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Abstract: In recent decades, scientific and technological developments have continued to increase in
speed, with researchers focusing not only on the innovation of single technologies but also on the
cross-fertilization of multidisciplinary technologies. Unmanned aerial vehicle (UAV) technology has
seen great progress in many aspects, such as geometric structure, flight characteristics, and navigation
control. The You Only Look Once (YOLO) algorithm was developed and has been refined over the
years to provide satisfactory performance for the real-time detection and classification of multiple
targets. In the context of technology cross-fusion becoming a new focus, researchers have proposed
YOLO-based UAV technology (YBUT) by integrating the above two technologies. This proposed
integration succeeds in strengthening the application of emerging technologies and expanding the
idea of the development of YOLO algorithms and drone technology. Therefore, this paper presents
the development history of YBUT with reviews of the practical applications of YBUT in engineering,
transportation, agriculture, automation, and other fields. The aim is to help new users to quickly
understand YBUT and to help researchers, consumers, and stakeholders to quickly understand
the research progress of the technology. The future of YBUT is also discussed to help explore the
application of this technology in new areas.

Keywords: YOLO; UAV; object detection; interdisciplinary; application

1. Introduction

As science and technology develop, new ways of living and working emerge, and new
technologies with higher value gradually replace old ones. The value of new technologies
is not only the innovation and development of the technology but whether the technology
is effective in improving productivity and making a contribution to human society, i.e., the
application of new technologies to change traditional ways of addressing existing problems
to improve social productivity. Today, interdisciplinary or multifield cooperation is a
trendy topic; that is, mature technologies in multiple fields are combined to become a
new technology, and the advantages of various technologies are retained to compensate
for the disadvantages. The integration of existing technologies in multiple fields can not
only quickly generate new methods and ideas to address existing problems but can also
greatly reduce resource consumption. Currently, unmanned aerial vehicles (UAVs) or
aerial robotics are in a period of rapid development [1], and target detection performance
based on the You Only Look Once (YOLO) algorithm [2] has reached a high level in
industry. The algorithm still needs to be modified and improved [3]. UAVs can carry a
variety of devices to accomplish different tasks. Examples of these tasks include spraying
liquid medicine [4], mapping [5], logistics transportation [6], disaster management [7],
aerial photography [8], and sowing fertilizer or seeds [9]. Object detection technology
based on the YOLO algorithm has been able to achieve human behavior analysis [10], face
mask recognition [11], medical diagnosis analysis [12], autonomous driving [13], traffic
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assessment [14], multitarget tracking [15], and robot vision [16]. However, UAVs face
complex scenarios or work with the need to maintain good data communication with
ground control terminals, so the innovation and development of UAV technology may be
limited by certain application environments. However, UAVs face complex scenarios or
work with the need to maintain good data communication with ground control terminals, so
the innovation and development of UAV technology may be limited by certain application
environments. Moreover, object detection technology based on the YOLO algorithm needs
to be deployed into high-performance processors and be used in conjunction with image or
video data, which places certain requirements on the scenarios where it is used. These two
technologies can be combined to create a new technology—YOLO-based UAV technology
(YBUT). UAVs provide more application scenarios for the YOLO algorithm, and the YOLO
algorithm can assist UAVs in completing more novel tasks. In this way, drone technology
and the YOLO algorithm can further facilitate people’s daily lives while contributing to the
productivity of their respective industries.

A UAV is often defined as an unmanned flying device that can either fly autonomously
according to a course or program established within the system or can be manually con-
trolled by the controller. UAVs can be classified into various types depending on various
parameters. In recent years, as a hot spot in the new round of global scientific and techno-
logical revolution and industrial revolution, UAVs have been able to replace most of the
tasks that used to be completed by manned aircraft. At the same time, as UAV technology
continues to mature, the number of UAVs in countries around the world is increasing every
year, and according to Global commercial drone annual sales and sales statistics [17], as
illustrated in Figure 1, there will be approximately 2,679,000 UAVs in the world by 2025,
with a market size worth approximately USD 5.3 billion. With such a large number of
UAVs worldwide, it may be possible to make UAVs more valuable if they can be used as
aerial platforms to deploy YOLO algorithms.
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Figure 1. Global commercial drone annual sales and sales statistics [17].

YOLO is a widely used deep learning algorithm, because it is a classification-/regression-
based object detection method, giving the algorithm its core strengths: a very simple structure,
small model size, and fast computational speed. After seven years of development since
the introduction of YOLO (as of February 2023), researchers released seven versions of the
YOLO algorithm [18–22]. After the YOLO algorithm was popularized, researchers and users
improved it for various applications due to its openness and ease of secondary develop-
ment, and various revisions were introduced, such as YOLODrone [23], YOLOv4_Drone [24],
VIT-YOLO [25], YOLO-RTUAV [26], YOLO-Neck [27], and YOLOv7-DeepSORT [28]. The
mechanism of the YOLO-based object detection algorithm is that the input image is resized
to the same size, and then the image is divided into a total of S × S network cells of equal



Drones 2023, 7, 190 3 of 29

size, and each individual network cell can detect objects within it. If the center of a detected
target falls into a network cell, that network cell will make a prediction about the target.
Each network cell may have N detection boxes, each of which not only calculates its own
position but also makes a prediction score. The score represents the likelihood that a
detection target is present in the predicted network cell. As there may be multiple boxes
in a network cell, YOLO will automatically select the highest-scoring target category for
prediction (see Figure 2).
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When UAVs are used for operations in various industries and when an operation
involves target identification and positioning, manual operation is often required to confirm
the goal location and operation location through real-time images transmitted by UAV
cameras, such as transport UAVs for precise parcel delivery. The process is tedious and
cumbersome and requires a high level of UAV handling skills, which can easily lead to
accidents and financial losses. Although YOLO-based target detection technology emerged
late, it has been continuously improved and developed by researchers and already has a
high accuracy rate in the fields of object detection and image recognition; the detection
speed and accuracy have reached the forefront of the industry while playing an important
role in the application of target recognition in UAV aerial images [29]. Khang et al. [30]
conducted experiments on the VisDrone2019 dataset containing 96 videos and 39,988
annotated frames and evaluated deep learning detectors with FPS and mAP as evaluation
metrics, including Faster R-CNN, RFCN, SNIPER, YOLO, RetinaNet, and CenterNet.
Ammar et al. [31] evaluated the performance of convolutional neural network models, such
as Faster R-CNN, YOLOv3, YOLOv4, and EfficientDet, using IoU, precision, recall, F1, AP,
and mAP as evaluation metrics. The experimental results showed that YOLO is ideal for
real-time target detection applications. If the UAV is equipped with an embedded processor
deploying the YOLO algorithm, object detection recognition can be realized on real-time
footage from the UAV camera, turning the two steps of UAV acquisition and computer
detection into simultaneous UAV acquisition and detection, which greatly saves operational
time and improves operational efficiency. The improvement in the level of autonomous
target recognition by drones can strongly promote the automation or unmanned operation
of drones in most industries.

