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Abstract: Autonomous flight for quadrotors is maturing with the development of real-time local
trajectory planning. However, the current local planning method is too conservative to waste the
agility of the quadrotors. So in this paper, we have focused on aggressive local trajectory planning
and proposed a gradient-based planning method to rapidly plan faster executable trajectories while
ensuring it is collision-free. A distance gradient information generation strategy is proposed, which
finds a collision-free Hybrid-A* path to replace the control points in obstacles for safety and creates
the distance gradient used in the back-end optimization. Besides, we present a novel and aggressive
time span cost term to tackle unfeasibility and improve the overall trajectory speed. Extensive
simulations and real-world experiments are tested to validate our method. The results show that our
proposed method generates a more aggressive trajectory with a shorter planning time and a faster
flight speed than the classical gradient-based method.

Keywords: trajectory planning; gradient information; time span; aggressive flight

1. Introduction

Drones are agile, especially quadrotors; ideally, they should fly as fast as they can for
excellent movement advantage, both in manual control and autonomous flight. In recent
years, the real-time local trajectory planning method for quadrotors is well understood,
together with more accurate location and control algorithms, making autonomous flight
develop from theoretical scientific research into real-world applications.

A collision-free and dynamically feasible trajectory is indeed the key to autonomous
flight. However, the current method only focuses on safety and feasibility, resulting
in overly conservative trajectories generated and wasting the agility of the quadrotors.
Aggressive local planning remains a huge challenge, which requires rapidly generating
high-quality trajectories with faster speed while maintaining safety and feasibility.

Currently, trajectory planning methods can achieve autonomous flight requirements
with a moderate speed in an unknown environment. These methods require lots of com-
putational time for redundant environment representation and optimization to generate
absolutely safe but conservative low-speed trajectories, which wastes the agility advantage
of quadrotors. Therefore, the gradient-based planning method, which continuously op-
timizes the initial trajectory by gradient information, has great potential to improve the
planning and flight speed and is receiving more and more attention.

Among these, Zhou [1] decouples the online trajectory planning problem as a front-end
kino-dynamic path searching and a back-end trajectory optimization, and in optimization,
the initial path is further improved in smoothness and clearance by gradient-based informa-
tion provided by a pre-built Euclidean signed distance field(ESDF) map. However, as the
statistics (EWOK [2]’s Table 2) state, the ESDF build spends time takes up to about 70% of
total local planning time. More unfortunately, as analyzed by Zhou [3], most of the distance
gradient information generated by the current ESDF construction methods [4,5] is useless
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for local planning, which causes extra calculation wastes and conservative planning speed.
Another gradient-based local planner [3] aimed at achieving distance gradient information
more efficiently compared the colliding trajectory with a collision-free guiding path found
by A* algorithm to formulate the collision term in the penalty function. It provided a new
way of thinking about how to obtain the necessary distance gradient information to avoid
local obstacles; however, its strategy of generating gradient information was not efficient
and required many iterations, resulting in it still taking a long time to plan qualified trajec-
tories, especially in complex environments with dense obstacles. In addition, the fitness
cost term introduced by the time reallocation problem made the trajectory too conservative,
wasting the quadrotor’s natural agility advantage.

Therefore, in this paper, we propose an aggressive gradient-based local planner called
Speed-First, which aims to improve planning speed and flight speed under safe and
executable conditions. Firstly, a more efficient gradient information generation strategy
is proposed, which finds a free-collision Hybrid A* path to replace the collision control
points and generates a distance gradient. Secondly, a novel time span cost is presented
to aggressively tackle the unfeasible problem and improve the overall trajectory speed.
In general, our method can rapidly generate trajectories with a faster speed for more
aggressive gradient-based trajectory optimization.

The contributions of our work are summarized as follows:

(1) A more efficient distance gradient information generation strategy for faster aggressive
planning, which takes only a fraction of the time to drive the trajectory out of obstacles.

(2) A novel time span cost term in the second optimization to aggressively but rapidly
solve the unfeasible problem and improve the overall trajectory speed.

(3) Extensive simulation and real-world experiments to validate our proposed method.

Sections 1 and 2: Introduction and overview of the related work of aggressive flight
planning.

Section 3: The system overview to introduce the process and key of our method.
Section 4: The distance gradient information generation strategy.
Section 5: A novel time span cost design and the back-end optimization.
Sections 6 and 7: Experimental verification including simulation and real-world,

conclusion about our work.

2. Related Work
2.1. Quadrotor Trajectory Planning

Trajectory planning for Quadrotors is a key part of achieving autonomous flight.
Currently, trajectory planning methods are widely studied and broadly divided into hard-
constrained methods and gradient-based optimization methods.

