft
safely on the deck, various studies have been investigated [1–4]. The carrier landing issue
can be essentially considered as a three-dimensional moving path following problem, where
the aircraft is required to follow a trajectory attached to a moving carrier [5]. To solve this
moving path following problem, some modern control methods were employed to design
an automatic carrier landing system (ACLS), such as adaptive constrained backstepping
control [6], direct lift control [7], sliding mode control [8], and adaptive super-twisting
control [9]. Furthermore, there are external disturbances such as air wake and deck motion,
which can cause an undesirable effect on the carrier landing. A disturbance observer was
developed to estimate the air-wake disturbance and ensure a precise landing [10]. The
particle filtering method has also been used to predict deck motion and correct the reference
glide trajectory [11].

The above research assumes that the aircraft is in good condition without faults.
However, carrier-based UAV is a complex synthesis with numerous mechanisms. When
the aircraft executes a landing task in hostile environments, such as strong wind and waves,
it is inevitable to have faults such as actuator damage. Once the faults occur, it significantly
increases the risk of landing failure. Generally, the faults of the aircraft can be divided into
three categories: sensor fault, actuator fault, and structural fault. The reasons for these
faults can be equipment damage and environmental changes [12]. Without appropriate
control methods, each of these faults can have catastrophic consequences.
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Therefore, fault-tolerant control (FTC) of carrier-based UAV is necessary and essential.
In recent years, abundant investigations into FTC have been conducted [13–16]. A robust
FTC was proposed in Reference [17], and numerical simulations showed that this method
was effective for flexible spacecraft with actuator partial loss. By increasing the control
signals to actuators and reducing cost function, the passive FTC method that was designed
in Reference [18] can successfully keep an electric vehicle stable with three types of actuator
faults. Another passive fault-tolerant flight controller is presented for actuator failures [19],
in which the peak–peak gain concept is adopted. The results demonstrated this controller
is effective despite the presence of actuator failures.

However, these are all passive FTC methods. The main characteristic of passive FTC
is by improving the robustness of the controller, and the system will be insensitive to faults.
The advantage of this method is that there is no need for fault detection, and the same
controller can be used for both normal and faulty states. However, the adaptability of the
passive FTC method for faults is very limited. Once the faults break the tolerance boundary,
it will cause control failure, which is usually unacceptable.

To improve the system’s adaptability to different faults, the active FTC method has
attracted attention [20–23]. A learning observer with adaptive ability is proposed in
Reference [24], which can actively detect and reconstruct actuator faults where the space-
craft attitude is stabilized by the estimation of this learning observer and backstepping
control method. Another study considered the thruster system faults of an underwater
vehicle and developed a finite-time observer to make a real-time estimation of the thruster
failures. After the estimation, the active compensation of the thruster system is made
by control allocation [25]. Reference [26] proposed an adaptive control mechanism for a
ducted-fan robot to estimate the error that is caused by actuator failure while the designed
robust loop realized the overall stability. These active FTC methods can automatically
adjust the controller parameters and even change the controller structure according to the
fault condition, which equips the controller with a more remarkable fault tolerance ability.
Therefore, this paper developed an active FTC method to solve the faulty carrier landing
problem for the carrier-based UAV. This method can effectively deal with faults by actively
adjusting control parameters and making compensations.

In the field of carrier-based aircraft landing control, the application of FTC is still in its
infancy with few investigations. A fault-tolerant method was added to the longitudinal
controller to enhance the trajectory tracking ability, where a neural network is used to com-
pensate for actuator faults [27]. An adaptive FTC method was developed in Reference [28],
which utilized an adaptive law to compensate for the actuator faults. Simulation results
demonstrate its effectiveness for both parameterized and unparameterized faults. Another
FTC method for actuator faults was proposed in Reference [29], where the faults are mod-
eled as both partial loss and lock-in-place. Although there are some pioneering studies
on carrier-based aircraft faulty landing problems, many of them only focus on one fault.
While during the carrier landing process, there can be a combination of multiple faults. In
this paper, both the actuator fault and the additional unknown fault are considered, which
puts forward a higher requirement for the controller. The actuator faults will make the
control surfaces fail to respond to the instructions, and the additional unknown faults will
inject faulty information into the UAV. All these faults can lead to the failure of the carrier
landing. To achieve a safe carrier landing with multiple faults, the following contributions
are made in this paper.

