
Citation: Rančić, K.; Blagojević, B.;

Bezdan, A.; Ivošević, B.; Tubić, B.;

Vranešević, M.; Pejak, B.; Crnojević,

V.; Marko O. Animal Detection and

Counting from UAV Images Using

Convolutional Neural Networks.

Drones 2023, 7, 179. https://doi.org/

10.3390/drones7030179

Academic Editor: Eben Broadbent

Received: 30 December 2022

Revised: 27 February 2023

Accepted: 1 March 2023

Published: 6 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Animal Detection and Counting from UAV Images Using
Convolutional Neural Networks
Kristina Rančić 1, Boško Blagojević 2 , Atila Bezdan 2 , Bojana Ivošević 3 , Bojan Tubić 4, Milica Vranešević 2 ,
Branislav Pejak 3 , Vladimir Crnojević 3 and Oskar Marko 3,*

1 Faculty of Sciences, University of Novi Sad, 21102 Novi Sad, Serbia
2 Faculty of Agriculture, University of Novi Sad, 21102 Novi Sad, Serbia
3 BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia
4 JVP Vojvodinašume, 21132 Petrovaradin, Serbia
* Correspondence: oskar.marko@biosense.rs

Abstract: In the last decade, small unmanned aerial vehicles (UAVs/drones) have become increas-
ingly popular in the airborne observation of large areas for many purposes, such as the monitoring of
agricultural areas, the tracking of wild animals in their natural habitats, and the counting of livestock.
Coupled with deep learning, they allow for automatic image processing and recognition. The aim
of this work was to detect and count the deer population in northwestern Serbia from such images
using deep neural networks, a tedious process that otherwise requires a lot of time and effort. In this
paper, we present and compare the performance of several state-of-the-art network architectures,
trained on a manually annotated set of images, and use it to predict the presence of objects in the rest
of the dataset. We implemented three versions of the You Only Look Once (YOLO) architecture and a
Single Shot Multibox Detector (SSD) to detect deer in a dense forest environment and measured their
performance based on mean average precision (mAP), precision, recall, and F1 score. Moreover, we
also evaluated the models based on their real-time performance. The results showed that the selected
models were able to detect deer with a mean average precision of up to 70.45% and a confidence
score of up to a 99%. The highest precision was achieved by the fourth version of YOLO with 86%, as
well as the highest recall value of 75%. Its compressed version achieved slightly lower results, with
83% mAP in its best case, but it demonstrated four times better real-time performance. The counting
function was applied on the best-performing models, providing us with the exact distribution of deer
over all images. Yolov4 obtained an error of 8.3% in counting, while Yolov4-tiny mistook 12 deer,
which accounted for an error of 7.1%.

Keywords: convolutional neural networks; deer; animal counting; deep learning; YOLO; SSD

1. Introduction

The world’s growing population and the expanding region of human habitation have
changed the natural life populace and behavior. Many wild animals are forced to migrate
and re-adapt in order to survive, and monitoring has become an essential task in ecosystem
preservation. Identifying and counting animals is traditionally carried out manually, using
methods such as surveys from manned aircraft, the analysis of camera footage, and other
manual techniques. Recent developments in technology have made UAVs increasingly
affordable and effective, allowing us to quickly obtain large amounts of aerial data at a high
resolution. Parallel to this, the progress in object detection algorithms and computational
power has allowed us to process images in a fast and accurate manner. The detection of
animals in aerial images serves many purposes, such as:

• Censuses: authorities need to periodically obtain animal counts to monitor the health
of the animals in wildlife parks, game centers, hunting grounds, etc. [1,2];

Drones 2023, 7, 179. https://doi.org/10.3390/drones7030179 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7030179
https://doi.org/10.3390/drones7030179
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0001-5962-7332
https://orcid.org/0000-0003-3713-3002
https://orcid.org/0000-0002-6832-1893
https://orcid.org/0000-0002-6245-8901
https://orcid.org/0000-0003-1094-8770
https://orcid.org/0000-0001-7144-378X
https://orcid.org/0000-0001-6683-7178
https://doi.org/10.3390/drones7030179
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7030179?type=check_update&version=1

Drones 2023, 7, 179 2 of 29

• Poaching prevention: many studies have been conducted on monitoring endangered
species. Thousands of elephants, rhinos, etc., are poached every year in Africa, even
to this day [3];

• Minimization of human interference: the prevention of accidents and damage from
conflicts between humans and animals in border regions;

• Livestock monitoring: the automation of livestock counting for the monitoring of farm
production [4].

To better understand the importance of these tasks, let us observe the last point: the
most common and redundant job of a rancher or herdsman is counting their herd to derive
a headcount. It is a job that is frequently required and naturally takes up a large amount
of the rancher’s time. If we could somehow automate that process, we would save not
only a lot of time for that rancher, but also a lot of money. A good example is sheep export
from Australia, as explained in [5]. Exporters receive about AUD 80 for each sheep counted
at its overseas destination, and hence lose this amount for every sheep that is delivered
overseas but not counted by an overseas tally clerk. This loss is estimated to be about 3% of
the sheep exported, suggesting that about 15,000 sheep are shipped each year that are not
counted overseas. This amounts to an annual loss to the industry of about AUD 1,200,000.
However, for an automated counting system to be adopted by an industry, it must be at
least as accurate as, and preferably faster and less expensive than, the manual system it
replaces. In this paper, we describe one approach to monitoring wild animals, which is
the application of deep learning methods to UAV images. More specifically, we observed
a deer population in a dense forest environment. The goal of this project was to compare
models that can detect extremely small objects with a high mean average precision and, at
the same time, demonstrate competitive real-time performance.

The main goal of this work was to automate the process of counting deer near Plavna,
a hunting ground in northwestern Serbia. According to the Serbian Law of Wildlife and
Hunting, an optimal number of deer must be preserved at all times; hence, the counting must
be performed twice per year. So far, the counting process has been carried out manually,
which requires a lot of human power directly in the field and a large amount of time. Other
than that, it poses a risk for humans of getting close to the animals; it is expensive; and, most
importantly, it lacks accuracy. To offer a more efficient system, in this paper, we propose
a pipeline for animal (object) detection based on convolutional neural networks (CNNs)
applied to UAV images and evaluate the current state-of-the-art models, including YOLOv3,
YOLOv4, YOLOv4-tiny, and SSD. Figure 1 depicts an overall methodology flowchart for
this study. To summarize, the detection of animals in the environment should give an
insight into the location and distribution of animals at a particular location, as well as their
approximate number over the observed area. The fourth version of YOLO made a remarkable
improvement in small object detection [6–9], so we set YOLOv4 as the benchmark.

As mentioned already, these models were applied to UAV images obtained over an
area in northwestern Serbia. A UAV, more commonly known as a drone, is an aircraft
without any human pilot, i.e., they are capable of flying autonomously. These vehicles
follow flight plans based on GPS coordinates, which are usually programmed before the
flight but can also be changed during the flight. A University of Adelaide study has
shown that monitoring wildlife using drones is more accurate than traditional counting
approaches. In the Epic Duck Challenge, teams experimented on semi-automating the
counting process by making fake bird colonies out of decoy ducks on a beach in Adelaide,
Australia, and developing an algorithm to count the birds. They found that the computer
was able to produce a count similar to that of a human reviewing the scene. These studies
have opened up the potential of drones to not only save time but also to increase the
accuracy of the data that are collected.

Drones 2023, 7, 179 3 of 29

Figure 1. Methodology flowchart of this study. Blue parts represent data preprocessing, green parts
concern AI (artificial intelligence) model training, and red parts indicate the evaluation of the results
using four metrics and a counting function.