Mellinger [6] innovatively generated piecewise polynomial trajectories into minimum-
snap trajectories through quadratic programming (QP). Richter [7] further proposed a
closed-form solution to minimum-snap trajectories. Gao [8] generated a flight corridor
for the quadrotor to travel through by inflating the path against the environment. Hard
constraint methods have evolved to generate trajectories in a two-step pipeline, which
searches out initial paths in safe regions and continues to optimize for smooth and feasible
final trajectories. The methods rely excessively on the selection of initial paths. On the one
hand, the quality of initial paths determines the time for optimization in the back end, and
on the other hand, an unreasonable time allocation of piecewise polynomials often leads to
unsatisfactory results, which may violate the quadrotor’s dynamics.

As mentioned earlier, the other classical gradient-based trajectory optimization method
has received increasing attention because of its high planning success rate and fast planning
speed and is becoming the mainstream for UAV local trajectory generation. It formulates the
trajectory planning problem as unconstrained nonlinear optimization and utilizes trajectory
smoothness and clearance with sufficient gradient information; achieving the gradient
information is the key to the problem. General methods rely on a pre-built ESDF map to
evaluate the gradient magnitude and direction. ESDF was first introduced in robotic motion
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planning by Ratliff [9], which presented a novel method for continuous path refinement
that used covariant gradient techniques to improve the quality of sampled trajectories.
Oleynikova [10] presented a continuous-time trajectory optimization method for real-time
collision avoidance, which ran at a high rate to continuously recompute safe trajectories as
the robot gained information about its environment. Although [10] slightly relieved the
typical local minima by random optimization restarts, it still suffered from a relatively low
planning success rate. Usenko [1] represented the trajectories by using uniform B-splines,
which ensured that the trajectory was sufficiently smooth and simultaneously allowed
for efficient optimization. To increase the success rate of planning, Gao [11] found a high-
quality collision-free initial path as the front-end and improved the quality of trajectory
when kinodynamic constraints [1] were taken into account. The above work used ESDF
to obtain the gradient magnitude and direction needed for keeping a safe distance from
nearby obstacles; however, ESDF is expensive and costs a lot of computational resources
to achieve mostly useless global gradient information about the environment. Therefore,
faster planning speed and how to represent gradient information instead of ESDF is critical
to improving planning efficiency.

Zhou [3] presented an ESDF-Free gradient-based local planner. The planner compared
the colliding trajectory with a collision-free guiding path to formulate the collision cost in
the penalty function and generated gradient information to wrap the trajectory out of the
way of obstacles. After rebounding a few times around local obstacles, the trajectory was
absolutely safe in the free region; however, this method still had many disadvantages. On
the one hand, the incomplete gradient information generation strategy made the initial
trajectory need more optimization iterations to generate an executable trajectory, which
wastes a lot of planning time. On the other hand, the fitness cost term introduced to
optimize the infeasibility of the trajectory made the whole trajectory too conservative and
wastes the agility of the quadrotor. In addition, the fitness cost term changed the size of
the trajectory, which required repeated obstacle checks and optimizations for safety that
increased precious planning time.

In this paper, we propose a more well-established method to address the above prob-
lems. A higher-quality guide path is generated by the Hybrid-A* instead of A* algorithm,
considering the dynamic constraints of the quadrotor. The control points trapped in the
obstacles in the original trajectory are replaced by collision-free and dynamic guide path
points, thereby reducing the optimization pressure and effectively improving the planning
speed. In addition, the time span cost term is innovatively proposed. On the one hand, the
infeasibility of the trajectory is solved without compromising the trajectory’s aggression.
On the other hand, it brings the time span of the trajectory represented by the uniform
B-spline closer to the limit, which lifts the whole speed of the trajectory.

2.2. Aggressive Flight in Unknown Environments

Achieving onboard high-speed flight or generating a more aggressive trajectory re-
quires efficient planning speed and ultimate flight speed under feasibility conditions.

Specifically, a widely accepted idea is that the quadrotor can replan new trajectories
to avoid unexpected obstacles in a very short reaction time. The typical work represented
by Zhou [12] finds a locally optimal trajectory confined within a topologically equivalent
class by capturing a collection of distinct useful paths in 3D environments. Although
increasing the planning success rate and speed, it does not necessarily contain a satisfactory
solution for smooth and safe navigation, especially on the fast flight. Ref. [13] presents a
new idea to solve the problem of sudden obstacles that appear during the movement due
to the limitation of the field of view(FOV) and failure to replan. It introduces a perception-
aware planning strategy to observe the local environment and avoid unknown obstacles
in advance. The risk-aware trajectory refinement ensures that unknown obstacles which
may endanger the quadrotor can be observed earlier and avoided in time. However,
perception-aware planning causes the trajectory to become relatively conservative, making
the trajectory lengthy and the flight speed slower.
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Recent work [14] has demonstrated a stunning achievement of high-speed flight in an
unknown environment using a receding flight corridor. In particular, it generated the safe
receding horizon flight corridor rapidly by using a 3D Gaussian distribution sampler and
tested up to 13.8 m/s in an unknown environment. However, the Gaussian distribution
sampler method is tricky, and the empirical parameter settings make the method unsuitable
for any scenario, which means it has a non-negligible risk in corner cases. In addition,
the bottom line is that excellent real-world flight may depend more on the effectiveness
of costly, but fast, instant LiDAR map building, and the role of planning is relatively less
important in the realization of high-speed flight.