(1) A neural network-based adaptive sliding mode fault-tolerant control (NASFTC)
method is proposed. The adaptive laws are used to automatically adjust the controller
parameters according to the actuator faults. The neural network is used to predict and
compensate for the error that is induced by additional unknown faults and the function of
sliding mode is to ensure the overall tracking of the desired gliding trajectory. By the above
characteristics, the proposed control method can achieve a safe carrier landing with the
presence of multiple faults.
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(2) An automatic carrier landing system (ACLS) control framework based on the
proposed NASFTC method for the carrier-based UAV is established. This framework
consists of a glide path generation subsystem, a guidance subsystem, a flight controller
subsystem and a faulty aircraft subsystem where both longitudinal and lateral channels are
taken into consideration.

The rest of this paper is arranged as follows. Section 2 presents the dynamic model of
carrier-based UAV, the actuator fault model, the additional unknown fault model and the
ACLS control framework. The design details of the controller are given in Section 3, which
includes the design of the neural network, longitudinal controller, lateral controller, and
approach power compensation system. The simulation experiments and results discussions
are carried out in Section 4, where a total of three scenarios are considered. Finally, the
conclusions are presented in Section 5.

2. Problem Formulation

In this section, the UAV model is established, the fault models are introduced to the
UAV for controller design, and the ACLS framework is presented to show how to command
an aircraft to land on the carrier.

2.1. UAV Model

The carrier-based UAV that is considered in this paper is equipped with an elevator,
aileron, and rudder. The actuators are hydraulic, and a 5% control gain reduction is
considered. During the landing process, the desired sideslip angle is set at zero. Therefore,
the dynamics model of the carrier-based aircraft can be written as follows [30]:

.
xg = V cos γ cos χ
.
yg = V cos γ sin χ
.
zg = −V sin γ

(1)


.
u = rv− qw− g sin θ + (FX + TX)/m
.
v = −ru + pw− g sin φ cos θ + (FY + TY)/m
.

w = qu− pv + g cos φ cos θ + (FZ + TZ)/m
(2)


.
φ = p + tan θ(q sin φ + r cos φ)
.
θ = q cos φ− r sin φ
.
β = p sin α− r cos α + 1

mv (FY + TY)

(3)


.
p = I1 pq + I2qr + I3L + I4N
.
q = I5 pr− I6(p2 − r2) + I7M
.
r = I8 pq− I1qr + I4L + I9N

(4)

where xg, yg, zg denotes the positions of UAV, V, γ, χ denotes the ground velocity, heading
angle and climbing angle, respectively, u, v, w denotes the velocity in the body-fixed ref-
erence frame, p, q, r denotes the angular rates in the body-fixed reference frame, φ, θ, α, β
denotes the roll angle, pitch angle, angle of attack, and sideslip angle, respectively, FX , FY, FZ
denotes the aerodynamic forces along the axis in the body-fixed reference frame, TX , TY, TZ
denotes the thrust along the axis in the body-fixed reference frame, and L, M, N denotes
the moments along the axis in the body-fixed reference frame.

Assuming x1 =
[
φ θ β

]T and x2 =
[
p q r

]T , Equations (3) and (4) can be
rewritten into affine form as follows:{ .

x1(t) = A + Bx2(t)
.
x2(t) = F + Gu(t)

(5)
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where u =
[
δa δe δr

]T denotes deflections of the aileron, elevator, and rudder, respec-
tively; and A, B, F and G are system matrixes of the UAV.