Moreover, many previous studies have demonstrated the success of using CNNs to
detect animals from UAV or similar images. Recent important works have considered the
detection of large mammals in the African Savanna. Duporge et al. [10] employed artificial
neural networks for high-resolution satellite imagery to automatically detect and count
African elephants in a woodland savanna ecosystem. These censuses play an important part
in the fight against the extinction of many endangered species in Africa, which is why much
more research has been conducted. In [3], the authors proposed several recommendations
to guide CNN models for the detection of large mammals in UAV images consisting mostly
of the background class. Similarly, the authors of [11] proposed the novel Context-aware
Dense Feature Distillation (CDFD) method, addressing the difficulty of detecting small
objects in remote-sensing images and focused on improving remote-sensing object detection
performance. YOLO models have proved to be highly successful in animal detection when
trained on high-quality datasets and properly optimized for the task at hand. Some results
can be found in [12,13]. Han et al. implemented the YOLOv3 network, achieving over 95%
accuracy in detecting livestock in grassland. Gomez et al. demonstrated the efficiency of
the YOLOv4 model even when training on low-quality images while addressing the issue
of monitoring animals in the wild without disturbing them.

Another frequently analyzed problem is cattle counting, which can be of great importance
for trade and the economies of many countries. Several detectors can be found in the works
of Chamoso et al. [1] and van Gemert et al. [4], both tackling the problem of cattle counting.
Moreover, the Verschoor Aerial Cow Dataset [14], a dataset available to the public, allows for
more research to to be carried out on animal monitoring. This dataset contains recordings
of cows in a meadow, captured with a GoPro HERO 3 camera attached to a UAV. It also
includes labels with the location of the cows in each video frame. As usual, the location of

Drones 2023, 7, 179 4 of 29

each cow is denoted by a bounding box surrounding the object. Using drones in combination
with AI models for animal detection is a relatively new field of research with many potential
applications in wildlife conservation and monitoring. During our research, we encountered
this topic in several studies, which included using AI models with thermal and regular camera
images [5,7,15], video footage [9], and satellite imagery [10]. Still, there is a major gap in the
research regarding the use of drones for animal detection due to the limited availability of
high-quality data for training, the issue we address in Section 5.1. However, it is important
to note the importance of the safe use of UAV aircraft around rural areas where there exist
security threats to people, objects, and country regulations [16].

2. Object Detection Techniques

In addition to detecting the presence of animals, in order to effectively track them and
monitor their actions, it is also necessary to localize the animals within the image. This is the
task of object detection. Object detection systems locate all positions of objects of interest in
the input by framing them into bounding boxes and classifying them into categories. The
process consists of two or three steps: localization—the drawing of bounding boxes; the
extraction of features for each region; and recognition—identifying the classes of the objects
in the image. In our case, we dealt with only one class—deer. A modern detector usually
consists of two main parts—the backbone and the head of the detector [17]. The backbone
refers to the feature extractor network and is a crucial part of every CNN. It takes an input
image and extracts the feature map upon which the rest of the network is based. Depending
on the platform that the detector runs on (CPU or GPU), the backbone varies mostly between
VGG, ResNet, DenseNet, and MobileNet [18]. There are two approaches for the development
of the head of the detector—an approach based on the region proposal algorithms, also
known as a two-stage approach, and an approach based on regression or classification that
uses real-time and unified networks, i.e., the one-stage approach. In this work, we focused
on the one-stage approach. There were two main factors contributing to this decision:

• Speed: One-stage detectors are typically faster than two-stage detectors as they per-
form all the necessary operations, including object detection and classification, in a
single pass through the network. This makes them well-suited for real-time applica-
tions such as ours.

• Simplicity: One-stage detectors are generally simpler and require less computational
power. Due to our limited resources during this research, they were a better solution.

2.1. You Only Look Once

As a very simple and extremely fast model, this state-of-the-art algorithm gained
popularity soon after it was first presented in 2015 [19]. It reframed object detection as a single
regression problem, progressing straight from image pixels to bounding box coordinates and
class probabilities. As a regression problem, it divides the input image into an S× S grid and,
if the center of the object falls within the target grid cell, this grid is responsible for detecting
the object by predicting the B bounding boxes, the confidence score, and the class probability.
Each bounding box consists of four predictions: x y, w, and h. The (x,y) coordinates represent
the center coordinates of the predicted bounding box, relative to the boundaries of the grid
cell. The remaining two coordinates are the width and height, respectively, and they are
predicted relative to the whole image. The confidence score represents how confident the
model is that the specific bounding box contains the object. It is expressed as the accuracy,
and, naturally, if there is no object in that cell, the confidence score is equal to zero.

All versions of YOLO use extensive data augmentation, divided into photometric dis-
tortions and geometric distortions. In dealing with photometric distortions, the brightness,
contrast, hue, saturation, and noise of an image are adjusted. For geometric distortions, random
scaling, cropping, flipping, and rotating are performed. In YOLOv4, the authors also intro-
duced a new method of mosaic data augmentation. Mosaic data augmentation is performed by
mixing four training images, in contrast with the already known CutMix process [20], which
mixes only two input images. In this way, batch normalization calculates activation statistics

Drones 2023, 7, 179 5 of 29

from four different images on each layer, which significantly reduces the need for a large
mini-batch size.

In our work, the pre-trained YOLOv4 model was further trained using images with
dimensions of 416 × 416. The learning rate was initialized to 0.001 with a decay rate of
0.0005, and the momentum was set to 0.9. The training was carried out in 2000 steps with a
batch size of 64. During the training of YOLOv4, firstly, the size of the input images was
adjusted so that all the input images had the same fixed size. We also trained YOLOv4-
tiny, which is a lightweight YOLO-series method, representing the compressed version of
YOLOv4. Lightweight methods such as this have a simpler network structure and fewer
parameters than other networks. Therefore, they require lower computational resources
and memory and have a higher detection speed. The prediction process is completely the
same as that in YOLOv3 and YOLOv4, but significantly faster. The frames per second
(FPS) in YOLOv4-tiny is approximated to be eight times lower than in YOLOv4, while
the accuracy for YOLOv4-tiny is two thirds that of YOLOv4. Hence, for real-time object
detection problems, the compressed version is preferred.

2.2. Single Shot Multibox Detector

SSD is a method introduced by Liu et al. [21] for detecting objects in images using a
single deep neural network, i.e., a one-stage detector. The SSD approach is based on a feed-
forward convolutional network that produces a fixed-size collection of bounding boxes and
a measurement of certainty that the objects are in those boxes, followed by a non-maximum
suppression (NMS) step to produce the final detection. According to the authors, SSD is
much faster than other well-known object detectors, such as YOLO and Faster-RCNN, while
maintaining the same accuracy. We confirmed this in our research, as SSD finished training
in 5000 steps, approximately three times faster than YOLO versions 3 and 4. However, the
performance was slightly lower than what YOLO achieved.