Ref. [15] proposes an innovative solution to solve autonomous fast flight in an un-
known environment. It argues that the traditional pipeline solution divides the implemen-
tation of autonomous flight into sensing, mapping, and planning, which leads to increased
processing latency and compounding of errors. Therefore, it presents an end-to-end ap-
proach that directly maps noisy sensory observations to collision-free trajectories and
furthermore, performs the sensorimotor mapping by a convolutional network. In the end,
it achieves zero-shot transfer from simulation to the real world. Unfortunately, although
it runs high-speed autonomous flight in a cluttered outdoor environment, instability due
to dependence on training data quality and size potentially limits the real application of
this work.

In this paper, we still stand for a traditional pipeline solution and focus on improving
the efficiency of the planning module compared to the classical gradient-based local plan-
ning method [3]. The speed of the whole trajectory will be improved at the limit by a fresh
span time cost term based on safety, smoothness, and feasibility.

3. System Overview

In this article, as shown in Figure 1, we follow a two-step trajectory planning frame-
work similar to [3], which plans an initial global polynomial trajectory in the front end and
optimized the local trajectories based on local environment information in the back end.
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In the front end, when the number of target points is unique, we use a one-shot
strategy to represent the global trajectory directly with a polynomial straight line (smoothly
changing velocity and constant acceleration) to ensure it is the shortest. When there are
several target points arriving in a certain order, we generate a minimum snap trajectory [6]
as the global trajectory to smoothly connect the target points. In the front end, the generated
global polynomial trajectory ignores the environmental information.

In the back end, we check the global trajectory collisions segment by segment only in
the local environment within the sensor range. A local guide path is searched by Hybird-A*
when collisions occur. We replace the control points in obstacles with responding guide
path points and generate collision avoidance gradient information, including magnitude
and direction. Trajectory optimization is divided into two stages. In the first stage, the
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initial trajectory is optimized for safety, smoothness, and feasibility to rapidly generate a
high-quality trajectory. The fresh time span cost term is added to continuously optimize the
previous trajectory. The shape and size of the trajectory represented by uniform B-splines
do not change with the time span. Therefore, a more aggressive trajectory is generated that
guarantees safety, smoothness, and feasibility.

4. Distance Gradient Information Generation
4.1. Control Point Replacement

The essence of the B-spline curve is a parametric polynomial obtained by fitting the
control points and knot span ∆tn. In the front-end, we have obtained a global polynomial
trajectory ignoring environment obstacles that connect the start and target points, which is
essentially a B-spline curve that satisfies the terminal constraint. Each segment is checked
in an iteration of whether in obstacle. When the collision occurs, a collision-free Hybrid A*
path is generated. Hybrid-A* algorithm [16] was first used to generate smooth paths for an
autonomous vehicle. Here we apply it to find a smooth but close to obstacles guide path
for replacing collision-free control points and generating high-quality distance gradient
information.

As shown in Figure 2, when several control points Qi are in obstacle, a Hybrid-A* path
will be generated as a guide collision-free path starting from the last control point that does
not enter the obstacle and ending at the first control point that leaves the obstacle. In [3], as
compared in Figure 3, when collisions occur, the guide path is generated by A* algorithm,
which generates low-quality gradients in an unsmooth shape and results in more iterations
for back-end optimization. This issue will be mentioned in detail in Section 4.2.
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After achieving the absolute collision-free guide path, we adopt a replacement strategy,
which replaces the corresponding guide path points with the original control points in the
obstacle according to the serial number.

Figure 4 shows the specific method for control point replacement. The guide points
are evenly divided according to the number of control points in the obstacle. Then corre-
sponding guide points replace them as the new correct sequence of control points.