2.2. Actuator Partial Loss Model and Additional Unknown Fault Model

In this paper, two different kinds of faults are considered, which are the actuator fault
and the additional unknown fault. During the carrier landing process, actuator faults may
occur due to various factors, which will lead to landing failure. Actuator partial loss is
one of the common faults of actuators. This fault represents a reduction of control gain,
resulting in a deviation of the command signal, thereby weakening the actuator function.
Generally, the actuator partial loss fault can be expressed by:

uf(t) = Σ(t)u(t), t ≥ t f (6)

where t f denotes the failure time, which is unknown to the system, and Σ(t) is the actuator
effectiveness matrix. For the carrier-based UAV that is discussed in this paper, there
are three actuators: aileron, rudder, and elevator. Therefore, the actuator effectiveness
matrix is Σ(t) = diag(σ1(t), σ2(t), σ3(t)) with 0 < σi(t) ≤ 1, where σi(t) = 1 means the
corresponding actuator works normally and 0 < σi(t) < 1 means that partial loss has
occurred on the corresponding actuator.

Apart from the actuator fault, an additional unknown fault is also considered in this
paper. The expression of this additional unknown fault is regarded as a nonlinear function,
which is:

d(t, x1, x2) =
[
d1 d2 d3

]T (7)

where di < D, i = 1, 2, 3 with D being a known constant, indicating the additional unknown
fault has a certain boundary.

By introducing the models of actuator partial loss and additional unknown fault into
Equation (5), the flight state-space equation with faults for controller design is established as:{ .

x1(t) = A + Bx2(t) + d(t, x1, x2)
.
x2(t) = F + ΣGu(t)

(8)

2.3. ACLS Control Framework

The ACLS control framework is composed of a glide path generation subsystem,
a guidance subsystem, a flight controller subsystem and a faulty aircraft subsystem, as
depicted in Figure 1.
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Figure 1. The control framework of ACLS.

The function of the glide path generation subsystem is to output the longitudinal and
lateral tracking errors between the UAV and the desired glide path and localizer path in
lateral meaning. Since the desired glide path will be directly affected by the movement of
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the carrier, it is important to establish their geometric relationship. The desired touchdown
point is defined as

(
xdtp, ydtp, zdtp

)
and the aircraft’s center of mass is defined as (xb, yb, zb).

The relative position of the aircraft and the carrier is given by: xr
yr
zr

 = Ldg(φc, θc + χc, ψc + ψ f d)

 xb − xdtp
yb − ydtp
zb − zdtp

 (9)

where Ldg is the transfer matrix from earth-fixed inertial reference frame to carrier deck
reference frame; φc, θc, χc, ψc and ψ f d are the carrier’s rolling angle, pitching angle, heading
angle, yawing angle, and flight deck angle, respectively. Therefore, as shown in Figure 2,
for the given desired glide slope angle γg, the tracking error can be expressed by:[

He
Ye

]
=

[
zr − xr tan σp

yr

]
(10)

where σp is the angle between the desired path and the carrier, which is given by:

tan σp =
sin γp

cos γp −Vc/Vp
(11)
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Figure 2. Schematic diagram of the landing process.

The guidance subsystem is used to transform the displacement deviations into the
angle control commands. Generally, the guidance subsystem can be divided into the
longitudinal channel and the lateral channel. In the longitudinal channel, the Hdot guidance
law is adopted, which can generate the pitch angle command θc for height tracking [31].
The key point of the Hdot guidance law is to keep the angle of attack (AoA) α unchanged.
In the lateral guidance channel, the PID method is adopted, which can generate the roll
angle command φc and yaw angle command ψc. The key point of the lateral channel is to
keep the sideslip angle β at zero.

The faulty aircraft subsystem includes a 6-DOF aircraft model, actuator partial loss
fault model and an additional unknown fault model. The occurrence time of the faults are
unknown to the system, the same as the values of these two faults. After introducing the
faults into the aircraft, accurate operations of landing cannot be guaranteed, increasing the
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risk of landing failure. Therefore, it is essential to empower the controller to compensate
for the uncertainties that are caused by the faults.

The flight controller subsystem consists of a longitudinal flight controller, a lateral
flight controller, and an approach power compensation system (APCS). The aim of APCS
is to output a proper δT to maintain the AoA, so that the Hdot guidance law can operate
normally. Meanwhile, the longitudinal and lateral flight controllers output the control
commands δe, δa, and δr. To eliminate the influence of the faults, the flight controllers
are designed by the NASFTC method. The functions of the adaptive law and the RBF
neural network are to compensate the actuator partial loss and additional unknown fault,
respectively. Simulation results demonstrate that the controllers that are proposed in this
paper can effectively accommodate multiple faults and ensure the aircraft tracks the desired
glide path.