The SSD model can be divided into three parts: the base network, auxiliary network,
and prediction network. The base of SSD is any image classification network without the
last fully connected layer, and it is used to extract a feature map from the input image. This
feature map is then passed through an auxiliary network. We used a model with MobileNet
as its base. The key idea underlying SSD is the concept of default boxes, which represent the
careful selection of bounding boxes based on their sizes, aspect ratios, and positions across
the image. There are 8732 default bounding boxes. The network is trained to perform two
main tasks: (1) classifying which amongst the 8732 default boxes are positive; (2) predicting
offsets from the positive default box coordinates to obtain the final predicted bounding
boxes. During the training, each ground truth box is matched to the default box with
the best Jaccard overlap (J), with a threshold of 0.5. The Jaccard coefficient measures the
similarity between finite sample sets and is defined as the size of the intersection divided
by the size of the union of the sample sets (A is set 1 and B is set 2):

J(A, B) =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A|+ |B| − |A ∩ B| (1)

The output of the detector head is the number of predicted bounding boxes overlap-
ping each other for the same ground truth. Before the final prediction is generated, the
overlapped bounding boxes need to be processed and filtered. SSD uses non-maximum
suppression to remove duplicate predictions pointing to the same object. NMS is an essen-
tial method for postprocessing in object detection to eliminate the redundant bounding
boxes. This is carried out by sorting the predictions by the confidence score.

The overall objective loss function is the weighted sum of the localization loss and the
confidence loss [21]:

L(x, l, c, g) =
1
N
(Lcon f (x, c) + αLloc(x, l, g)), (2)

Drones 2023, 7, 179 6 of 29

smoothL1(x) =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise

, (3)

where N is the number of matched default boxes, and Lcon f and Lloc are the confidence
and localization loss, respectively. If there are no matched boxes, i.e., N= 0, then the loss
equals 0. The localization loss is a smooth L1 loss between the predicted box l and the
ground truth box g. The confidence loss is the softmax loss over multiple class confidences
c. We calculated and present the graphs of all of these losses for our training in the Results
section.

We used the TensorFlow Object Detection API (application programming interface) [22] to
build the SSD model. This API allows the implementations of different deep learning object
detection algorithms, from which we selected the model referred to as COCO, which has an
SSD300 architecture and was pre-trained on the COCO dataset [23]. The reason behind this
decision was that objects in COCO tend to be smaller than in other frequently used datasets,
such as PASCAL VOC [24], and it contains images with an input size of 300 × 300, which
made it suitable for our specific problem. The pre-trained model was trained at a learning
rate of 10−3 for the first 160,000 iterations, which was then decreased to 10−4 for the next
40,000 iterations, and further down to 10−5 for another 40,000 iterations. We used default
hyperparameter values for this model, as retrieved from the API.

SSD also includes data augmentation in order to make the model more robust to
various input object sizes and shapes. Each image is first randomly sampled by taking
either the patch of the image with the specified minimum Jaccard overlap with the object
of interest, or the entire image. After that, each sampled patch is resized to a fixed size and
is flipped horizontally with a probability of 0.5, in addition to applying some photo-metric
distortions, such as random brightness, contrast, hue, and saturation [21].

3. Materials and Methods
3.1. Data

Aerial imaging provides a detailed overview and quick monitoring of large areas,
making it a very efficient way to solve this specific problem. As mentioned in Section 1, the
data were collected in the northwestern region of Serbia. The hunting ground of Plavna
covers a total of 2,619 ha, of which 630 ha are enclosed. The predominant large species are
deer and wild boar. The dataset consisted of 30 UAV images, with three different image sizes,
originating from three different UAVs: 4608 × 3456 (DJI Phantom 4 Pro V2.0), 4864 × 3648
(Parrot Company SenseFly eBee), and 4000× 3000 pixels (DJI Inspire 1), whose specifications
are shown in Figure 2.

The number of images of each size is provided in Table 1. As part of the data
augmentation and a method for model evaluation, we divided all images into smaller
pieces. We achieved this by applying the tiling function on each image of our dataset.
Each smaller image was 416 × 416 × 3 in size, and all the deer were labeled manually.
After applying the tiling function to these 30 images, 2340 new smaller images were
obtained, of which 120 contained ground truth, i.e., bounding boxes. There were a total
of 169 objects (deer) or regions of interest (ROIs) in the complete dataset.

Drones 2023, 7, 179 7 of 29

Figure 2. UAV performances and camera specifications of platforms used for data acquisitions.

Table 1. Details of the images provided and the number of labels.

No. of Images No. of Deer Recorded

4608 × 3456 2 2
4864 × 3648 16 87
4000 × 3000 12 80

Total 30 169

3.2. Ground Truth

All the tested models required only bounding boxes for the objects as labels for training.
So, before training any detection network, the manual task of annotating all training images
had to be performed to acquire ground truth. The process of labeling involved visual
scanning and marking the parts of the images where the objects of interest were located.
As mentioned, 169 deer were identified in the dataset; hence, 169 bounding boxes were
drawn. For this purpose, the LabelImg annotation tool [25] was used. This graphical image
annotation tool was written in Python and allows for the labeling of images with minimum
effort. During the labeling process, bounding boxes were drawn around each deer in the
image. Figure 3 shows the LabelImg interface for one image from our dataset.

Figure 3. Labeling with LabelImg tool.

Drones 2023, 7, 179 8 of 29

The information provided for the bounding box also depends on the output for-
mat, i.e., on the network requirements. Pascal VOC is the format used by the Pascal
VOC dataset (Figure 4). These kinds of annotation are needed to train the Single Shot
Multibox Detector. After completing the annotation, an xml file is generated for each
image annotated. The coordinates of each bounding box in that file are encoded with
four values expressed as pixel locations: [xmin , ymin , xmax , ymax], where (xmin , ymin) are
the coordinates of the top-left corner of the bounding box and (xmax , ymax) are the coor-
dinates of the bottom-right corner of the bounding box. Besides these coordinates, the
path to the file is provided, along with the class name, image size, and image depth.

(a) (b)

Figure 4. Annotations generated by LabelImg tool. (a) Annotation in Pascal VOC format. (b)
Annotation in YOLO format.

The Yolo format is used for training all versions of the You Only Look Once networks.
As in the previous case, a new file is generated for every image, but this time in the txt
format. This text file contains as many rows as there are objects of interest in that image, i.e,
one row for each deer in our case. Each of these rows contains the class number, ranging
from 0 up to the number of classes, and the corresponding bounding box coordinates. Since
there was only one class in our dataset, the first element of each row was 0. Furthermore,
the bounding box is represented by four values: [xcenter, ycenter, w, h], where (xcenter, ycenter)
are the coordinates of the central pixel of the bounding box, and w and h represent the
width and height of that bounding box. Moreover, all of these values are normalized, i.e.,
the value of x is divided by the width of the entire image and the value of y by its height.

3.3. Methods

To overcome the problem of small objects on a large background, we applied the tiling
function as part of the preprocessing. This function divides each image into smaller pieces
of the same size. It is common practice to split up large images into smaller tiles and assess
each one individually. E.g., given an image 4000 × 3000 pixels in size, as was the case for
some of our images, if we assume a tile size of 1000 × 1000 pixels as a realistic size for
naked-eye screening, we would have to divide such an image into 12 smaller pieces. The
main idea behind this approach is to break down a large image into smaller, manageable
chunks, which can be further processed by the AI model separately and then combined
to produce a final output. There are several ways of dividing large images into smaller
pieces, such as using a sliding window or a fixed grid. In our work, we decided on the
latter in order to obtain non-overlapping tiles. This was carried out by specifying a fixed
size for the patches, as models require the same input size for all images, and then dividing
each image. Object detection was then performed on each patch separately. By utilizing
this approach, we not only generated more images for our training, but the models were
allowed to focus on a specific region of the image, which could improve the accuracy
and efficiency of the analysis. Additionally, breaking down the image into smaller pieces

Drones 2023, 7, 179 9 of 29

could also help reduce the amount of memory and computational resources required to
process the image, which could be particularly important when working with large or
high-resolution images. Moreover, in this way, we reduced the amount of background
class in each image, performed data augmentation, and resized all images to the same size.
We also tested the performance on different numbers of tiles and showed that all models
performed poorly when dealing with a large class imbalance. As we set YOLOv4 as our
benchmark, all images were divided into smaller pieces 416 × 416 pixels in size, in order to
better match this model’s requirements.