Over the past few years, YBUT has become a popular research area of interest, but the
application scenarios and impact of the technology have yet to be enhanced; a summary
overview of the recent state of the application in this technology area is lacking. This
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paper, therefore, presents the history of YBUT and provides an overview of case studies
of the application of YBUT in several industry sectors, intending to provide researchers,
beginners, and consumers with a better understanding of the field, as well as a reference
for the research and application of the technology in new areas. Here, we also discuss the
direction of the technology and provide an outlook on its application.

2. Survey Methodology

In this section, we explain the methodology and the idea behind the selection of the
papers studied and the main areas of application of YBUT. To screen the literature efficiently
and quickly for papers within the scope of this overview, a clear and simple screening
process was identified for the published literature, and its methodology is explained,
together with an analysis of the main research directions of interest in international and
Chinese journals.

2.1. Screening Methods for Research Papers Related to YBUT

To search for high-impact research/papers on aerial robots or UAVs that use deep
learning YOLO models/algorithms, many of the keywords come from top journals and
conferences, including the Web of Science Core Collection, KCI (Korean Journal Database),
MEDLINE®, SciELO Citation Index, and China National Knowledge Infrastructure indexed
journals, among others. The collected keywords were grouped into A1, A2, A3, and A4
groups and searched in various search engines; then, the results were then filtered for the
next step. The keyword groupings used and the detailed search method for the articles are
shown in Figure 3.
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Figure 3. Literature search methods.

With the Web of Science search engine as an example, after searching for the above
keywords, 243 articles in 41 research fields were collected as of February 2023, containing
the types of papers, conferences, revisions, letters, etc., with the specific subject directions
shown in Table 1.

Based on the applicability of the filtered articles, we did not consider multiple topics,
such as revisions and letters. The articles were also rigorously reviewed for content to
remove articles that did not contribute to the topic of this research review, with a focus
on checking the image data within the article and the dataset used. At the same time,
the articles were verified and analyzed for algorithmic improvements and innovations,
and some articles were selected that were progressive or identified as implementable for
the development of the relevant industry. Finally, the introduction, discussion, summary,
and outlook of the articles, after the screening process was completed, were checked and
categorized. Each step of the methodology used in the screening process of the required
articles is shown in Figure 4.



Drones 2023, 7, 190 5 of 29

Table 1. Specific subject directions of the screened articles.

No. Research Fields No. Research Fields No. Research Fields No. Research Fields

1 Engineering 12 Transportation 23 Plant Sciences 34 Architecture
2 Computer Science 13 Optics 24 Forestry 35 Behavioral Sciences

3 Automation Control
Systems 14 Physical Sciences

Other Topics 25 Physical Geography 36 Biodiversity
Conservation

4 Communication 15 Geology 26 Spectroscopy 37 Geography

5 Instruments
Instrumentation 16 Environmental

Sciences Ecology 27 Geochemistry
Geophysics 38 Neurosciences

Neurology
6 Robotics 17 Energy Fuels 28 Materials Science 39 Parasitology

7 Business Economics 18 Construction Building
Technology 29 Operations Research

Management Science 40
Radiology Nuclear
Medicine Medical

Imaging
8 Mathematics 19 Agriculture 30 Zoology 41 Mechanics

9
Imaging Science

Photographic
Technology

20
Mathematical

Computational
Biology

31 Science Technology
Other Topics

10 Telecommunications 21 Physics 32 Remote Sensing
11 Chemistry 22 Acoustics 33 Fisheries
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2.2. Research Topics Utilizing YBUT

Through the method described above, the search results were analyzed by using both
English and Chinese search engines, such as Web of Science and China National Knowledge
Infrastructure, to obtain the main research themes of English and Chinese journals in the
relevant fields. Computer vision technology has developed a great variety of algorithms to
date, among which the YOLO algorithm was proposed in 2016 and then first applied in
2017 by Jiang et al. [32], who combined the YOLO algorithm with UAVs. Since then, the
YOLO algorithm and UAV fusion technology have been continuously developed, and there
has been a surge in related research results or applications. The technology has also moved
from an exploratory experiment to an academic research hotspot (see Figure 5).
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Based on our survey of YBUT application areas, the information for popular topics in
this field in English journals is summarized in a pie chart, as shown in the survey results
in Figure 6. As seen from the pie chart, the popular topics are mainly in the industries of
technical studies, engineering, and transportation, and the number of published papers
or conference literature represents the interest of researchers. We also surveyed Chinese
journals on popular topics in this area and found that they focus more on the technical
studies, engineering, and automation sectors. As UAV technology and YOLO algorithms
continue to evolve, this technology is beginning to be explored in most areas, and in a
few areas, there have been some successes. The development and research of YBUT have
been hot topics in top journals and conferences, and now the practical application of the
technology is gradually attracting their interest.
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3. YBUT Development

YBUT advances without the support of high-performance computer processors. UAVs
have moved from being operated manually by remote control to now being controlled
automatically by computers, and image recognition has moved from being run by computer
systems to now being run by onboard embedded systems for real-time detection and
recognition. Each of these technological advances has taken the application of technology
to a new level in some areas.

3.1. Early Development of YBUT

At the beginning of the research on YBUT, the technology was proposed because of
a technological fusion between UAV technology and YOLO algorithms in the context of
a trend towards cross-disciplinary development. Among other things, UAV technology
research began in the 1920s and has been developed, to date, with successful applications
in agriculture, surveillance, monitoring, traffic construction, system transportation, system
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inspection, etc. The YOLO algorithm was proposed in 2016 [2], and after several improve-
ments, it has reached the forefront of the object recognition field in terms of detection speed,
detection accuracy, and recognition classification.