3. Controller Design

In this section, the detailed design steps of the RBF neural network, the flight con-
trollers, and the approach power compensation system are provided.

3.1. RBF Neural Network

In this paper, the RBF neural network is used to compensate the additional unknown
faults. Many studies have proven that neural networks have excellent learning and ap-
proximation ability [32–35]. Among all these neural networks, the RBF neural network
is superior to the traditional neural networks, mainly in the characteristics of robustness
and tolerance [36]. The structure of the RBF neural network is shown in Figure 3. Assum-
ing the approaching error is ε = [ε1, ε2, . . . , εm]

T , the nonlinear additional unknown fault
d(t, x1, x2) can be written as:

d(t, x1, x2) = W*Th(t, x1, x2)+ε (12)

hi(t, x1, x2) = exp(−‖x− ci‖2

2b2
i

), i = 1, 2, . . . , m (13)

where h(t, x1, x2) = [hi]
T is the Gaussian potential function output of the neural network,

W*T =
[
W∗1 , W∗2 , . . . , W∗m

]T is the ideal weight, and ci and bi are the center and spread of
the gaussian potential function, respectively.
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Therefore, the additional unknown fault can be estimated by:

d̂(t, x1, x2) = ŴTh(t, x1, x2) (14)
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where ŴT is the estimation weight.
The ideal weight W*T can be calculated by:

W*T =

[
arg min

ŴT∈Ωd

( sup
x∈Ωx

∣∣∣d̂(t, x1, x2)− d(t, x1, x2)
∣∣∣)]T

(15)

3.2. Controller Design

In this section, the detailed design steps of NASFTC are provided. As mentioned in
Section 2, with the help of the glide path generation subsystem and guidance subsystem, the
obtained trajectory tracking errors can be transformed into the attitude control commands.
Therefore, the landing control problem is transformed into an attitude control problem.
The structure of the controller is shown in Figure 4.
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Normally, the dynamics of the angular variables x1 =
[
φ θ β

]T are slower than

the angular velocity variables x2 =
[
p q r

]T , which allows us to employ the timescale
separation principle. Equation (8) shows that the faulty flight dynamic model is a cascaded
system structure with two equations, which means the command input of the first equation
can be the reference signal of the second equation.

For the first equation in Equation (8)
.
x1(t) = A + Bx2(t) + d(t, x1, x2), assuming the

control commands that are obtained by the guidance subsystem are
[
φd θd

]
. The de-

sired sideslip angle is set at zero. Therefore, the desired attitude control commands are
x1d(t)=

[
φd θd βd

]
. The tracking error is defined as follows:

e1(t) = x1(t) − x1d(t) (16)

The sliding mode method is used to design the controller [37]. Firstly, the sliding
surfaces are defined in the form of:

s1(t) = e1(t) + K1

∫ t

0
e1(t)dτ (17)

Taking the derivative of S1(t) with respect to time yields:

.
s1 =

.
e1 + K1e1 =

.
x1 −

.
x1d + K1e1 (18)

Substituting Equation (8) into Equation (18) yields:

.
s1 = A + Bx2 + d− .

x1d + K1e1 (19)
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Using the RBF neural network to approximate the additional unknown faults d(t, x1, x2),
the approximation can be written as:

d̂(t, x1, x2) = ŴTh(t, x1, x2) (20)

The fault approximation error is defined as:

d̃(t, x1, x2) = d(t, x1, x2)− d̂(t, x1, x2)

= W∗Th(t, x1, x2) + ε−ŴTh(t, x1, x2)

= W̃
T

h(t, x1, x2)

(21)

where ε =
[
ε1 ε2 ε3

]T is the neural network error.
Taking the command input x2 in the form of:

x2 = B−1(−A−d̂ +
.
x1d−K1e1−C1s1−E1sgn(s1)) (22)

where E1 = diag(η11, η21, η31) is constant matrixes with ηi1 > εi.