The newly generated B-spline curve is already collision-free, but it is too close to the
obstacle, which is a higher threat to the safety of the quadrotor. Therefore, it is absolutely
necessary to use the distance gradient information to optimize the current trajectory and
improve its smoothness and clearance. We will present in the next section how to define
the gradient information from the refined new control points and the corresponding old
control points instead of using a pre-build ESDF map.
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4.2. Collision Avoidance Gradient Generation

We have gained the information about new refined control points and the correspond-
ing old control points in order, which can be seen as a pair of repulsive point sets. The old
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control points Qoldi
are considered as repulsion source, which generates a repulsive field

that only pushes outwards towards the corresponding new control points Qnewi , which is
inspired by the artificial potential field method proposed by Khatib [17].

The collision avoidance gradient for collision optimization contains the gradient
magnitude and direction. As shown in Figure 5, the Euclidean distance di of between
Qnewi and Qoldi

is estimated to express the gradient magnitude, and the vector vi is used to
indicate the gradient direction.
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Additional attention is required for a special case shown in Figure 6, which means the
obstacle is too thin to cover the control points of the initial global trajectory. In the thin
case, a guide Hybrid-A* path is generated in the same way as Section 4.1 mentioned. The
guide path points will be divided into three to take the middle two points as refined new
control points.
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As shown in Figure 7, after the initial definition of collision avoidance force, the
gradient direction is swapped to ensure that the new control points close to the obstacle are
pushed correctly away from the obstacle.

Compared to [3], which projects the gradients onto the colliding control points and
generates an estimated gradient with an A* guide path to wrap them out of obstacles, the
method we upgraded effectively increases planning speed. As shown in Figure 8, in the
original work [3], guide A* path points were used as the power source. The power attracted
the global trajectory to pull it out of the obstacle when the global path was trapped in the
obstacle, and then converted to repulsive force to push it away to a safe distance. This
process often takes several iterations, which include a shift in gradient direction that is
detrimental to the optimization. Therefore, we creatively used the Hybrid-A* algorithm
to find a dynamic guidance path and control points replacement strategy to optimize the
redefined and absolutely safe trajectory with higher-quality gradient information. The
planning speed was improved for more optimization-friendly gradient information and
fewer iterations. We verified the effectiveness of the method in our experiments, as shown
in Section 5.
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5. Time Span Optimization for Faster Flight

As mentioned earlier, current methods are overly conservative and waste the agile
nature of drones. Undoubtedly, we need to set the dynamic limits vmax, amax according to
the actual motion ability of the drone. A high-quality trajectory that can be executed realis-
tically must meet the dynamic feasibility, which requires that the speed and acceleration of
the entire trajectory do not exceed the limits vmax, amax set in advance. However, current
methods over-optimize the feasibility cost to generate a conservative trajectory which loses
the agility of the quadrotor.

Therefore, in this section, we divide trajectory optimization into two stages. In the first
stage, the initial trajectory is optimized for safety, smoothness, and feasibility. And a time
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span cost term is proposed to increase the speed of the entire trajectory under dynamic
limits to make it as close to the maximum speed vmax as possible.

5.1. Problem Formulation

A B-spline is a piecewise polynomial uniquely determined by its degree pb, a set
of Nc + 1 control points {Q0, Q1, · · · , QN}, and a knot vector [t0, t1, · · · , tM], in which
Qi ∈ R3, tm ∈ R, and M = Nc + pb + 1. A B-spline trajectory is parameterized by time t,
where t ∈ [tpb

, tM−pb ]. For a uniform B-spline, each knot ∆tm = tm+1 − tm has the same
value ∆t. This is the basic principle of the B-spline representing polynomial trajectories.

In our work, the trajectory is parameterized by a uniform B-spline curve, which
represents each knot is separated by the same time span. The problem formulation is based
on the classic quadrotor local planning framework [1], which divides the trajectory into
three categories of indicators for optimization.

5.2. First Optimization

The optimization problem in the first stage is formulated as follows:

f = λs fs + λc fc + λd fd (1)

where fs, fc fd are smoothness, collision, and feasibility costs. λs, λc λd are the weights for
each cost term.

(1) Smoothness cost

In previous work [2], the smoothness cost is formalized as the time integral over square
derivatives (acceleration, jerk, and snap) of the trajectory, which increases the complexity
of the solution. In the framework [1], only geometric information is considered, but the
time span is ignored. Therefore, we follow the smoothness cost designed by [3], which
considers the time span to generate higher-order information on the trajectory.

An elastic band cost function inspired by [18,19] is used to define the smoothness
cost fs:

fs =
Nc−1

∑
i=1
||Ai||22 +

Nc−2

∑
i=1
||Ji||22 (2)

Vi =
Qi+1 −Qi

∆t
, Ai =

Vi+1 −Vi
∆t

, Ji =
Ai+1 −Ai

∆t
(3)

where is the velocity Vi calculated by adjacent control points. The cost function consists
of the acceleration Ai and the jerk Ji between adjacent control points Qi−1, Qi, and Qi+1,
which captures the geometric information of the trajectory and carefully considers the time
span ∆t. Benefiting from the convex hull property, it is sufficient to reduce these derivatives
along the whole curve by minimizing the control points of higher-order derivatives of the
B-spline trajectory. A more smooth trajectory is obtained by minimizing fs, which is more
friendly to the execution of the trajectory.