The application of YBUT in real production operations started in 2017. In the early
stages of the YBUT application, the main working mechanism was image or video data
acquisition by UAVs, followed by object detection, identification, and classification by
computers running YOLO-based object detection algorithms. To explore methods to detect
vehicles from UAV-captured images for application in traffic monitoring and management,
and as deep learning algorithms have shown significant advantages in target detection,
researchers have tried to apply YOLO-based object detection algorithms to vehicle detec-
tion in UAV images. Jiang et al. [32] constructed a multisource data acquisition system by
integrating a thermal infrared imaging sensor and a visible-light imaging sensor on a UAV,
corrected and aligned the images through feature point extraction and single response
matrix methods, and then performed image fusion on the multisource data. Finally, they uti-
lized a deep learning YOLO algorithm for data training and vehicle detection (see Figure 7).
The experimental results found that the inclusion of a thermal infrared image dataset could
improve the accuracy of vehicle detection and verified that the YOLO framework is an ad-
vanced and effective framework for real-time target detection. The first attempt to combine
and apply the YOLO algorithm with UAV technology by Jiang et al. [32] demonstrated
the usability of YOLO-based UAV technology. Although the detection performance of
the early YOLOv1 algorithm was not very good, the experimental results were relatively
satisfactory as the first exploration of the technology and the innovative incorporation of
thermal infrared image data.
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Based on this study, Xu et al. [33] proposed an improved algorithm for small vehi-
cle detection based on YOLOv2, whose detection structure model is shown in Figure 8.
Compared with the YOLOv2 model structure, the algorithm adds an additional feature
layer that can reach 1/32 of the input image in size, making the algorithm more adept
at detecting small targets and having higher localization accuracy than YOLOv2. This
research has greatly contributed to researchers’ understanding of YBUT and has also in-
spired researchers to make targeted improvements to the YOLO algorithm structure when
carrying out applications in this field. Since then, Ruan et al. [34] and Yang et al. [35] have
further explored the application of YBUT in other fields.
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In addition, Ruan et al. [34] attempted to use a deep learning and vision-based drogue
detection and localization method to address the accurate detection and localization of
fog droplets for autonomous aerial refueling of UAVs in complex environments. They
used the trained YOLO algorithm for cone trace detection, the least squares ellipse fit to
determine the long semiaxis of the ellipse after determining the fiducial location, and,
finally, a monocular vision camera for vertebral drogue localization (see Figure 9). The
simulation experimental results show that the method can not only correctly identify cones
in complex environments but also accurately locate cones in a range of 2.5–45 m, indicating
that the YOLO method has good results for target object detection and localization in
various complex environments. Yang et al. [35] investigated a method to achieve real-time
pedestrian detection and tracking on a mobile platform with multiple disturbances; they
attempted to use a UAV hovering in the air for data acquisition of special targets while
using a ground station deployed with YOLOv2 to accept video streams from the UAV for
analysis and detection. The results of outdoor pedestrian detection experiments showed
the robustness of the method when the brightness varied and pedestrians continued to
interfere, demonstrating that this is a stable method for exceptional pedestrian tracking
on UAV platforms. Most of these early studies explored simple applications of the fusion
of the two technologies due to the lack of maturity of the technology fusion application,
but the information gained from the research is of greater reference value for subsequent
research on YBUT. An increasing number of researchers are focusing on and exploring
the field of YOLO-based UAVs, continuing to drive progress in the development of the
field, and a new generation of YBUT has emerged as the performance of high-performance
computer processors increases while the size of the hardware decreases.
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3.2. YBUT Develops by Leaps and Bounds

As YBUT continues to evolve, a new generation has emerged in which the UAV is
equipped with a high-performance processor rich in computing resources, within which
YOLO-based object detection algorithms are deployed, allowing the processor to de-
tect, to identify, and to classify mission objects in real time as the UAV collects data.
Zhang et al. [36], to explore the feasibility of a new generation of technology, embedded
the YOLOv3 algorithm into the resource-limited NVIDIA Jason TX1 platform environment
(see Figure 10) and had the UAV carry the embedded platform for real-time pedestrian
detection experiments. The experimental results demonstrated the feasibility of imple-
menting YOLO-based real-time target detection on a resource-limited mobile platform and
provided a reference for the development of next-generation YBUT. Alam et al. [37], to
alleviate the computational pressure on the onboard embedded processor of the UAVs and
to enhance the practicality of YBUT, proposed a cost-effective aerial surveillance system that
reserves the limited Tiny-YOLO computational requirements on the onboard embedded
processor Movidius VPU, shifts the large Tiny-YOLO computational tasks to the cloud, and
maintains minimal communication between the UAV and the cloud. Experimental results
showed that the system is six-times faster in target detection processing at frames per
second compared to the speed of other state-of-the-art approaches, while the application of
airborne-embedded processor technology reduces end-to-end latency and network resource
consumption (see Figure 11). Similar research was conducted by Dimithe et al. [38]. The
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new generation of YBUT brings the YOLO algorithm and drone technology closer together.
Although the new generation of YBUT does not show higher performance than previous
technologies due to the limited computational resources of the embedded processor on
board, the advantages of the new generation of YBUT were demonstrated with practical
results by Zhang et al. [36]. It is sufficient to show that the future development of YBUT
will tend towards a high degree of integration of YOLO algorithms with UAV technology.
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Based on this research, Cao et al. [39] proposed a target detection and tracking method
based on the YOLO algorithm and the PID algorithm by using a new generation of high-
performance embedded processor, NVIDIA Jason TX2, in combination with the pixhawk4
flight control processor. The PID algorithm performs UAV flight control, and the YOLO
algorithm is used to identify objects, to extract pixel coordinates and then to convert the
pixel coordinates to actual coordinates, where pixel coordinates were the coordinates of
the target object relative to the camera image. The actual coordinates were the relative
coordinates of the target in a spatial coordinate system constructed with the camera lens as
the coordinate origin. Experimental results showed that the method can effectively detect
flight targets and perform real-time tracking tasks. Doukhi et al. [40] used a UAV equipped
with an Nvidia Jetson TX2 high-performance embedded processor and a PID controller.
Then, they deployed the YOLOv3 algorithm in the embedded processor to intuitively guide
the UAV to track the detected target by using the YOLO-based target detection algorithm,
while the PID controller was used to control the UAV flight. Experimental results showed
that the proposed method successfully achieves a visual SLAM for localization and UAV
tracking flight through the fisheye camera only without external positioning sensors or the
introduction of GPS signals (see Figure 12). Afifi et al. [41] proposed a robust framework
for multiscene pedestrian detection, which uses YOLO-v3 object detection as the backbone
detector (see Figure 13) and runs on the Nvidia Jetson TX2 embedded processor onboard
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the UAV. Experimental results from multiple scenarios of outdoor pedestrian detection
showed that the proposed detection framework showed better performance in terms
of mAP and FPS, as the computational resources of the embedded processor increase
compared to the YOLOv3 algorithm. To facilitate the development of a new generation
of YBUT, Zhao et al. [42] improved YOLOv3-tiny, resulting in an 86.1% decrease in the
model size, a 19.2% increase in AP50, and a 2.96-times faster detection speed than YOLOv3.
The experimental results demonstrated that the improved algorithm is more suitable for
low-end performance embedded processors in UAV target detection applications.
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Figure 12. Software architecture for deep-learning-based motion control [40]. The red circles in the
diagram represent the input RGB images in the YOLOv3 algorithm, the orange circles represent the
calculation process of the YOLOv3 algorithm, and the blue circles represent the target and bounding
box data detected by the YOLOv3 algorithm.
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Although the new generation of YBUTs can simplify the operational steps in applica-
tions, can improve operational integrity, and can increase the adaptability of technology
applications, it is still difficult to obtain satisfactory performance for complex applications
based on the limited computing power of existing embedded processors. At the same time,
high-performance embedded processors have been slow in development and may not be
able to match the computing performance of high-performance computer processors for
some time. Therefore, most researchers prefer applications that take the form of a UAV
collecting image or video data and a high-performance computer deploying YOLO for ob-
ject detection [43]. Regardless of which of the two approaches researchers take, each study
and application drives YBUT research forwards so that YBUT continues to be understood,
accepted, and used by researchers in other fields.