Theorem 1. For the first equation in Equation (8), supposing
.

Ŵ
T

= µs1(t)h(t, x1, x2), whereµis a
constant coefficient. If the command input is chosen in the form of Equation (18), the tracking error
e1(t) can asymptotically converge to zero.

Proof 1. Selecting a Lyapunov candidate function as follows:

V1 =
1
2

s1
Ts1 +

1
2µ

W̃
T

W̃ (23)

.�
The derivative of V1 is:

.
V1 = s1

T .
s1 +

1
µ

W̃
T

.
W̃ (24)

Substituting Equations (19), (21) and (22) into Equation (24) yields:

.
V1 = s1

T .
s1 +

1
µ W̃

T
.

W̃ = s1
T .

s1 − 1
µ W̃

T .
Ŵ

= s1
T(A + Bx2 + d− .

x1d + K1e1)− 1
µ W̃

T .
Ŵ

= s1
T(d̃−C1s1−E1sgn(s1))− 1

µ W̃
T .

Ŵ

= s1
T(ε−C1s1−E1sgn(s1)) + W̃

T
(s1h(x)− 1

µ

.
Ŵ)

(25)

Substituting the adaptive law
.

Ŵ
T

= µs1(t)h(t, x1, x2) into Equation (25) yields:

.
V1 = s1

T(ε−C1s1−E1sgn(s1))
= −C1s1

2 + s1
Tε−

∣∣s1
T
∣∣E1 ≤ −C1s1

2 ≤ 0
(26)

According to the Lyapunov and LaSalle-Yoshizawa theorems, the tracking error e1(t)
tends to zero as time tends to infinite. Therefore, the proof of the Theorem 1 is completed.

For the second equation in Equation (8)
.
x2(t) = F + ΣGu(t), the reference signal

is x2d = x2 = B−1(−A−d̂ +
.
x1d−K1e1−C1s1−E1sgn(s1)). The tracking error is defined

as follows:
e2(t) = x2(t)−x2d(t) (27)
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The sliding surfaces are defined in the form of:

s2(t) = e2(t) + K2

∫ t

0
e2(t)dτ (28)

Taking the derivative of s2(t) with respect to time yields:

.
s2 =

.
e2 + K2e2 =

.
x2−

.
x2d + K2e2 (29)

Substituting Equation (8) into Equation (29) yields:

.
s2 = F + ΣGu− .

x2d + K2e2 (30)

Assuming χ = F− .
x2d + K2e2 + C2s2 + E2sgn(s2)) and Z = (ΣG)−1, the estimation of

Z is defined as Ẑ. The estimation error is given by Z̃ = Ẑ−Z. Taking the command input u
in the form of:

u = −Ẑχ = −Ẑ(F− .
x2d + K2e2 + C2s2 + E2sgn(s2)) (31)

Theorem 2. For the second equation in Equation (8), supposing the adaptive law is
.
Ẑ = λs2

Tχsgn(G),
where λis a constant coefficient. If the command input is chosen in the form of Equation (31), the
tracking error e2(t) can asymptotically converge to zero, which means the faulty aircraft system is
asymptotically stable.

Proof 2. Selecting a Lyapunov candidate function as follows:

V2 =
1
2

s2
Ts2 +

|ΣG|
2λ

Z̃
T

Z̃ (32)

.�

The derivative of V2 is:
.