We compared the results of each model using three problem setups:

1. The training set contained only positive samples;
2. The training set contained an equal number of positive and negative samples;
3. The training set contained substantially more negative samples.

For the positive samples, the fixed amount was determined by the size of the labeled
dataset. The positive samples dataset contained 120 tiles (Figure 5), that is, there were 120
images in the first case. In the second case, there were 120 images for positive samples and
120 random negative samples (Figure 6), chosen in such a way that the number of positive
and negative sample tiles from each image was the same. The number of negative samples
in the third case was substantially larger, with 2220 tiles containing no animals, summing
up to 2340 images in total. The annotation file in the case of the negative samples was an
empty txt or xml file.

Figure 5. Examples of positive samples, i.e., tiles containing at least one deer.

Figure 6. Examples of negative samples, i.e., tiles without deer.

The idea for such an evaluation method came from the authors of YOLO, who pro-
posed that in order to increase the precision of the network, there should be as many images
of negative samples as there are images with objects. We checked this statement by training
in all three cases. The results achieved were different for all the models.

The experimental setups of some hyperparameters are illustrated in Table 2. These
parameters were the same for all three cases.

Drones 2023, 7, 179 10 of 29

Table 2. Configuration of hyperparameters of each model.

YOLOv4 YOLOv4-tiny YOLOv3 SSD

Batch size 64 64 10 24
Momentum 0.949 0.9 0.9 0.9

Learning rate 0.001 0.00261 0.001 0.004
Decay 0.0005 0.0005 0.0005 0

YOLOv4 consists of four blocks—a CSPDarknet53 backbone [26], an SPP additional
module [27], a PANet path-aggregation neck [28], and a YOLOv3 [19] (anchor-based)
head. The described architecture was first pre-trained on ImageNet [29]. In the network,
the maximum pooling filter was applied three times, with one stride and sizes of 5, 9,
and 13, in this particular order. On the other hand, no pooling layer was implemented in
YOLOv3. In the compressed YOLOv4, this type of layer was used consistently, after every
four convolutional layers, with both a size and a stride of 2. The main difference between
YOLOv4 and YOLOv4-tiny is that the network size is dramatically reduced in the latter.
Moreover, the number of convolutional layers in the CSP backbone is compressed: it
uses a CSPDarknet53-tiny backbone network instead of the CSPDarknet53 backbone
used in YOLOv4, which contains fewer convolution layers. Is also contains only two
YOLO heads, as opposed to the three in YOLOv4. Beside heads, the complete network
contains 21 convolutional layers (as opposed to the 110 layers used in YOLO4 and 75 used
in YOLOv3), as well as 3 pooling layers. To further simplify the computation process,
the YOLOv4-tiny method uses the LeakyReLU function as an activation function in
the CSPDarknet53-tiny network instead of the Mish activation function, except for the
convolutional layers which come before the head layers.

To train these models, first we had to clone the darknet github repository [30] and
initialize the weights with the pre-trained weights, which were different and specialized
for each model. These weights can also be obtained from [30]. To set up the number of
training steps, we followed the authors’ recommendations for the repository. The number
of steps was equal to the number of classes multiplied by 2000; thus, as we had only one
class, we trained for 2000 steps. Further fine-tuning was required in order to adapt the
model to the different datasets. The number of filters used before each YOLO layer was
calculated as (classes + 5)× 3, so we changed all the filter values to 18 if the neural network
layer preceded a “YOLO” layer. The authors also provided further recommendations on
how to improve the training precision and speed by adjusting the network resolution.
After increasing the network resolution, i.e., increasing the tile size, we compared the
performance of YOLOv4-tiny for images of three different sizes: 416 × 416, 512 × 512,
and 608 × 608. SSD was trained on the same dataset for 5000, 7000, and 9000 iterations to
compare the performances. In all cases, the learning rate was 10−3, without decay. The
architecture of both networks is shown in Figure 7.

Drones 2023, 7, 179 11 of 29

Figure 7. A comparison between the SSD and YOLO network architectures [21]. The architecture of
YOLO uses an intermediate fully connected layer instead of the convolutional filter used in SSD for
the final predictions.

3.4. Evaluation Metrics

For the purpose of estimating the performance of the predictions, several concepts
are introduced below. In the case of object detection, the evaluation metrics employed
measured how close the detected bounding boxes were to the ground truth bounding
boxes. This is called Intersection Over Union (IOU), and it was measured by assessing
the overlap of the two bounding boxes. We distinguished three different sizes of
bounding boxes: small (area < 322 pixels), medium (322 < area < 962 pixels), and large
(area > 962). As each model used annotations in a specific format, their results were
dependent on the specific metric implementation associated with the dataset on which
they were pre-trained. This meant that the evaluation metrics were directly associated
with a given annotation format; therefore, the results are reported only for the metrics
implemented for the benchmarking dataset. Table ?? lists the object detection methods
that we used, along with the metrics used to report their results. The metrics have the
following notations:

• mAP—mean average precision over classes averaged over IOU thresholds ranging
from .5 to .95 with .05 increments;

• mAP@.50, mAP@.75—mean average precision at 50% and 75% IOU, respectively;
• APS, APM, APL—mean average precision for small, medium, and large objects,

respectively;
• AR1, AR10, AR100—average recall with at most 1, 10, and 100 detections per image,

respectively;
• ARS, ARM, ARL—average recall with at most 100 detections per image for small,

medium, and large objects, respectively. These three metrics are referred to as AP
across scale.

Table 3. Object detection methods used and their performance metrics.

Method Benchmark Dataset Metrics

SSD COCO
mAP; mAP@.50; mAP@.75;

APS; APM; APL; AR1; AR10;
AR100; ARS; ARM; ARL

Drones 2023, 7, 179 12 of 29

Method Benchmark Dataset Metrics

YOLOv3 COCO
mAP; mAP@.50; mAP@.75;

APS; APM; APL; AR1; AR10;
AR100; ARS; ARM; ARL

YOLOv4 COCO mAP; mAP@.50; mAP@.75;
APS; APM; APL

During the detection, there were four possible outcomes: true positive, true negative,
false positive (FP), and false negative (FN), which we denote with NTP, NTN , NFP, and NFN ,
respectively. True positive (TP) refers to a correct prediction with an IOU larger than or
equal to a certain threshold. Conversely, true negative (TN) refers to a true detection that
has an IOU smaller than the threshold. False positives happen when a section of the image
is recognized as a deer but is actually part of the background. This can occur when items in
the background, such as logs or large rocks, are mistaken for animals due to the similarity
in color and size. False negatives happen when deer are in the image but are not recognized
by the detector.

Precision is the ability of a model to identify only relevant objects. It denotes the
percentage of correct positive predictions, while recall is defined by the ratio of the positive
instances that are correctly detected by the detector and all labeled positive instances. The
precision and recall were calculated as follows:

Precision =
NTP

NTP + NFP
(4)

Recall =
NTP

NTP + NFN
(5)

There is a trade-off between precision and recall, meaning that as the precision curve
increases, the recall value decreases, and vice versa. However, the two do not encapsulate
the whole picture. Instead, we used mean average precision and recall values. MAP was
calculated by the mean of the average precision for all classes, that is:

mAP =
1
C

C

∑
i=1

APi, (6)

where APi is the average precision for class i, and C is the total number of classes in the
dataset. The complete calculation for the average precision can be found in [31].