4. Practical Applications of YBUT in Several Fields

In recent years, UAV load capacity, as one of the key points of UAV technology devel-
opment, has achieved greater results, which provides the basis for carrying professional
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equipment embedded with YOLO algorithms for object identification. The YOLO algorithm
has been very widely used in various fields for object identification detection, while the
method of carrying embedded processors in UAVs for object identification detection in the
air has only just started to become popular. With the development of UAV technology and
advances in algorithm performance, YBUT applications are expected to spread widely in
life and in production in the coming years. Examples of YBUT applications in engineering,
transportation, agriculture, automation, and other fields are outlined below, and these
application methods or application approaches are discussed.

4.1. Related Applications in the Field of Engineering

Engineering is the main activity of everyday production and an important way of
generating economic value. Amongst engineering operations, manual operations are both
an important way of increasing productivity and a hindrance to it. Highly efficient large-
scale manual operations in engineering are bound to produce higher production values,
but there are also problems with overall production being affected by manual errors. With
the advent of the industrial age, large-scale machine production has gradually replaced
manual production, resulting in an exponential increase in output and a gradual reduction
in costs. However, certain special jobs still need to adhere to manual work, such as checking
power components of transmission lines and monitoring industrial instrumentation data.
Although these jobs are not very difficult, the work is tedious, and it is very easy for staff to
become fatigued and negligent, resulting in serious consequences. With the progress of
UAV technology and the YOLO algorithm, some problems in engineering can be addressed
by using a machine instead of manual labor or manual operation of the machine, which
can alleviate the labor pressure on the staff to a considerable extent.

In engineering applications, YBUT has been successfully used and can, to a certain
extent, replace people in some operations. The more mature research fields in which YBUT
has been applied are transmission line detection [44], building surface detection [45], mov-
ing target tracking [46], gauge display reading [47], photovoltaic module detection [48], and
building identification and classification [49]. According to the current survey, YBUT appli-
cation research in the engineering field, researchers prefer the direction of transmission line
detection. Objects, such as power line poles [50], insulators [51], electrical components [52],
distribution line poles [53], transmission towers [54], bird nests [55], and breakers [56], can
be accurately identified, classified, and located in complex environments. For example,
Bao et al. [57] proposed an end-to-end parallel mixed attention detection YOLO network
(PMA-YOLO) by collecting transmission line vibration damper data through UAVs and
then creating a dataset to train and test the model; the results showed that the model can
detect abnormal vibration dampers with an accuracy of 93.8% (see Figure 14). The success-
ful detection and classification of various equipment and facilities in these transmission
lines lay the technical basis for the construction of future intelligent power systems.
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Recently, Alsanad et al. [58] proposed an improved YOLOv3 algorithm for small
UAV detection in low-altitude airspace; experiments showed that the disclosed improved
model of the algorithm can effectively detect low-altitude UAVs in complex environments
(see Figure 15) and can be successfully applied to the anti-drone research field to manage
low-altitude airspace UAVs. The proposed method yielded a further enhancement in the
low-altitude small-UAV detection performance of YBUT based on previous studies [59–62].
Other information regarding YBUT applications in the engineering field is shown in Table 2.
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Table 2. Overview of papers that explicitly address YBUT in engineering.

YOLO
Models Reference Object Metric Paper Type Sensors Purpose

YOLOv2 Sousa et al. (2022) [63] Ceramic
detachment

Precision 99%,
Recall 98% Journal Cameras Building surface inspection

YOLOv3

Wang et al. (2019) [64] Small objects Accuracy 85% Conference paper Cameras Algorithmic research

Han et al. (2020) [65] Insulators Precision 92.1%,
Recall 92.2% Journal Cameras Transmission line inspection

Yan et al. (2021) [66] Electrical
components N/A Conference paper Cameras Transmission line inspection

Liu et al. (2021) [67] Insulators Precision 94%,
Recall 96% Journal Cameras Transmission line inspection

Kumar et al. (2021) [68] Concrete damage Accuracy 94.24% Journal Cameras Building surface inspection

Tu et al. (2021) [69] Power towers
and Insulators Accuracy 88% Journal Cameras Transmission line inspection

Ding Lu et al. (2021) [70] Holes and bolts N/A Journal Cameras Aerial manipulation
platform

Yang et al. (2022) [71] Insulators mAP 94% Journal Cameras Transmission line inspection

YOLOv4 Kim-Phuong et al.
(2021) [72] UAVs Accuracy 87.37% Conference paper Cameras Moving target tracking

YOLOv5 Wang et al. (2021) [73] Small objects mAP 81.1% Conference paper Cameras Algorithmic research
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YBUT is of great value to the engineering field and the productivity of society. Al-
though there are still more engineering problems waiting to be resolved and more tradi-
tional manual methods waiting to be improved, YOLO algorithm object detection continues
to become more accurate and faster; UAVs are becoming more convenient and safer, and if
YBUT can continue to be used to develop innovations in the engineering field, then YBUT
can create more value in the engineering field.