(2) Collision cost

In [3], an unreasonable definition of gradient magnitude complicates the estimation of
avoidance force, in which the distance value used for cost calculation may be negative. So
in our work, as described in the previous section, the distance value is strictly limited to
the positive value range by the control point redefinition strategy, so the calculation of the
collision term is simplified. The Euclidean distance di between Qnewi and Qoldi

is estimated
to express the gradient magnitude.

Therefore, the collision cost function is formulated as:

fc =
Nc

∑
i=1

fc,i (4)
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fc,i =

{
0 (di ≥ ds)

(ds − di)
3 (0 ≤ di < ds)

(5)

where ds is the safe distance set in advance, and fc,i is the collision cost for each control point.
A twice continuously differentiable cost function is made to further facilitate optimization.

(3) Feasibility cost

As the quadrotor dynamics are differentially flat [6], we can ensure feasibility by
restricting the higher-order derivatives of the trajectory on every single dimension. And it’s
sufficient for constraining derivatives of the control points to constrain the whole trajectory
thanks to the convex hull property of the B-spline. We follow the method [3] to design the
feasibility cost, and the cost function is formulated as:

fd =
Nc

∑
i=1

λvF(Vi) +
Nc−1

∑
i=1

λaF(Ai) +
Nc−2

∑
i=1

λjF(Ji) (6)

where λv, λa, λj are weights for each term. F(·) is a twice continuously differentiable metric
function of higher-order derivatives of control points and is composed as follows:

F(·) = ∑
p=x,y,z

f
(
cp
)

(7)

where cp ∈ C ∈ {Vi, Ai, Ji}. And f
(
cp
)

is further designed as:

f (cr) =



a1c2
p + b1cp + c1

(
cp ≤ −cj

)(
−λcm − cp

)3 (
−cj < cp < −λcm

)
0

(
−λcm ≤ cp ≤ λcm

)(
cp − λcm

)3 (
λcm < cp < cj

)
a2c2

p + b2cp + c2
(
cp ≥ cj

)
(8)

where a1,b1,c1,a2,b2,c2 are the parameters set for the second-order continuity, cm is the limit
of derivative, and cj is the splitting points of the quadratic interval and the cubic interval.
λ is the flexible elastic coefficient ranging 0–1 to make the final results meet the constraints.

5.3. Time Span Second Optimization

As mentioned before, suffering from the conservative trajectory planning, the quadro-
tor can fly at low speed in the environment resulting in the waste of agility. Therefore,
in this section, we propose a fresh time span optimization cost term that innovatively
considers the time span ∆t into the secondary optimization.

Unlike Bezier curves, the value of ∆t in B-spline is not limited to [0, 1]. For a uniform
B-spline curve that has the same distance between two control points, expanding ∆t does
not change the spatial shape of the B-spline curve but influences the speed (velocity and
acceleration) of the whole trajectory, which shows in Figure 9.

Therefore, after the first optimization has determined the curve spatial property, the
trajectory is continued to be optimized for faster flight under the dynamic limit without
worrying about collisions due to the secondary optimization. In the previous section,
a smooth, safe, but conservative trajectory has been generated by the first optimization
which has ensured the specific position for each control point Qi. Based on this trajec-
tory, a time span cost term is designed to make the speed closer to the limit vmax for an
aggressive motion.



Drones 2023, 7, 192 11 of 20

Drones 2023, 7, 192 11 of 22 
 

( ) ( ) ( )
1 2

1 1 1

c c cN N N

d v i a i j i
i i i

f F F Fλ λ λ
− −

= = =
=  +  + V A J  (6)

where vλ , aλ , jλ  are weights for each term. ( )F   is a twice continuously differentia-
ble metric function of higher-order derivatives of control points and is composed as fol-
lows: 

( )
, ,

( ) p
p x y z

F f c
=

=   (7)

where { }, ,i i ipc ∈ ∈C V A J . And ( )pf c  is further designed as: 

( )

( )
( ) ( )

( )
( ) ( )

( )

2
1 1 1

3

3

2
2 2 2

0

p p p

p p

pm

j

m j m

r m

m

p

m j

j

p p

p p

a c b c c c c

c c c c c

f c c c c

c c c c c

a c b c c c c

λ λ

λ λ

λ λ

 + + ≤ −

 − − − < < −

= − ≤ ≤

 − < <

 + + ≥

 (8)

where 1a , 1b , 1c , 2a , 2b , 2c  are the parameters set for the second-order continuity, mc  

is the limit of derivative, and jc  is the splitting points of the quadratic interval and the 

cubic interval. λ  is the flexible elastic coefficient ranging 0–1 to make the final results 
meet the constraints. 