The F1 measure indicates the trade-off between recall and precision, as shown in the
equation below.

F1score = 2× precision× recall
precision + recall

(7)

The F1 score is limited to a [0, 1] interval, with a value of 0 if either the precision or
recall (or both) are 0, and a value of 1 when both precision and recall are 1.

4. Results

The best results for each model are shown in Table 4. All tested methods were
implemented in Google Colaboratory, with the use of GPU and CUDA, for a higher training
speed. The bounding boxes of each deer detected in the frames were annotated with a
confidence score and the class name.

Drones 2023, 7, 179 13 of 29

Table 4. Comparison of the best results achieved by each model and the case in which they
were achieved.

Model mAP Recall Case

YOLOv4 0.71 0.75 2nd
SSD 0.70 0.39 3rd

YOLOv4-tiny 0.65 0.62 1st
YOLOv3 0.38 0.25 2nd

Before training, the dataset is split into the training and test set for performance
evaluation, with train and test sets containing 85% and 15% of all images, respectively. This
division is performed randomly, using the implemented function. The number of images
in each set depends on which of the three setups is examined. All models are fed with
the same size input data—416 × 416, which is required for You Only Look Once models.
SSD, however, uses images of size 300 × 300 , but resizing is carried out automatically
by the model itself. For the comparison of models we used two performance evaluation
metrics—mean average precision (with IOU = 0.5) and recall. We also used precision, as
well as F1 score for comparison between different YOLO models.

According to the overall detection results for each model in their best case presented
in Table 4, the two versions of YOLOv4 outperformed the YOLOv3 approach by 27–32%
in terms of mean average precision.The results obtained for YOLOv3 were not favorable,
with only 29.8% mAP and 0.30 recall in the first case and 38.38% mAP and 0.25 recall in
the second case. Specifically, YOLOv4, with the CSPDarknet53 backbone, achieved the
top mAP in all three cases of all YOLO models examined. In comparison, the Darknet-53
backbone obtained only 38.38% mAP as the best result. On the other hand, YOLOv4 had a
competitive recall performance, whereas SSD achieved a poor recall value in all three cases.

Next, we observed how the SSD network performed with more steps, as we noticed
that the mAP value was very unstable in the early steps and became more stable after the
3000th step. For this reason, we trained using three cases, starting from 5000 steps and
increasing by 2000 for each subsequent training process. There was a steady increase in
the mAP value from approximately the 2000th step until the 5000th, after which the curve
started to converge, i.e., more training was unlikely to lead to model improvement, so we
deduced that 5000 steps was an optimal value and used it for further training. These values
are shown in Figure 8. For this evaluation, mean average precision was used with an IOU
of 50%.

Figure 8. mAP@.50 IOU curves for different numbers of training steps for the Single Shot Detector.

However, when we set the threshold of IOU to 0.75, that is, when we chose a more
restrictive IOU, the mAP value significantly improved with a higher number of steps. This

Drones 2023, 7, 179 14 of 29

is shown in Figure 9, which shows that adding more steps for the training increased the
mAP by up to 10% from 5000 to 9000 steps for the detection of medium-sized boxes. Since
the main goal of this work was the counting of deer, and not strictly localizing them, we
decided that IOU = 0.50 was sufficient for this specific problem.

Figure 9. mAP@.75 IOU curves for different numbers of training steps for the Single Shot Detector.

Based on research using the VOC2017 test set, the authors of [21] deduced that SSD
performed much worse on smaller objects than on larger ones and was very sensitive
to the bounding box size. Our mAP and recall results for the detection of small and
medium objects confirmed this statement. Several comparisons of the detection results
between different models are visualized in Figures 10 and 11. As shown in Figure 10, the
confidence scores of the predictions from both YOLOv4 and SSD were very high. However,
in Figure 11, we can see that YOLOv4-tiny predicted the same deer with a much lower
confidence score than YOLOv4 and SSD; however, on the contrary, it provided a very
high confidence score for small target objects. When it came to real-time performance,
YOLOv4-tiny was significantly faster than all the other trained models—up to four times
faster than YOLOv4 and v3 and two times faster than SSD.

(a) (b)

Figure 10. Confidence score of YOLOv4 (a) and SSD (b) on the same image. (a) You Only Look Once
version 4. (b) Single Shot Multibox Detector.

Drones 2023, 7, 179 15 of 29

(a) (b)

Figure 11. Comparison of YOLOv4-tiny performance for detecting small (a) and medium objects (b).

4.1. SSD Results

To train an intelligent object detection model with good performance, it is crucial to
provide enough samples for it to learn the general patterns. That is why usually, the more
data one has, the better the results achieved. For SSD, the third case yielded the best results,
while the first case, in which we trained the model using only 102 images, yielded the
smallest mAP but the highest recall.

We trained the SSD model in all three setups for 5000 steps and noticed a steady
increase of 5% for each case with more images. That is, in the first case, the maximum mAP
rate achieved was 60%; in the second case, with double the number of images, the mAP
was around 65%; and in the third case, the highest mAP was 70%. The results for the first
and third cases are shown in Figure 12, while the results for the second case can be seen in
Figures 13 and 14. The total loss also followed this trend and was much lower in the third
case. What is more, the loss started to increase with the number of steps in setups 1 and 2,
while in the third setup it showed the opposite trend and constantly declined. Given that
the third case yielded the best results, we also show the classification and localization loss
results for this case in Figure 15.

Figure 12. mAP@.50 IOU—the average precision using IOU = 0.5 for the first case (left) and the third
case (right).

Drones 2023, 7, 179 16 of 29

(a) (b)

Figure 13. Mean average precision for small and medium objects when trained on the set of 240
images, of which 120 were positive and 120 negative samples. (a) Detection of small objects. (b)
Detection of medium objects.

(a) (b)

Figure 14. Mean average recall for detecting small and medium bounding boxes from 240 images
after 5000 steps of training. (a) Detection of small objects. (b) Detection of medium objects.

(a) (b)

Figure 15. Classification and localization loss of the SSD model trained on 1989 images for 5000 steps.
(a) Classification loss. (b) Localization loss.

4.2. YOLO Results

After training each model for 2000 steps with the hyperparameters listed in Table 2,
YOLOv4 achieved a better performance than both YOLOv3 and YOLOv4-tiny in all three
cases based on each of the four measurements, with more than two times better results than
YOLOv3 and slightly better results than YOLOv4-tiny. In contrast to YOLOv4, the tiny
version worked the best in the first case when trained only on positive samples, achieving
an mAP of 65.11% and a precision of 0.79. The performances of the first, second, and third
case are presented in Tables 5–7.

Drones 2023, 7, 179 17 of 29

Table 5. Results achieved by all the models in the first case.

Precision Recall F1 Score mAP

YOLOv4 0.83 0.62 0.62 0.69
YOLOv4-tiny 0.79 0.62 0.70 0.65

YOLOv3 0.70 0.30 0.42 0.30

Table 6. Results achieved by all the models in the second case.

Precision Recall F1 Score mAP

YOLOv4 0.86 0.75 0.80 0.71
YOLOv4-tiny 0.83 0.42 0.56 0.63

YOLOv3 0.75 0.25 0.38 0.38

Table 7. Results achieved by all the models in the third case.