4.2. Related Applications in the Field of Transportation

With the expansion of human space and the extension of people’s physical movement,
the dependence on transport for daily travel is increasing. This has led to a dramatic
increase in the size of roads and the number of vehicles over the last few decades. When
there are many roads and many means of transport, their management becomes very
important. The legislature has set up various traffic regulations to limit their use to ensure a
stable order in life, but monitoring their compliance accurately and effectively is a problem
that persists. Although there are cameras all over the streets and alleys, this does not fully
detect all violations of the law and does not impose penalties.

To further manage and constrain the various modes of transportation in life, sev-
eral attempts have been made in the field of transportation with YBUT. For example,
Feng et al. [74] proposed a YOLOv3-based method for UAV detection (see Figure 16).
Omar et al. [75] proposed an aerial image vehicle detection method based on the YOLOv4
algorithm (see Figure 17), and Liu et al. [76] proposed a method for the automatic detection
and tracking of vehicles in an urban environment by UAVs based on the YOLOv4 and
DeepSORT algorithms. These studies have yielded excellent results in motorized and non-
motorized vehicle recognition and classification tasks based on datasets of air traffic images
and have also enabled the automatic detection and tracking of urban vehicles. The accurate
identification and classification of motor vehicles and non-motorized vehicles allows for
accurate restraint of their behavior according to road management rules in intelligent traffic
management, while the automatic detection and tracking of vehicles can provide assistance
in the effective punishment of violations. The fundamental applied research on YBUT in
urban traffic further accelerates the intelligent management of urban traffic and contributes
to the creation of a civilized city.
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Figure 17. (a) UAV acquisition images, (b) UAV image detection results [75].

Both urban traffic management applications and urban road management are im-
portant directions for the application of YBUT technology. Silva et al. [77] designed a
distributed UAV platform deploying YOLOv4 to detect road damage (see Figure 18).
Zhao et al. [78] proposed a YOLOv3-based algorithm for UAV highway center mark de-
tection, YOLO-Highway (see Figure 19). Recently, Ma et al. [79] proposed a new method
for road damage detection based on YBUT, which experimentally showed better perfor-
mance than previous similar studies and further promoted the application of road damage
detection technology in urban road management. The intelligent management of urban
traffic is not only the management of motor vehicles and non-motor vehicles but also the
management of urban roads. The widespread application of YBUT in the field of traffic
greatly promotes the process of intelligent management and has great significance for the
convenience of future residents’ lives. The expansion of the application of YBUT in urban
road management is another step forward in the promotion of intelligent urban traffic
management. Other information regarding YBUT applications in the transportation sector
is shown in Table 3.
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Table 3. Overview of papers that explicitly address YBUT in transportation.

YOLO
Models Reference Object Metric Paper Type Sensors Purpose

YOLOv2
Kim et al. (2019) [80] Road cracks mAP 33% Journal Cameras Road safety inspection

Sharma et al. (2022) [81] Railway tracks
Precision 74%,
Accuracy 85%,

mAP 70.7%
Journal Cameras Road safety inspection

YOLOv3

Krump et al. (2019) [82] Vehicles mAP 64.4% Conference
paper Cameras Algorithmic research

Luo et al. (2020) [83] Vehicles mAP 97.49% Journal Cameras Algorithmic research

Hassan et al. (2020) [84] Road cracks Accuracy 92%,
mAP 90%

Conference
paper Cameras Road safety inspection

Chung et al. (2020) [85] Vehicles mAP 35.08% Conference
paper Cameras Algorithmic research

Li et al. (2021) [86] Vehicles N/A Journal Cameras Traffic Management

Chen et al. (2021) [87] Vehicles mAP 50.05% Journal Cameras Vehicle tracking and
speed estimation

Rampriya et al. (2022) [88] Obstacles on the
railway track

Precision 70.68%,
Accuracy 70.83%,

Recall 73.64%
Journal Cameras Road safety inspection

Gupta et al. (2022) [89] Military vehicles N/A Journal Cameras
Military vehicle
detection and
classification

YOLOv4

Golyak et al. (2020) [90] Vehicles N/A Conference
paper

Cameras,
Thermal imager

Detection of
unmanned vehicles

Emiyah et al. (2021) [91] Vehicles N/A Conference
paper Cameras Vehicle detection

and counting
Luo et al. (2022) [92] Vehicles mAP 71.97% Journal Cameras Algorithmic research

YOLOv5

Feng and Yi (2022) [93] Vehicles mAP 89.74% Journal Cameras Traffic Management

Chen et al. (2022) [94] Vehicles
Precision 91.9%,

Recall 82.5%,
mAP 89.6%

Journal Cameras Traffic Management

Luo et al. (2022) [95] Vehicles mAP 85.35% Journal Cameras Algorithmic research

The above shows that researchers have made considerable research progress in this
area and demonstrates the great potential of YOLO-based UAV application technology in
the transport sector. With the support of this technology, not only can the cost of traffic
video acquisition and processing be significantly reduced, but the spatial flexibility of traffic
supervision is also enhanced. Although fewer researchers have experimented in this area,
it is unlikely that the application of this technology is limited to scenarios, such as vehicle
inspection and road detection; there must exist many more applications that are more
beneficial to people’s everyday lives.