5.3. Time Span Second Optimization 
As mentioned before, suffering from the conservative trajectory planning, the quad-

rotor can fly at low speed in the environment resulting in the waste of agility. Therefore, 
in this section, we propose a fresh time span optimization cost term that innovatively con-
siders the time span tΔ  into the secondary optimization. 

Unlike Bezier curves, the value of tΔ  in B-spline is not limited to [0, 1]. For a uni-
form B-spline curve that has the same distance between two control points, expanding 
tΔ  does not change the spatial shape of the B-spline curve but influences the speed (ve-

locity and acceleration) of the whole trajectory, which shows in Figure 9. 

 
(a) 

Drones 2023, 7, 192 12 of 22 
 

 
(b) 

Figure 9. Speed performance with the different time span tΔ  in the third uniform B-spline. (a) 
case 1: tΔ  is conservative. (b) case 2: tΔ  is aggressive. 

Therefore, after the first optimization has determined the curve spatial property, the 
trajectory is continued to be optimized for faster flight under the dynamic limit without 
worrying about collisions due to the secondary optimization. In the previous section, a 
smooth, safe, but conservative trajectory has been generated by the first optimization 

which has ensured the specific position for each control point iQ . Based on this trajec-

tory, a time span cost term is designed to make the speed closer to the limit maxv  for an 
aggressive motion. 

Thanks to the fixed position of the control points after the first optimization, the min-

imum span time mint  can be calculated by the distance between two adjacent control 

points iQ , 1i+Q  and the limit velocity maxv : 

1min | | ( 1,2,..., 1)i i i N+Τ= − ∈ −Q Q  (9)

min max( ) ( , , )pt p x y z= Τ ∈  (10)

The time span cost function is formulated as: 

2
min( )t tf k t t= −  (11)

min,new min,oldpt k t=   (12)

tf  is used for the second stage optimization and the trajectory will be checked for 

feasibility. tk  is a gain factor. If there is a speed or acceleration beyond the limits maxv ,

maxa , an iteration of the secondary optimization will yield, which carefully increases the 

minimum span time mint  by a scale factor pk . Figure 10 shows the process of optimiza-
tion more clearly. 

Figure 9. Speed performance with the different time span ∆t in the third uniform B-spline. (a) case 1:
∆t is conservative. (b) case 2: ∆t is aggressive.

Thanks to the fixed position of the control points after the first optimization, the
minimum span time tmin can be calculated by the distance between two adjacent control
points Qi, Qi+1 and the limit velocity vmax:

T = min|Qi+1 −Qi| (i ∈ 1, 2, . . . , N − 1) (9)

tmin = max(Tp) (p ∈ x, y, z) (10)

The time span cost function is formulated as:

ft = kt(t− tmin)
2 (11)

tmin,new = kp· tmin,old (12)

ft is used for the second stage optimization and the trajectory will be checked for
feasibility. kt is a gain factor. If there is a speed or acceleration beyond the limits vmax,amax,
an iteration of the secondary optimization will yield, which carefully increases the minimum
span time tmin by a scale factor kp. Figure 10 shows the process of optimization more clearly.

In the first stage of optimization, the initialized global trajectory is rapidly optimized
to a safe trajectory that basically meets the flight requirements. After this, the second stage
continues to optimize the quality of the first stage trajectory (including the overall speed
and dynamically feasible improvement) at a negligible time cost in order to achieve a
faster generation of more aggressive trajectories compared to the classical gradient-based
method [3]. On the one hand, the creation of the time span optimization cost term simplifies
feasibility adaption problem that the trajectory does not strictly meet the feasibility after
the gradient optimization of the feasibility cost term, on the other hand, the speed of the
whole trajectory is reasonably improved within the allowable range, making the trajectory
more aggressive.
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However, the method [3], which is the classical ESDF-free gradient-based optimization
method and proposed an anisotropic curve fitting algorithm to adjust higher order deriva-
tives of the trajectory, has a more complicated optimization process shown in Figure 11.
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Figure 11. A more complicated optimization process in [3], which spent more time in the optimization
and generated more conservative trajectories through continuous iterations.