Precision Recall F1 Score mAP

YOLOv4 0.60 0.46 0.52 0.51
YOLOv4-tiny 0.40 0.31 0.35 0.32

YOLOv3 0 0 0 0.18

For the purpose of counting the number of detected deer, we tested all of the images at
once, both training and testing, and saved the output as a text file. As already mentioned,
the number of manually annotated bounding boxes was 169, i.e., a human could find 169
deer in the given dataset. In contrast, our model with the highest mAP—YOLOv4 in the
second case—recorded 155 deer in total, while the compressed version found 157 deer in
all the images.

4.3. Generalization and False Positive Results

According to the authors of [21], SSD may encounter higher confusion between classes
with similar object categories, especially for animals. On the other hand, in [17], it is claimed
that YOLOv4 is invariant to background changes and deals better with recognizing objects
in new environments compared to the other detectors. Moreover, YOLO learns the general
representations of objects, so it is much less likely to make errors when applied to new
domains or unexpected inputs. We tested both of these statements by adding new images
to our testing set that contained other animals of similar sizes and colors to our deer class.
Images from the Verschoor Aerial Cow Dataset mentioned in Section 1, as well as some
images from the internet, which were labeled for reuse, were used to test the generality
of the CNN in a broader scope of image conditions. We used the trained algorithms as-is
and only applied them on novel test images. We confirmed the invariance of YOLOv4 to
differences in the background but not to different animal species. This model was able to
successfully recognize the deer class in all additional images, despite a large difference in
the background. However, it mistook other animals for deer, e.g., cows and elephants. For
our purposes of counting deer in hunting ground areas where there are no other classes
of animals, this did not represent much of a problem, as both YOLOv4 and YOLOv4-tiny
were able to successfully detect almost all deer in the images. We therefore concluded
that the algorithms developed in this work could be applied in other settings, i.e., for the
detection of other animal species and in variable background scenes. For example, YOLOv4
detected almost every cow from the Verschoor Aerial Cow Dataset despite a large change
in the background from shades of gray in the forest environment to green meadows. A few
characteristic examples are presented in Figure 16.

Drones 2023, 7, 179 18 of 29

Figure 16. Results of YOLOv4 when applied to new images with different backgrounds to those in
the training set.

5. Discussion

After observing the results for the SSD in all three cases, we determined that the best
performance was achieved in the third case, with the most data available. The explanation
for why the SSD performed much better in the third case, especially compared to the other
models, lay in the use of hard negative mining. When the default box system was used
in the SSD, the number of negative matches was much larger than the number of positive
matches. In this case, we trained the model to learn the background space rather than detect
objects, and this impeded the training. To overcome this, instead of using all the negatives,
the SSD sorted these negatives by their calculated confidence loss and then picked the
negatives with the highest loss and made sure that the ratio between the selected negatives
and positives was at most 3:1. This led to faster and more stable training, as well as a lower
class imbalance.

In the case of YOLOv4, the best results were achieved in the second case, as suggested
by the authors of that model, who inspired the idea for the three evaluation cases by stating
that the optimal situation was for the model to have as many negative samples as positive.
YOLOv4 performed slightly better in the second case, with a 1.24% higher mAP and a 3%
better precision. Although the difference was not significantly large, our model was trained
on only 2000 steps. We suspect that the difference would be higher for a higher number
of classes and, therefore, more training steps. The changes in the other measures were
proportional to the changes in the mAP value and precision. The loss and mAP values
during the training of YOLOv4 in the first case are shown in Figure 17.

Drones 2023, 7, 179 19 of 29

Figure 17. Loss and mAP performance during the training of YOLOv4 in the first case.

We noticed that the highest mAP was achieved around the 1200th step, after which
it fluctuated. However, the model saved the weight periodically at each 1000th step, so
for the testing we chose the weight file with the highest mean average precision. The first
calculation of the mAP was carried out around the 1000th step. Figure 18 shows the training
results for the third version of YOLO in the first (a) and second (b) cases.

Drones 2023, 7, 179 20 of 29

(a)

(b)

Figure 18. Representations of loss and mAP values during the training of YOLOv3 in the first (a) and
second (b) cases.

The reason for the poor results in mAP and recall was due to the large number of false
negative results. During the training of the first case, we recorded 16 false negative detections,
while only 7 true positive and 3 false positive detections were recorded in the first case. In
the third case, there were no true positive cases, which was why all precision, recall, and F1
score values were calculated to be zero. We could conclude that YOLOv3 performed very
badly when there were many negative samples. In order to obtain the bounding box during
the testing phase, the threshold was lowered to 0.3 and even to 0.1 in some cases. These
low confidence scores are shown in Figure 19. We can see that the confidence score in the
first image was only 0.11, in which case the threshold had to be lowered to 0.1, while in the
second image, the confidence of prediction was 0.41. These values were significantly lower
compared to the other models, which predicted the same objects with confidence scores of
up to 0.95.

Drones 2023, 7, 179 21 of 29

Figure 19. Illustration of bounding boxes and confidence score predictions of YOLOv3 in the second
case, when it achieved the highest mAP.

The performance of the compressed YOLOv4 is shown in Figures 20 and 21 for all
three cases. Even though YOLOv4-tiny achieved better precision in the second case, when
the negative samples were added, its recall was much higher in the first case, while the
precision was only 0.04% lower. In the counting context, recall was more important, as it
measured how many of the deer were detected, whereas precision measured how confident
one could be that the detected object was actually a deer. In general, the recall was lower
than the precision in each case, which suggested that within the detected objects there were
more true positive than false positive detections. Given that the training time of this model
was very short and the results were as favorable as in YOLOv4, we concluded that this
model worked the best for the given problem.

The fact that deep CNNs could actually decrease the accuracy in the case of small and
medium objects, as all the relevant information disappeared, could explain why YOLOv4-
tiny achieved such good results and real-time performance, given its structure. That is,
the compressed YOLOv4 comprises only 21 convolutional layers, as opposed to the 110
used in YOLO4 and the 75 layers in YOLOv3. Moreover, except for YOLOv4-tiny, which
yielded high confidence scores even for small objects, all the models were less confident
when predicting small objects compared to medium objects. From Figures 13 and 14, we
can see that the mAP score for medium objects was much higher than for small objects. The
same was true for the recall. No large bounding boxes were detected during the training.

Drones 2023, 7, 179 22 of 29

(a)

(b)

Figure 20. Representations of loss and mAP values during the training of YOLOv4-tiny in the first
two setups, with a different number of training images. In the first case (a), the highest mAP achieved
was 65.11%, while in the second case (b) that value was slightly lower at 63.00%. The loss value
remained low at all times. (a) Setup 1. (b) Setup 2.

Another upside of the compressed YOLOv4 structure was its very fast training speed.
The training time of the YOLOv4 model was approximately 8 h when trained on 108 images.
This time was doubled in the third case, when the model was trained on 1990 images. On
the other hand, the training of YOLOv4-tiny took a maximum of only 2 h for both cases.
Therefore, even though YOLOv4 performed slightly better than its compressed version,
YOLOv4-tiny had a training speed up to eight times faster; hence, it was better in terms
of real-time performance. Taking this into account, the differences in precision and mAP
values are negligible if one is in need of fast results.

Drones 2023, 7, 179 23 of 29

Figure 21. Representations of loss and mAP values during the training of YOLOv4-tiny in the setup
with the highest number of training images. Chart shows poor performance of the model due to the
large number of negative samples. The loss value remained low.