V2 = s2
T .

s2 +
|ΣG|

λ
Z̃

T
.
Z̃ (33)

Substituting Equations (29) and (31) into Equation (33) yields:

.
V2 = s2

T(F + ΣGu− .
x2d + K2e2) +

|ΣG|
λ Z̃

T .
Ẑ

= s2
T(χ−ΣGẐχ−C2s2−E2sgn(s2)) +

|ΣG|
λ Z̃

T .
Ẑ

(34)

Substituting the adaptive law
.
Ẑ = λs2

Tχsgn(G) into Equation (34) yields:

.
V2 = s2

T(χ−ΣGẐχ−c2s2−E2sgn(s2)) + |ΣG|Z̃T
s2

Tχsgn(G) (35)

Noting that sgn(G) = sgn(ΣG). Therefore, Equation (35) can be rewritten as:

.
V2 = s2

T(χ−ΣGẐχ−C2s2−E2sgn(s2)) + s2
TΣGZ̃χ

= s2
T(χ−ΣGẐχ + ΣGZ̃χ−C2s2−E2sgn(s2))

= s2
T(χ−ΣGZχ−C2s2−E2sgn(s2))

= −C2s2
2−E2|s2| ≤ 0

(36)

According to the Lyapunov and LaSalle–Yoshizawa theorems, the tracking error e2(t)
tends to zero as time tends to infinite. Therefore, the proof of the Theorem 2 is completed.

To sum up, the NASFTC controller u for the faulty aircraft system is designed as:{
u=−Ẑχ = −Ẑ(F− .

x2d + K2e2 + C2s2 + E2sgn(s2))

x2d = B−1(−A−ŴTh +
.
x1d−K1e1−C1s1−E1sgn(s1))

(37)
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where
.

Ŵ
T

= µs1h and
.
Ẑ = λs2

Tχsgn(G) However, the switching term sgn(s) is a discon-
tinuous function. This switching term will cause chattering problem sometimes, which is
unacceptable to the system. To eliminate the chattering problem, the saturation function
sat(s) is used to replace the discontinuous function sgn(s). The saturation function is
given by:

sat(s) =


1 s > ∆
s
∆
|s| < ∆

−1 s < −∆

(38)

where ∆ is a constant.

3.3. Approach Power Compensation System (APCS)

During the carrier landing process, the sideslip angle is expected to be zero to maintain
a coordinated turn and the relationship between the three longitudinal angles, i.e., the flight
path angle γ, AoA α, and pitch angle θ can be described as:

θ = α + γ (39)

With the guidance law mentioned in Section 2, the height error can be transformed
into the flight path angle command. However, the input that is required by the longitudinal
controller is the pitch angle command. From Equation (39), the changes between the pitch
angle command and the flight path angle are synchronous as long as α is unchanging. The
function of APCS is to maintain the AoA. Therefore, the height error can be transformed in
the pitch angle command, which is required by the controller. The design steps of APCS
are described as follows:

Assuming the tracking error of the AoA is:

eα = α− αd (40)

where αd is the desired AoA. By introducing the information of vertical load ny and
deflection of elevator δe, the control scheme for APCS is designed by:

δT = kPeα + kI

∫
eα + knny + kδe δe (41)

where kP, kI , kn, and kδe are constant coefficients.

4. Simulation Results and Discussion

In this section, a series of comparative simulations have been carried out to verify the ef-
fectiveness of the proposed NASFTC. The parameters of the carrier-based UAV’s initial states
are chosen as: x10 =

[
φ0 θ0 β0

]
=
[
0
◦ −2.8

◦
0
◦]

, x20 =
[
p0 q0 r0

]
=
[
0 0 0

]
,

u0 =
[
δa0 δe0 δr0

]
=
[
0 0 0

]
, α0 = 8.1◦, V = 70m/s. The control parameters

are as follows: K1 = diag(20, 15, 20) and K2 = diag(15, 10, 15) for sliding surfaces;
C1 = diag(5, 20, 5), E1 = diag(1, 2, 1), C2 = diag(3, 12, 3), and E2 = diag(1, 2, 1) for NAS-
FTC; µ = 0.5 and λ = 2 for adaptive laws; kP = 20, kI = 5, kn = 3, and kδe = 0.1
for APCS.

To better demonstrate the superiority of the proposed controller, a PID controller is
introduced for comparison. Simulations of three flight conditions are conducted. The
three flight conditions include “normal states”, which indicates the carrier landing of the
undamaged aircraft with PID controller; “Faulty aircraft with NASFTC”, which indicates
the carrier landing of faulty aircraft with NASFTC; and “Faulty aircraft with PID”, which
indicates the carrier landing of faulty aircraft with PID controller.

