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Abstract: This paper proposes a fast cooperative path planning algorithm for multiple UAVs that
satisfies the time–space cooperative constraints, namely, the RRT* algorithm based on heuristic
decentralized prioritized planning (HDP-TSRRT*), which takes into account the simultaneous arrival
time variables of each UAV as well as the avoidance of conflicts and threats. HDP-TSRRT* is a
hierarchical decoupling algorithm. First, all UAV pre-paths are planned simultaneously at the
synchronous decentralized planning level. Second, at the coordination path level, the heuristic
decentralized prioritized planning algorithm (HDP) is proposed to quickly complete the coordination
process of the path planning sequence. This strategy assigns reasonable and robust priority to all
UAVs based on the performance evaluation function composed of the number of potential collisions
and the violation of collaboration time of the pre-planned path. Third, the time–space cooperative
constraints-based RRT* algorithm (TSRRT*) is proposed at the single-machine cooperative path
planning level. Based on this, the algorithm uses multiple sampling and cost evaluation strategies
to guide the expansion of new nodes, and then optimizes neighborhood nodes based on the time
coordination cost function so as to improve the efficiency of coordination path planning. Simulation
and comparison show that HDP-TSRRT* has certain advantages in algorithm performance.

Keywords: multiple unmanned aerial vehicles (multi-UAVs); time–space cooperative path planning;
decentralized prioritized planning; heuristic prioritization; rapidly exploring random trees (RRT*)

1. Introduction

Recently, with the complexity of unmanned aerial vehicle (UAV) flight environments
and the diversification of mission load requirements, single UAVs with limitations of load
and performance have been gradually replaced by multi-UAV cooperative systems with
obvious advantages in scalability, applicability and robustness [1]. The application of multi-
UAV cooperative systems in civil and military fields (e.g., geophysical survey, wide-area
personnel search and rescue, high-risk target penetration and multi-target detection and
strike) has received widespread attention. Multi-UAV cooperative path planning (MUCPP)
is one of the most basic and important problems to realize the application of multi-UAV
system [2].

This paper is devoted to the study of the MUCPP problem, which refers to planning
collision-free paths from the start to the goal for multiple UAVs that satisfy the cooperative
constraints [3]. As multi-UAV cooperative systems are increasingly used in more complex
tasks, such as single- and multiple-target cooperative attacks or multi-source information
acquisition at the same time, all UAVs need the same minimum estimated time of arrival
(ETA) on the basis of meeting the requirements of path collision avoidance, so as to meet
the mission requirements [4]. In other words, the path planning cooperative constraints
that meet most of the mission requirements of UAVs need to be composed of both spatial
and temporal constraints (i.e., time–space cooperative constraints), which makes it more
difficult to deal with the MUCPP problem.
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Since the configuration space is highly dimensional and the constraints are various
(i.e., environmental, UAV performance and cooperative constraints), solving the MUCPP
problem has become a challenging topic and has received widespread attention. In recent
years, many different methods have been developed to solve this problem. These methods
can be divided into two categories—reactive collision avoidance methods and active
cooperative path generation methods. In reactive collision avoidance methods, each UAV
only considers planning the optimal path that can avoid threats in the environment, without
considering collision avoidance and time coordination with other UAVs. Then, when
the risk of collision with other UAVs is detected, local re-planning is started to avoid
collision [5]. Many algorithms based on reactive collision avoidance methods have been
proposed, such as optimal reciprocal collision avoidance (ORCA) [6], distributed reactive
collision avoidance (DRCA) [7] and some intelligent algorithms (e.g., PRIMAL2 [8] and
co-evolutionary genetic programming [9]). The reactive collision avoidance method has
been widely used in practice because of its fast calculation speed [10]. However, it should
be noted that such algorithms only plan the local collision avoidance path, so they may fall
into the local optimal solution, meaning that the UAV cannot reach the goal. In addition,
this local collision avoidance method struggles to meet the requirements of time–space
constraints at the same time if the time coordination constraint is introduced.