Moreover, in [30], the authors stated that increasing the image size from the default of
416 × 416 to any larger number that is a multiple of 32 would increase the precision. To
extend our research, we conducted an exploratory analysis of the performance of YOLOv4-
tiny in several new cases, due to its fast training time. We trained this model using images
with input sizes of 512 × 512 and 608 × 608 and confirmed these authors’ statement with
our results. The charts of these training processes are shown in Figure 22. Increasing the
network resolution to 512 × 512 yielded an mAP value of 68.87%, which was 3.76% higher
than the highest value for the 416 × 416 images. The precision also increased from 0.79 to
0.85, which was among the highest precision values obtained in our work. Increasing the
resolution even more improved the results as well. The result obtained for mAP was only
slightly lower at 68.18%, but all the other measures—precision, recall, and F1 score—were
improved, with values of 0.86, 0.60, and 0.71, respectively. After the testing of the model,
we were able to obtain the bounding boxes with a confidence score of up to 0.99. In all five
cases, the tested loss retained an acceptably low level.

Finally, from Tables 5–7, we noticed that all detectors obtained better results for the
first and second setups than for the third setup, e.g., with respective mAP values of 72.35%
and 50.52% for YOLOv4. This showed that introducing too many negative samples led to a
loss in performance in all cases.

Drones 2023, 7, 179 24 of 29

(a)

(b)

Figure 22. Charts of the YOLOv4-tiny training with the network resolution increased to 512 × 512 (a)
and 608 × 608 (b).

5.1. Challenges

Dealing with the detection of small target objects was a challenging task, in which we
faced many issues. One of the main problems was the diversity of the input images, as
shown in Figure 23. For instance, images could have different resolutions and different
sizes, and small objects could be overlapped by other objects. When this happened, the
model usually produced a false negative prediction, i.e., not detecting a deer when there
was in fact one present.

Drones 2023, 7, 179 25 of 29

Figure 23. Example of the image diversity of our dataset. There were huge variations in the back-
ground, with illumination differences due to weather, season, and shadows.

Two such examples can be found in Figure 24. Due to the overlap between the UAV
images, it might occasionally be possible for one animal to appear in multiple images,
producing an error in the final count. Furthermore, if seen from above, animals often tend
to be hard to distinguish from various stationary objects such as tree trunks, rocks, and dirt
mounds.

Figure 24. Illustration of false negative predictions of YOLOv4 (left) and SSD (right) models. We can
see that this could happen when the object appeared blurry (as in the left case) or when the animal
was overlapped by branches or in motion (as in the right case).

What is more, in images this large, it was often not possible for the naked eye to detect
objects of interest, as shown in Figure 25. That is, to achieve a high performance, the images
needed to be analyzed at the pixel or small-region level. However, due to the low contrast
and cluttered images, it became difficult to identify whether a particular region or pixel
based on local information represented an animal or the background. Given that one deer
in an image with a size of 4000× 3000 occupied only up to 500 pixels, and that some images

Drones 2023, 7, 179 26 of 29

contained only one deer, after the tiling of the image, the extremely small objects appeared
much more blurred, since they contained fewer pixels.

Figure 25. Example of small target objects in our input images. Given an image this large, it is difficult
to locate and recognize the animal, for both humans and machines.

Additional challenge of class imbalance can occur in some models that have back-
ground as a class. In general, this problem occurs when some classes appear much more
frequent than the others. In the case of this study, where we dealt with only one class, we
encountered this problem only with the background class in specific models. Models such
as SSD treated the background as class 0, while deer were enumerated as class 1. In this case,
using images with sizes of at least 4000 × 3000 pixels, the prominence of the background
class was substantially greater. We made a distinction between these two classes during the
labeling process. While drawing the bounding boxes, we made a separation between the
foreground (the objects) and the background (everything else). The bounding box was then
a rough estimation of the foreground and the background, given that it had a rectangular
shape. To address the problem of class imbalance, we applied the tiling function described
in Section 3.3.

Another problem that we encountered during this work was the small size of the
dataset. However, with the development of the state-of-the-art pre-trained models, the need
for large datasets has been reduced using different techniques, such as transfer learning.
Therefore, by using pre-trained weights, we were able to build a reliable model using a
relatively small custom dataset.

6. Conclusions

In this paper, we presented models that work on UAV images and can assist humans
in counting and monitoring wild animals. This task is of central importance to many
environmental, as well as economic, issues. Four deep learning convolutional networks
were trained to recognize and count deer in the Plavna hunting ground, in order to preserve
an optimal number at all times. We used pre-trained weights and further trained these
models on our own data. The results showed that the CNN managed to yield high-
performance predictions, even on images this large. It also demonstrated a high accuracy,
comparable to human detection capabilities. The animal detection with the You Only Look
Once algorithm achieved a precision of 86%, with an mAP of up to 70.45%. The overall
mean average precision of all the models in the optimal setup was in the range of 65–70%,
except for YOLOv3, which reached only 0.38%. The highest accuracy, 70.45%, was achieved
with the fourth version of YOLO in the second setup, that is, when there was an equal

Drones 2023, 7, 179 27 of 29

number of positive and negative samples. However, even though the compressed version
yielded somewhat lower accuracy, with an mAP of 68.87%, when the network resolution
was increased, the training, testing, and counting processes were significantly faster. This
model also outperformed the other tested models in the counting process, with 157 out of
169 deer detected. Although the models were trained to recognize only one class, deer, the
process is easily extendable to detect and track other types of animals, provided that there
are sufficient training data. This study also showcased the feasibility of using UAV imagery
in combination with CNNs as a promising wildlife surveying technique. In addition, we
showed that it is possible to generalize detection to populations outside of the site of the
training data. By utilizing this information, more data from diverse UAV images could be
gathered to improve the performance of the models.

Future work will include experiments using this method on other animal databases.
Instead of SSD300, an SSD512 model could be trained, as increasing the input size (in this
case from 300 × 300 to 512 × 512) could help improve the detection of small objects. Based
on the authors’ suggestions, we found that this model worked better on smaller objects
than SSD300. Another similar suggestion for future work came from the authors of the
YOLO network, who recommended increasing the resolution of the input images to 512 ×
512 or 608 × 608, which we tested only for the YOLOv4-tiny model. Our results showed
a slight increase in both the precision and mean average precision of YOLOV4-tiny, and
we believe the same would apply for YOLOv4. Given that YOLOv4 yielded a higher mAP,
future work should include training this model on larger image sizes as well. We also
recommend trying the newest version of You Only Look Once (version five), as well as its
compressed version, which showed promising results in related works.

Future work will also cover the problem of class imbalance. An initial solution to over-
come the imbalance problem might be to artificially balance the dataset by oversampling,
i.e., repeating each animal instance to match the total number of background locations.
While this has been shown to work well for other tasks, in some cases it can cause the
CNN to overfit. The inverse is also a possibility, as well as undersampling, which involves
reducing the number of background samples to match the number of other classes. The
drawback of this method is that it can reduce the model’s ability to learn the variability of
the background, which leads the model to misidentify everything that looks even remotely
similar to an animal.

Author Contributions: Conceptualization, B.B., B.T., and O.M.; methodology, O.M., B.P., A.B., and
K.R.; software, K.R. and B.P.; formal analysis, M.V. and A.B.; investigation, B.I. and M.V.; resources,
B.I. and M.V.; data curation, K.R. and B.I.; writing—original draft preparation, K.R.; writing—review
and editing, B.B., O.M., B.I., and B.P.; supervision, O.M. and V.C.; project administration, B.B., V.C.,
and A.B.; funding acquisition, B.T., B.B., and V.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is supported through ANTARES project that has received funding from the
European Union’s Horizon 2020 research and innovation programme under grant agreement SGA-
CSA. No. 739570 under FPA No. 664387 - https://doi.org/10.3030/739570. The authors acknowledge
financial support from the Ministry of Education, Science and Technological Development of the
Republic of Serbia (Grant No. 451-03-68/2022-14/200117 and 451-03-47/2023-01/200358).