Fitness cost term can solve the problem of infeasible dynamics, but it also has other
disadvantages. As shown in Figure 12, firstly, the fitness cost term f f is optimized by
combining smoothness and feasibility cost term, which will change the shape and size
of the trajectory and may occur a bad new collision resulting in repeated optimization.
Secondly, the complicated optimization process increases the planning time and reduces
the real-time planning. Thirdly, repeated and conservative optimization leads to a more
lengthy trajectory, resulting in longer trajectory length and lower flight speed.
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6. Experiment result
6.1. Simulation and Analysis

We verified our work in simulation and compared it with the classical ESDF-free
local planning method Ego-Planner [3]. Simulation experiments were tested in three
5 × 20 × 3 m3 complex maps with different obstacle densities, as shown in Figure 13.
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Figure 13. The detail of simulation maps.

Two methods used almost identical parameters, as shown in Table 1, differing only in
the presence of weighting factors for different optimization terms. The FOVs of the sensors
in simulations were set as [80 × 60] deg with a maximum range of 4.5 m.

Table 1. Parameter setting in all simulation tests.

Parameter λs λc λd λf λt

Ours 1.0 0.8 0.1 \ 1.0
Ego [3] 1.0 0.8 0.1 0.2 \
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As shown in Figures 14–16, each test had the same start (−12,0,1) and endpoint (12,0,1).
The quadrotor was required to avoid obstacles with different densities during flight under
dynamic limits we set in advance. Planning time refers to the average time required by
the planner to generate a desired local trajectory, which reflects the lightness and planning
speed of the methods. Flight time, max flight velocity, and mean flight velocity reflects the
higher dimensional velocity information of the desired trajectory and the true speed in
execution, which measures the aggressiveness of the methods.

Through the comparison of three sets of simulations, the conclusion can be summed
up as follows: (1) relatively straight trajectories were generated by the method we proposed
compared to Ego, benefitting from a more flexible gradient information generation strategy
and time span cost term instead of repeating optimization. (2) As shown in Tables 2–4, the
performance (planning and flight speed) of our method was consistently better than Ego
under various conditions. (3) The more dense the environment with obstacles, the more
obvious were the advantages of our approach. (4) Ego failed to generate a trajectory with
conditions: 70 obstacles, vmax = 8 m/s, amax = 10 m/s2, while our method still generated a
safe and executable trajectory in such a harsh environment.
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limits. Our method generated completely straight trajectories with the premise of ensuring safety.
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Table 2. Performance in a low-density map.

Low Density

Obstacle
Number

30

Dynamic Limits
Setting

Planning Time
(ms) Flight Time (s) Max Flight

Velocity (m/s)
Mean Flight

Velocity (m/s)
Ours Ego Ours Ego Ours Ego Ours Ego

vmax = 4 m/s
amax = 6 m/s2 0.87 0.89 8.42 11.83 3.30 3.04 2.89 2.12

vmax = 6 m/s
amax = 8 m/s2 0.91 0.90 5.71 7.35 5.23 4.74 4.28 3.54

vmax = 8 m/s
amax = 10 m/s2 0.92 0.93 4.21 5.14 6.35 5.82 5.78 5.03

Table 3. Performance in a middle-density map.

Low Density

Obstacle
Number

50

Dynamic Limits
Setting

Planning Time
(ms) Flight Time (s) Max Flight

Velocity (m/s)
Mean Flight

Velocity (m/s)
Ours Ego Ours Ego Ours Ego Ours Ego

vmax = 4 m/s
amax = 6 m/s2 0.89 1.03 10.29 14.79 3.11 2.90 2.53 2.04

vmax = 6 m/s
amax = 8 m/s2 1.02 1.22 7.63 9.95 4.98 4.31 3.79 3.26

vmax = 8 m/s
amax = 10 m/s2 1.35 1.78 5.89 7.34 5.84 5.07 5.10 4.65

Table 4. Performance in a high-density map.

Low Density

Obstacle
Number

70

Dynamic Limits
Setting

Planning Time
(ms) Flight Time (s) Max Flight

Velocity (m/s)
Mean Flight

Velocity (m/s)
Ours Ego Ours Ego Ours Ego Ours Ego

vmax = 4 m/s
amax = 6 m/s2 1.89 2.09 16.44 20.99 2.96 2.71 2.05 1.87

vmax = 6 m/s
amax = 8 m/s2 2.57 2.78 10.91 15.60 4.33 4.12 3.22 2.90

vmax = 8 m/s
amax = 10 m/s2 4.37 \ 8.78 \ 5.78 \ 4.19 \

The reasons are analyzed why we can maintain relatively better performance in empty
and crowded environments:
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When the quadrotor is in a completely empty environment and there are no obstacles
around, the collision cost is always 0, but the cost of feasibility will decline if the speed of
the whole trajectory becomes smaller. That is why the quadrotor illogically slows down
in areas that are almost free of obstacles. Therefore, we proposed the time span cost to
ameliorate this unreasonable conservative planning and make the speed increase.