The following simulation results are divided into three scenarios. Scenario 1 considers
only the actuator partial loss fault. Scenario 2 considers only the additional unknown fault.
Scenario 3 considers both the actuator partial loss fault and the additional unknown fault.
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4.1. Scenario 1: Only Actuator Partial Loss Fault Is Considered

In this part, the comparative simulation results of only actuator partial loss fault are
presented. When t > 1 s, the aircraft undergoes actuator partial loss faults, the actuator
effectiveness matrix is given by:

Σ(t) = diag(0.5, 0.5, 0.5) (42)

Equation (42) denotes that all the actuators lose half of their effectiveness 1 s after the
starting of the landing process. However, the happening time and value of the actuator
faults are unknown to the UAV system. The results of the two-dimensional trajectory
tracking error are shown in Figure 5. It can be seen that in normal states, the PID controller
can command the carrier-based UAV to track the reference trajectory. When considering
the actuator partial loss fault, the control performance of the PID controller deteriorates
seriously, which means the actuator faults will greatly weaken the aircraft’s tracking ability.
It can also be noticed that compared to lateral direction, the longitudinal tracking ability
declines more obviously. The reason is that the longitudinal tracking is more difficult
and has higher requirements for actuators. However, the proposed NASFTC method can
effectively solve the problem that is induced by the actuator faults. The trajectory tracking
error is effectively reduced and is confined to a small enough interval before touchdown.
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The credit for this improvement is the adaptive laws possessed by NASFTC. The
adaptive laws can automatically change the control parameter according to the external
changes, thus compensating for the errors that are induced by faults. The reason can be
further concluded from the attitude angles and outputs of actuators, which are shown in
Figures 6 and 7, respectively.

The variations of attitude angles are presented in Figure 6. From Figure 6a,b, it can be
seen that the AoA is almost constant, and the sideslip angle remains at zero, which exactly
meets the requirements of the carrier landing. Figure 6c,d demonstrates that even though
there actuator faults exist, the NASFTC method still can stabilize the UAV’s attitude angles
in time, while the attitude angles of PID method fluctuates obviously.

The outputs of actuators are presented in Figure 7. It can be seen that the actuator
loses half of its effectiveness after 1 s. Due to the actuator faults, the PID method is unable
to give a proper control signal. However, the adaptive laws in NASFTC can make the
actuators operate more effectively to compensate for the partial loss. This compensation is
especially apparent in Figure 7b since the longitudinal tracking has higher requirements
for actuators.
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4.2. Scenario 2: Only Additional Unknown Fault Is Considered

In this part, the comparative simulation results of only additional unknown faults are
presented. When the carrier landing process begins (t > 0 s), the carrier-based UAV under-
goes the additional unknown faults. The detailed expressions of the additional unknown
faults are described by the following equations. However, these detailed expressions are
unknown to the UAV flight system during the simulation process.

d(t, x1, x2) =
[
d1 d2 d3

]T (43)
d1 = 0.25(p + φ) + 0.065 sin t
d2 = 4.5(q + θ) + 0.2 sin t
d3 = 2.5(r + ψ) + 0.1 sin t

(44)

The two-dimensional trajectory tracking results are demonstrated in Figure 8. Com-
pared to the actuator faults, the additional unknown faults have a larger impact on the
UAV, especially in the longitudinal direction.
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However, when the proposed NASFTC method is utilized, the additional unknown
faults are compensated and the aircraft can achieve a safe carrier landing. The reason is
that the RBF neural network has successfully estimated the additional unknown faults and
made proper compensations, which is illustrated in Figure 9.

The compensation function of the RBF neural network can also be concluded from
the attitude angles and the outputs of actuators, which are shown in Figures 10 and 11,
respectively.

Figure 10 shows the variations of the attitude angles. Figure 10a,b shows that all the
methods can keep the AoA and sideslip angle nearly at constants as required. However,
without appropriate control methods, the additional unknown faults will cause large
fluctuations in the pitch angle and roll angle, which is shown in Figure 10c,d.