Data Availability Statement: Protected by the NDA.

Acknowledgments: The authors wish to thank Vojvodinašume for their generous contribution in
organizing the field scanning and providing practical insights into the observed problem.

Conflicts of Interest: No potential conflict of interest is reported by the authors.

https://doi.org/10.3030/739570

Drones 2023, 7, 179 28 of 29

Abbreviations

The following abbreviations are used in this manuscript:
UAV Unmanned aerial vehicle
YOLO You Only Look Once
SSD Single Shot Multibox Detector
CDFD Context-aware Dense Feature Distillation
mAP Mean average precision
CNNs Convolutional neural networks
CDFD Context-aware Dense Feature Distillation
AI Artificial intelligence
FPS Frames per second
NMS Non-maximum suppression
API Application programming interface
ROIs Regions of interest
TP True positive
TN True negative
FP False positive
FN False negative
IOU Intersection Over Union

References
1. Chamoso, P.; Raveane, W.; Parra, V.; González, A. UAVs applied to the counting and monitoring of animals. In Proceedings of the

Ambient Intelligence-software and Applications, Salamanca, Spain, 4–6 June 2014; Springer: Cham, Switzerland, 2014; pp. 71–80.
2. Prosekov, A.; Kuznetsov, A.; Rada, A.; Ivanova, S. Methods for monitoring large terrestrial animals in the wild. Forests 2020,

11, 808.
3. Kellenberger, B.; Marcos, D.; Tuia, D. Detecting mammals in UAV images: Best practices to address a substantially imbalanced

dataset with deep learning. Remote. Sens. Environ. 2018, 216, 139–153.
4. Gemert, J.C.v.; Verschoor, C.R.; Mettes, P.; Epema, K.; Koh, L.P.; Wich, S. Nature conservation drones for automatic localization

and counting of animals. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–7 September
2014; Springer: Cham, Switzerland, 2014; pp. 255–270.

5. Darshanraj N, P.K. Animal Counting and Detection Using Convolutional Neural Network. Int. Res. J. Eng. Technol. (IRJET) 2020,
7, 7.

6. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. Scaled-YOLOv4: Scaling Cross Stage Partial Network. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), online, 19–25 June 2021; pp. 13029–13038.

7. Rosli, M.S.A.B.; Isa, I.S.; Maruzuki, M.I.F.; Sulaiman, S.N.; Ahmad, I. Underwater animal detection using YOLOV4. In
Proceedings of the 2021 11th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), IEEE,
Penang, Malaysia, 27–28 August 2021; pp. 158–163.

8. Jiang, Z.; Zhao, L.; Li, S.; Jia, Y. Real-time object detection method based on improved YOLOv4-tiny. arXiv 2020, arXiv:2011.04244.
9. Schütz, A.K.; Schöler, V.; Krause, E.T.; Fischer, M.; Müller, T.; Freuling, C.M.; Conraths, F.J.; Stanke, M.; Homeier-Bachmann, T.;

Lentz, H.H. Application of YOLOv4 for Detection and Motion Monitoring of Red Foxes. Animals 2021, 11, 1723.
10. Duporge, I.; Isupova, O.; Reece, S.; Macdonald, D.W.; Wang, T. Using very-high-resolution satellite imagery and deep learning to

detect and count African elephants in heterogeneous landscapes. Remote. Sens. Ecol. Conserv. 2021, 7, 369–381.
11. Gu, L.; Fang, Q.; Wang, Z.; Popov, E.; Dong, G. Learning Lightweight and Superior Detectors with Feature Distillation for

Onboard Remote Sensing Object Detection. Remote. Sens. 2023, 15, 370.
12. Han, L.; Tao, P.; Martin, R.R. Livestock detection in aerial images using a fully convolutional network. Comput. Vis. Media 2019,

5, 221–228.
13. Gomez, A.; Diez, G.; Salazar, A.; Diaz, A. Animal identification in low quality camera-trap images using very deep convolutional

neural networks and confidence thresholds. In Proceedings of the Advances in Visual Computing: 12th International Symposium,
ISVC 2016, Part I, Las Vegas, NV, USA, 12–14 December 2016; Springer: Cham, Switzerland, 2016; pp. 747–756.

14. Verschoor, C.R. Verschoor Aerial Cow Dataset. 2013. Available online: https://isis-data.science.uva.nl/jvgemert/
conservationDronesECCV14w/ (accessed on).

15. Verma, G.K.; Gupta, P. Wild animal detection using deep convolutional neural network. In Proceedings of the 2nd International
Conference on Computer Vision & Image Processing, Hong Kong, China, 29–31 December 2018; Springer: Cham, Switzerland,
2018; pp. 327–338.

16. Hong, T.; Liang, H.; Yang, Q.; Fang, L.; Kadoch, M.; Cheriet, M. A Real-Time Tracking Algorithm for Multi-Target UAV Based on
Deep Learning. Remote. Sens. 2022, 15, 2.

17. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.

https://isis-data.science.uva.nl/jvgemert/conservationDronesECCV14w/
https://isis-data.science.uva.nl/jvgemert/conservationDronesECCV14w/

Drones 2023, 7, 179 29 of 29

18. Benali Amjoud, A.; Amrouch, M. Convolutional neural networks backbones for object detection. In Proceedings of the
International Conference on Image and Signal Processing, Marrakesh, Morocco, 4–6 June 2020; Springer: Cham, Switzerland,
2020; pp. 282–289.

19. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788.

20. Yun, S.; Han, D.; Oh, S.J.; Chun, S.; Choe, J.; Yoo, Y. Cutmix: Regularization strategy to train strong classifiers with localizable
features. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2
November 2019; pp. 6023–6032.

21. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the European Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 21–37.

22. Huang, J.; Rathod, V.; Sun, C.; Zhu, M.; Korattikara, A.; Fathi, A.; Fischer, I.; Wojna, Z.; Song, Y.; Guadarrama, S.; et al.
Speed/accuracy trade-offs for modern convolutional object detectors. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7310–7311.

23. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in
context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer:
Cham, Switzerland, 2014; pp. 740–755.

24. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J.
Comput. Vis. 2010, 88, 303–338.

25. Tzutalin, L. Git Code. 2015. Availabel online: https://github.com/tzutalin/labelImg (accessed on April 2020).
26. Wang, C.Y.; Liao, H.Y.M.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. CSPNet: A new backbone that can enhance learning

capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle,
WA, USA, 14–19 June 2020; pp. 390–391.

27. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2015, 37, 1904–1916.

28. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768.

29. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

30. Bochkovskiy, A. Darknet repository.
31. Padilla, R.; Passos, W.L.; Dias, T.L.; Netto, S.L.; da Silva, E.A. A comparative analysis of object detection metrics with a companion

open-source toolkit. Electronics 2021, 10, 279.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github. com/tzutalin/labelImg

	Introduction
	Object Detection Techniques
	You Only Look Once
	Single Shot Multibox Detector

	Materials and Methods
	Data
	Ground Truth
	Methods
	Evaluation Metrics

	Results
	SSD Results
	YOLO Results
	Generalization and False Positive Results

	Discussion
	Challenges

	Conclusions
	References