4.3. Related Applications in the Field of Agriculture

In agriculture, there are often situations where failure to detect early symptoms of pests
and diseases can lead to major pest and disease disasters and severe economic losses. When
preventing or treating pests and diseases, there may also be excessive use of pesticides that
can lead to environmental pollution and reduced crop yields. Wild vegetables, which are
not commonly encountered every day, are often found in sites with lush vegetation, are less
productive but have high nutritional value, and finding them has always been a serious
challenge. We can use drones to perform some of the agricultural work and use the YOLO
algorithm to assist in this process, which can be much more efficient and save time.

In this area of agriculture, many tricky jobs already have new solutions based on YBUT.
With the continuous development and extension of YBUT, it is now possible to detect differ-
ent targets and features among large plant species, such as in dead tree detection [96], pine
wilt nematode disease detection [97–99] (see Figure 20), pine wilt detection [100], oil palm
tree fruit detection [101], and other tasks. Additionally, YBUT can be applied in analyses
involving small plants, such as in weed detection around peas and strawberries [102] (see
Figure 21), field wheat phenotype monitoring [103], and tomato germinator detection [104].
Moving targets, such as animals, can also be detected, classified, and counted with high
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accuracy [105] (see Figure 22). Other information on YBUT applications in the agricultural
sector is given in Table 4.
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the MobileNetv2-YOLOv4 algorithm for diseased trees detection of the region [97].
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Figure 22. Detection counts of reindeer and sika deer by using the YOLOv5s improved model [105].

In this section, we provide an overview of the applications of YBUT in agriculture, and
these exploratory applications point the way for expanding YOLO-based UAV applications
in agriculture. Although the technology is still at the beginning stage in agriculture and
many issues have not yet been resolved, such as dataset collection and sharing and stable
YOLO algorithms that are more suitable for applications, we believe that YBUT can aid
in the development of smart agriculture and has a broad scope of development in the
agricultural field.



Drones 2023, 7, 190 17 of 29

Table 4. Overview of papers that explicitly address YBUT in agriculture.

YOLO
Models Reference Object Metric Paper Type Sensors Purpose

YOLOv3

Priya et al. (2021) [106] Cattle N/A Conference
paper Cameras Livestock

management

Ulhaq et al. (2021) [107] Animals mAP 87.1% Journal Thermal
imager Animal management

Petso et al. (2021) [108] Animals F1 96% Journal Cameras Wildlife monitoring
Guzel et al. (2021) [109] Wild mustard Precision 45–99% Journal Cameras Crop protection

Hashim et al. (2021) [110] Vegetation Accuracy 84% Journal Multispectral
camera

Hybrid Vegetation
Detection

YOLOv5

Idrissi et al. (2022) [111]

Burrow, Deadwood,
Pine, Grass, Oak,

Wood, Fire,
Pedestrian

mAP 44.3% Journal Cameras Evaluating the Forest
Ecosystem

Jemaa et al. (2022) [112] Orchard tree Precision 91% Conference
paper Cameras Orchard tree

management

dos Santos et al. (2022) [113] Leaf-cutting ants Accuracy 98.45% Journal Cameras Optimizing the use of
pesticides

Puliti and Astrup (2022) [114] Tree damage Precision 76%,
Recall 78% Journal Cameras Evaluating the Forest

Ecosystem

4.4. Related Applications in the Field of Automation

The production method of the future is automated production with machines com-
pletely replacing manual labor. In everyday production, most operations require human
control of the machines, while some of the more technologically advanced production
operations have already been automated with machines replacing humans. In operations
where staff are involved in production, their main task is to control the machine, i.e., to
adjust the machine’s working status according to the real-time operational situation. The
combination of computer technology, which can now make decisions instead of humans,
and object detection technology based on the YOLO algorithm, which can detect the status
of the operation in real time and can provide feedback, can replace staff control of the machine
to a certain extent. If both technologies are applied to drone platforms, it may be possible to
reduce the labor pressure for workers and can increase the productivity of some industries.

To automate the use of YBUT in various applications, numerous researchers have
developed different supporting technologies. After many studies, the technology for the
detection, tracking, and avoidance of specific targets has matured and is now largely
automated [115–118]. Notably, YBUT has been effectively used for the detection and
localization of pedestrians [119–123]. Moreover, with an increase in unmanned mobility
concepts, certain applications have been rapidly automated. Kraft et al. [124] proposed
a YOLOv4-based method for locating litter in parks by using drones. The experimental
results showed that the drones can detect litter and can collect litter location data in a
fixed area while marking the litter location on a map for sweepers to see for easy cleaning
(see Figure 23). In the future, the system can also work together with other equipment to
locate and automatically sweep up litter, completely reducing the workload of sweepers.
Liao et al. [125] proposed a UAV-based marine litter detection system that uses a UAV with
an improved YOLO algorithm for marine litter detection; their system transmits the results
to a ground-based monitoring platform via the internet to assist government agencies
in implementing management plans (see Figure 24). Other information regarding YBUT
applications in the automation sector is shown in Table 5.
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The successful application of YBUT in the field of automation demonstrates a viable
method for achieving an unmanned and automated future. The research information
obtained from existing exploratory practical applications provides a credible reference for
reducing the pressure on human labor and increasing existing productivity levels in the
future. In the coming period, the research focus of YBUT in the engineering field should be
on expanding the types of operations to which the technology can be applied, developing
specialist drones, developing high-performance YOLO algorithms suitable for embedded
environments, and developing visual and convenient control systems.

Table 5. Overview of papers that explicitly address YBUT in automation.

YOLO
Models Reference Object Metric Paper Type Sensors Purpose

YOLOv3

Liu et al. (2020) [126] Small objects mAP 72.54% Journal Cameras Small object
detection

Wang et al. (2020) [127] UAVs N/A Journal Cameras
Airport obstacle-free

zone monitoring
UAV system

YOLOv4 Kong et al. (2022) [128] Pedestrian mAP 39.32% Journal Cameras Pedestrian Detection
and Counting

YOLOv5 Maharjan et al. (2022) [129] River Plastic N/A Journal Cameras Plastic waste
management