When the quadrotor is in a cluttered and complex environment, the repeated iterative
optimization of Ego allows the trajectory to avoid collisions safely and satisfy dynamic
feasibility but increases the planning time and makes the trajectory too conservative and
lengthy, as we mentioned earlier. However, our method retained the safe but unfeasible
trajectory after the initial optimization, and the time span optimization item was used for
re-optimization on this basis, which generated a more aggressive trajectory.

The reasons for the stability of the Speed-First are also discussed. First, compared
to the classical gradient-based methods, Speed-First can generate trajectories faster and
fewer iterations of optimization, which avoids the triggering of safety protection and
is the common protection mechanism that directly stops flight behavior due to avoiding
unavoidable collisions caused by untimely planning. Besides, the control point replacement
method, which uses the collision-free A* guide points to replace the original control points
in obstacles, guarantees the success rate of planning as long as there is a feasible space, even
if the trajectory is not so perfect (meaning that there is still room to improve the smoothness
as well as the feasibility).

6.2. Real-World Tests

To verify the effectiveness of our proposed method in the real world, we conducted
extensive real-world experiments in a cluttered outdoor scenario and compared it with
Ego [3].

In real-world experiments, a visual-inertial state estimator called VINS-Fusion [20],
which only needs a visual camera and the imu information of the flight controller, was used
to provide the necessary localization—a classic controller for quadrotors [6] to track the
trajectories. All experiments were completed by a DIY quadrotor platform. It should be
noted that the platform had a great influence on aggressive flight, especially the tracking
effect of the trajectory. Therefore, we upgraded our platform, becoming more compact and
more advantageous to eliminate the influence of other factors and highlight the effect of
planning. The hardware configuration of the platform is shown in Table 5, and the look
and performance in the real world of the compact platform are shown in Figure 17.

Table 5. Hardware configuration information.

Hardware Name

Autopilot CUAV V5+
Depth Camera RealSense D435i

Motor TMotor F60
ESC Hobbywing Xrotor

Onboard Computer Manifold 2C (i7–8th)

The real-world experiments were tested in a cluttered and messy forest shown in
Figure 18. In each experiment (both ours and Ego [3]), we required the quadrotor to reach
the end point set in advance, which is 30 m away from the start point. And the parameter
setting is also following Table 1.
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To verify our method for improving the whole trajectory speed in the real world, a
comparison test was conducted under the same dynamic limits vmax = 2 m/s, amax = 3 m/s2.
The performance of two planners is shown in Figure 19. The specific data are listed in
Table 6. In real-world experiments, our method obtained results similar to those of the
simulation, verifying the applicability of our approach. Under the same dynamic limits,
the method we proposed can generate more aggressive trajectories while satisfying safety
and feasibility. Besides, the planning speed and the overall trajectory speed are improved
compared with Ego.

Table 6. Performance in real-world tests.

Dynamic Limits Setting
Planning Time (ms) Flight Time (s) Max Flight Velocity

(m/s)
Mean Flight Velocity

(m/s)

Ours Ego Ours Ego Ours Ego Ours Ego

vmax = 2 m/s
amax = 3 m/s2 1.09 1.45 34.48 45.31 1.50 1.37 1.17 0.89
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The real executed trajectory (left: Ego Right: Ours) shown in the green line. (b) The comparison of 

Figure 19. The comparison of Ego and Ours in real-world performance. The overall trajectories and
local detail both show our method can generate more aggressive trajectories compared to Ego. (a) The
real executed trajectory (left: Ego Right: Ours) shown in the green line. (b) The comparison of detail
one (left: Ego Right: ours) in local planning. (c) The comparison of detail two (left: Ego Right: ours)
in local planning.

We conducted an extensive experiment to test the extreme flight performance in the
real world, which is unavoidably affected by platform hardware conditions, localization
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and control accuracy, and planner performance, etc. The dynamic limits vmax = 4 m/s,
amax = 6 m/s2 are set in the game. And The platform is able to reach the end point using our
method, but fail to accomplish the same mission with Ego. The performance of Speed-First
is shown in Figure 20.
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7. Conclusions

In this paper, we proposed an aggressive gradient-based local planner called Speed-
First.

Existing methods waste the agility of quadrotors for overly conservative planning. To
address the problem, Speed-First generates the gradient information more efficiently for
free collision, which replaces the control points in the obstacle with Hybrid-A* guide path
and generates more optimization-friendly distance gradient information. Besides, a novel
time span cost term is created to rapidly optimize the overall trajectory speed at the same
time as solving the unfeasibility problem.

Both simulations and real-world tests show that Speed-First can effectively improve
the planning speed and flight speed at the limits of dynamic and accomplish a more
aggressive autonomous flight.
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