The outputs of actuators are presented in Figure 11. It shows that the additional
unknown faults will cause continuous fluctuations of the actuators. These fluctuations
are extremely dangerous and are the immediate cause of the landing failure. After the
RBF neural network is introduced, the impact of additional unknown faults is largely
eliminated. Despite some minor differences, the outputs of actuators are similar to those of
the normal states.
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4.3. Scenario 3: Both Actuator Partial Loss and Additional Unknown Faults Are Considered

In this part, both the actuator partial loss fault and the additional unknown fault
are injected into the UAV system. The fault structures and injection times are the same
with Scenario 1 and 2. Likewise, both of the faults are unknown to the system. The
simulation results of this case are presented in Figures 12–14. Figure 12 demonstrates
the two-dimensional trajectory tracking error, from which we can see that the tracking
performance of the PID controller is far beyond satisfaction. It can also be found that the
impact of the additional unknown fault plays a dominant role.
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The quantitative error criteria of tracking errors are presented in Table 1 to better
demonstrate the controller performance. The integrated absolute error (IAE) and integrated
time absolute error (ITAE) are calculated for comparisons. It can be seen that the values
IAE and ITAE of NASFTC are much less than that of the PID in both longitudinal and
lateral channels.

Table 1. Quantitative comparisons of tracking errors.

Channel Index Normal States NASFTC PID

Longitudinal
channel

IAE 358 460 2456
ITAE 1454 3952 64715

Lateral
channel

IAE 294 297 359
ITAE 1543 1558 2890

This is because the additional unknown faults are persistent fluctuations related to
time, which puts a huge burden on the controller. With the superposition influence of these
two faults, the carrier-based UAV has been completely unable to track the gliding trajectory,
and in the condition “Faulty aircraft with PID”, there even occurs the chattering problem in
the elevator, which is shown in Figure 14b. Therefore, without a better controller, the carrier
landing of the aircraft will be extremely dangerous in the presence of these two faults.

The NASFTC method that is proposed in this paper can fix the problem caused by
the multiple faults. From Figure 12, we can see that in the longitudinal direction, there are
only slight fluctuations in the tracking trajectory. The result of the lateral tracking trajectory
is more ideal, almost consistent with the normal states. The reason for this improvement
can be concluded from Figures 13 and 14. With the adaptive laws compensating for the
actuator fault and the RBF neural network compensating for the additional unknown fault,
the change of attitude angles and actuator outputs of the aircraft are approaching the
normal states.

5. Conclusions

Due to the harsh external environment, faults will occur in the carrier-based UAV
during the landing process, which can directly lead to a landing failure. Motivated by
the practical necessity of high accuracy and security for automatic carrier landing with
the presence of multiple faults, this paper establishes an automatic carrier landing system
(ACLS) with the neural network-based adaptive sliding mode fault-tolerant control (NAS-
FTC) method. In the system, the longitudinal and lateral guidance laws are developed with
Hdot guidance law and PID method, respectively; the faulty aircraft model is established,
which includes the aircraft model, the actuator partial loss fault model and the additional
unknown fault model; the approach power compensation system (APCS) is designed to
maintain the AoA; and the controllers have been designed in both longitudinal and lateral
channels for trajectory tracking and faults compensation. The controller consists of three
parts, namely the RBF neural network, adaptive law, and sliding mode method, each with
its function. The function of adaptive laws is to deal with the actuator partial loss fault,
which is achieved by automatically updating the controller parameters according to the
fault. The RBF neural network is used to deal with the additional unknown fault, which is
achieved by predicting and compensating the floating error. The sliding mode method can
ensure the overall tracking of the desired glide slope trajectory. The stability analysis of the
system is carried out by the Lyapunov function.

To verify the efficiency of the proposed NASFTC method, comparative simulations of
three different scenarios are conducted. The three scenarios include undamaged aircraft
with PID controller, faulty aircraft with PID controller, and faulty aircraft with NASFTC.
Comparative results demonstrate that the proposed NASFTC method can effectively elimi-
nate the effect that is induced by actuator partial loss fault and additional unknown faults,
thus accurately commanding the carrier-based UAV to land on the deck.
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