4.5. Related Applications in Other Fields

In addition to the main areas of YBUT application discussed above, some researchers have
explored completely new areas, experimented with new methods, and used these methods to
promote and enhance the applicability and usefulness of YBUT. Wyder et al. [130] integrated
YBUT with vision service algorithms to successfully achieve the autonomous detection and
tracking of moving targets in a GPS-limited environment. Quan, Herrmann et al. [131] pro-
posed Project Vulture, an intelligent human–subject location system for UAVs based on
the YOLO algorithm, and the system possessed higher sensitivity than other peer systems
in mountain rescue operations. Similar content has been studied by Kashihara et al. [132]
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and Sambolek and Ivasic-Kos [133]. Arnold et al. [134] investigated object classification
functions and reactive group behavior in a dispersed autonomous heterogeneous swarm of
UAVs deployed with YOLO; their approach supported the identification of specific targets
with a UAV, and other UAVs were able to learn the behavior accordingly. The experimental
results showed that the system still performs well at 25 m from the building. Jing et al. [135]
proposed a neural network based on YOLOv5s-ViT-BiFPN, which can assess the damage
of rural houses after natural disasters using drone images (see Figure 25). Information
regarding YBUT applications in other areas is shown in Table 6.
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YBUT has been used successfully in various fields, which has greatly contributed to
the development of the industry and the advancement of technology for the benefit of
society. From the above overview of the various areas, there is much more value to be
created by this technology. To create more value, we can improve and optimize existing
applications, expand the idea with examples of successful applications, and use this to
apply the technology to more areas.

Table 6. Overview of papers that explicitly address YBUT in other fields.

YOLO
Models Reference Object Metric Paper Type Sensors Purpose

YOLOv1
Ajmera and Singh (2020) [136] Missing victim N/A Conference paper Cameras Urban Search and Rescue

Sudholz et al. (2022) [137] Rusa deer N/A Journal
Cameras,
Thermal
imager

The detection and monitoring
of invasive species

YOLOv2
Opromolla et al. (2019) [138] UAVs N/A Journal Cameras Visual-based detection and

tracking of cooperative UAVs
Merizalde and Morillo

(2021) [139] Pedestrian Rcall 90% Conference paper Cameras Real-time Social
Distancing Detection

YOLOv3

Kim et al. (2019) [140] Mobile construction
resources

Accuracy
97.43% Journal Cameras Protecting construction workers

Hong et al. (2019) [141] Birds N/A Journal Cameras Wildlife monitoring
Arola and Akhloufi (2019) [142] UAVs N/A Conference paper Cameras Collaborative UAV research

Zheng et al. (2019) [143] Distress personnel N/A Conference paper Cameras A Search and Rescue System for
Maritime Personnel

Silvirianti et al. (2019) [144] UAV flight behavior Accuracy
83% Conference paper Cameras Search and rescue for people in

distress in the forest
Zhang et al. (2019) [145] Sea surface ships N/A Conference paper Cameras Algorithmic research

Medeiros et al. (2021) [146] Human posture N/A Conference paper Cameras Human posture
guidance system

Sarosa et al. (2020) [147] Victims of natural
disasters

Accuracy
89% Conference paper Cameras Search and rescue for victims of

natural disasters

Rizk et al. (2021) [148] Human Accuracy
78.78% Conference paper Cameras Search and rescue for victims of

natural disasters

Qi et al. (2021) [149] Moving Target N/A Conference paper Cameras Moving target detection
and tracking

Panigrahi et al. (2021) [150] Wildlife mAP 95% Conference paper Cameras Biodiversity analysis

Wang et al. (2021) [151] Offshore Small
Targets

Precision
92.7%, Recall
92.06%, mAP

95.58%

Journal Cameras Algorithmic research

Tanwar et al. (2021) [152] Pedestrian N/A Journal Cameras Real-time Social
Distancing Detection

YOLOv5
Gromada et al. (2022) [153] Military targets N/A Journal

Cameras,
Synthetic

aperture radar
Algorithmic research

Bahhar et al. (2023) [154] Wildfire and Smoke mAP 85.8% Journal Cameras Forest fire detection
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5. Development Prospects

With the rapid development of YOLO-based object detection technology and special
UAV research, the YOLO-based UAV industry has set off a technological boom with
multifield applications and multidirectional development. With the assistance of a variety
of cutting-edge technologies, it is possible to improve productivity and quality of life and to
create economic benefits while creating good ecological, environmental, and social benefits.
YBUT shows increasingly obvious value and potential as it develops.

5.1. Improving the Quality of UAV Datasets and Training YOLO Algorithms Suitable for
Aerial Imagery

In the practical application of YBUT, it is often the case that accuracy and speed are high
for ground-based operational tests but low for aerial UAV operations, possibly due to the
unsuitability of the dataset used by recent target detection algorithms [155–158]. Therefore,
when collecting and selecting datasets to create models that perform as well as possible for
the UAV operational environment, the following should be noted: (1) When performing
image acquisition of the target, care should be taken that the acquisition equipment is as
consistent as possible and that the same equipment is used for acquisition from start to
finish so that the same-resolution image can be obtained. This helps ensure that the image
content is not distorted due to inconsistencies in image size during algorithm training.
(2) The dataset should be collected from as many different angles as possible, e.g., different
camera angles, weather differences, various light intensities, several poses of the target,
numerous target positions, and different target backgrounds. (3) When annotating the
target border category and coordinate information within the dataset, we need to reduce
the area of the background content within the border as much as possible and must ensure
that all the target content is placed within the border. When annotating multiple categories
of borders, we need to minimize the area of overlapping borders to avoid the algorithm
combining the two into the same content.

At the same time, to accelerate the progress of research on YOLO-based UAV object
recognition technology, it is recommended that most developers create good-performing
models, describe the content and application performance of the datasets used, and upload
them to the community for sharing.

5.2. Research into Object Detection Algorithms Suitable for UAV-Embedded Processors

In YBUT research, UAVs can carry limited hardware resources for mobile processors
and cannot be better transplanted to existing YOLO algorithms for application. Therefore,
lightweight target detection algorithms should be investigated for mobile processors with
limited resources, or performance optimization or network pruning model improvements
should be made to existing YOLO algorithms [159–164]. Liu et al. [165] proposed a Slice-
Concat structure based on YOLOv3 and YOLOv3-SPP, which can improve the target
detection speed by simply changing the width and height of the uniform input dataset.
Zhang et al. [166] proposed an intelligent approach for UAVs that combines machine
learning, traditional algorithms, and intelligent AI algorithms. The YOLOv3 algorithm
is then used to sense the location of objects in the environment and to classify them, and
finally, AI is used to evaluate the working state. Experiments showed that the method
has high computational speed and recognition accuracy, good generality, portability, and
scalability, and they proposed a new development direction for future UAV technology.

To quickly promote the YBUT and facilitate learning and application by other inter-
ested researchers or industry beginners, it is recommended that all peer researchers who
have successfully implemented the application for lightweight UAV models disclose their
optimization methods and model source code and provide detailed explanations of the
optimized parts and the optimized network structure.
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5.3. Developing Professional, Stable, and Reliable UAVs in Combination with the YOLO
Inspection Environment

Given the many areas of development of YBUT and the issues with UAVs themselves,
further development and promotion of UAVs with high professionalism, high environ-
mental adaptability, stability, and reliability should be carried out [167–172]. The overall
design of UAVs should be combined with the field of UAV operations, while considering
the environment, to improve the professionalism of UAV operations and to ensure the
adaptability and stability of UAV operations. In terms of the UAV power system, we
should develop the core components of power motors or engines, improve the service life
of the core components, and reduce the total amount of the whole aircraft to improve the
practicality of UAVs. In terms of UAV onboard equipment, multisensor fusion technology
should continue to be developed and applied autonomously. In terms of UAV safety, the de-
velopment of UAV safety flight algorithms is necessary. We also improve the UAV runaway
self-protection system, realize effective obstacle avoidance, runaway self-protection, fault
self-testing, and runaway warning functions. Moreover, we need to monitor all parameters
of the UAV itself to protect the users’ property.

5.4. Enhancing the Security of YBUT for Multiple Application Scenarios

The development of YBUT and its widespread use in various fields have led to the tech-
nology being gradually recognized by researchers, but in the pursuit of rapid technological
development, safety issues are often easily overlooked. In the daily application of YBUT,
UAVs mainly transmit data with ground control terminals by wireless communication,
which is easily interfered with and invaded by others, thus causing problems, such as loss
of control of UAVs and data information leakage [173]. In many application scenarios,
if a UAV is hacked by others and loses control of its flight, it will not only pose a threat
to the UAV itself but also to the surrounding environment and may even endanger the
personal safety of the operator. To prevent relevant security issues from occurring, it is
vital to enhance the data security of the YBUT. Both the storage and transmission of data
information and the transmission of UAV movement control commands should be the
main targets for security enhancements in the YBUT.

5.5. Popularising YBUT Knowledge, Training Technical Application Talents, and Improving
Relevant Laws, Regulations, and Codes of Practice

Popularizing the knowledge of UAVs and YOLO algorithms and training composite
talents in UAV control and YOLO algorithm application should be the role of higher educa-
tion institutions, research units, relevant enterprises, and group organizations. Improving
relevant laws, regulations, and codes of practice is an inescapable responsibility of the
relevant legislative bodies in the face of the rise of new technological developments and
applications. Although YBUT is developing rapidly, it takes time to achieve autonomous
unmanned operation of drones, so talent for drone control should be cultivated to improve
the overall level of the industry and the scope of production and use in life. At the same
time, to adapt to the rapid iteration of YOLO algorithm versions, knowledge of YOLO
algorithm applications should be popularized, and the ability of relevant personnel to apply
YOLO algorithms should be improved to bring into play the diversity of YOLO-based
UAV operations. To further protect the legal rights of users and others, the YBUT must
be applied in strict accordance with relevant laws and regulations, and operators must be
trained to ensure the correct use of the YBUT.

6. Conclusions

In any period, social progress needs advanced productivity as a basis, and every
advancement needs time to develop. When an emerging field becomes popular, the field
then gathers most of the current resources to develop it so that it rapidly progresses
and spreads to other fields. Then, having been fully integrated with other fields, it is
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presented to people in the way of practical applications to address the needs of life so that
people benefit.

In this literature review, we demonstrate that the combination of deep learning YOLO
algorithms and UAV technology can be of great use in the future, and an attempt is made
to introduce and to promote the technology to attract the attention of more researchers. In
this paper, we first describe the development of YBUT, including the early developments
and leaps and bounds in the application of YOLO algorithms in conjunction with UAV
technology. Second, to promote YBUT, the main areas where researchers have applied the
technology and the recent state of research, as well as the exploration and experimentation
of the technology in certain new areas, are presented. It is clear from the article that YOLO-
based object detection algorithms could be a key enabler for future drone applications,
allowing drones to provide better productivity and greater convenience.

Currently, UAV technology and YOLO-based object detection are relatively well
established in their respective pre-existing fields, and the cross-fertilization of the two into
new technologies is becoming an increasingly important area. The results show that there
is a high degree of advantageous complementarity between UAV-derived aerial platforms
and YOLO algorithms for object detection. However, the application methodology and
performance of YBUT need to be further enhanced. The development of YBUT has, thus
far, seen more applications in engineering, transportation, agriculture, and automation
and less practice in other fields; the diffusion of the technology remains a challenge. The
future development of technology needs to take these four issues into account. The actual
detection performance of ground-acquired datasets applied directly to the training of
UAV-based object detection algorithms is not very satisfactory, and further dedicated high-
quality datasets need to be acquired. Deploying existing YOLO algorithms directly to
mobile processors through optimization can complete the current exploratory research
goals, but this step is still a long way from industrializing YBUT and requires dedicated
algorithms to be developed for the UAV hardware environment. For future applications of
the technology in more areas, a single specialist drone should be developed for specific use
environments. The timely development of talent for the development and application of
YBUT is also an effective way to rapidly promote the technology. To some extent, the rapid
diffusion of YBUT and the continuous identification of new problems and needs during the
diffusion process, addressing new problems and meeting new needs, can also contribute to
technological progress.
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Nomenclature

Acronyms Definition
UAV Unmanned aerial vehicle
YOLO You Only Look Once
YBUT YOLO-based UAV technology
UAVs Unmanned aerial vehicles
FPS Frames Per Second
mAP Mean average precision
Faster R-CNN Faster regional Convolutional Neural Network
RFCN Region-based Fully Convolutional Network
SNIPER Scale Normalization for Image Pyramids with Efficient Resampling
IoU Intersection over union
F1 Harmonic mean of precision and recall
AP Average precision
VPU Vision Processing Unit
PID Proportional Integral Differential
SLAM Simultaneous localization and mapping
GPS Global Positioning System
DEEPSORT Deep Simple Online and Realtime Tracking
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