Active cooperative path generation methods are divided into coupling methods and
decoupling methods. Coupling methods usually design only one path planner for multiple
UAVs. The planner includes the start and goal of all UAVs and can plan collision-free
cooperative paths for all UAVs. Some coupling methods based on the reduction method
obtain the cooperative path by simplifying the MUCPP problem to a problem that has
been fully studied, such as linear programming (LP) [11], constraint satisfaction problem
(CSP) [12], etc. In addition, some search-based coupling methods, such as the conflict-based
search (CBS) [13] and incremental cost tree search (ICTS) [14], have also been proposed
to transform the MUCPP problem into a global single-agent path search problem, and
simultaneously generate the cooperative path of all UAVs. The coupling method can
usually find the optimal path. However, with the increase in the number of collisions
between UAVs and the increase in the dimensions and scope of the planning environment,
the calculation time of the cooperative path obtained by the coupling method may increase
exponentially. Furthermore, the coupling method has been proved to have a good effect
when planning the conflict-free paths of multiple UAVs. However, if we want to deal with
the MUCPP problem that meet the time–space cooperative constraints, the computational
time of the algorithm will be further increased due to the introduction of time cooperative
constraints. In addition, game theory-based optimal cooperative path planning has been
deeply studied in recent years. The game-based particle swarm optimization (GPSO)
algorithm [15] develops a hierarchical method based on the framework of game theory
to extend the spherical vector-based particle swarm optimization (SPSO) algorithm [16].
Ref. [17] combines the Stag Hunt game approach with GSPO. These two algorithms can
efficiently find the optimal cooperative path with the formation being maintained and
have good performance. However, we are not sure whether these two algorithms can still
perform well in a large number of UAV formations due to the formation constraints.

On the other hand, decoupling methods plan the path for each UAV and coordinate the
planning order of all UAVs through path coordination methods to obtain the collision free
path, such as hierarchical cooperative A* algorithm (HCA*) [18] and prioritized planning
algorithm (PP) [19]. Among them, the PP algorithm has been widely studied recently
because of its ability to transform the MUCPP problem into the single UAV path planning
problem to quickly and efficiently obtain the cooperative path [20,21]. In the PP algorithm,
the upper planning coordinator assigns different priorities to all UAVs and then uses the
single UAV path planner to plan the path from high priority to low priority. Although the
classical PP algorithm can obtain the cooperative path quickly, the centralized framework
of PP can be further improved to raise the computational efficiency. The authors of [22,23]
proposed an asynchronous decentralized prioritized planning algorithm (ADRPP), which
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can make reasonable use of distributed computing resources to achieve faster algorithm
convergence. Compared with the centralized prioritized planning algorithm (i.e., classical
PP algorithm), the asynchronous decentralized prioritized planning algorithm (ADRPP)
proposed in the literature [22,23] can usually complete the generation of cooperative paths
with fewer cycles. In addition, compared with the synchronous decentralized prioritized
planning algorithm (SDRPP) [24], ADRPP can start the next round of planning without
waiting for all UAVs to complete the planning, so it has higher planning efficiency. However,
ADRPP algorithm does not provide a prioritization approach that can improve efficiency,
so there is some room for improvement. However, the ADRPP and SDRPP algorithm does
not provide a prioritization approach that can improve efficiency, so there is some room for
improvement. In addition, none of the decoupling methods have been used in in-depth
research on the cooperative problem of multiple unmanned aerial vehicles simultaneously.
However, after transforming the cooperative path planning problem of multiple UAVs into
a single path planning problem, the realization of time–space cooperative constraints is
relatively easy and has little impact on the computational efficiency. In addition, decoupling
methods have not been used in in-depth research on the MUCPP problem that meets the
time–space cooperative constraints. However, it should be noted that after transforming the
MUCPP problem into a single-UAV path planning problem, the realization of time–space
cooperative constraints is relatively easy, and the computational efficiency is relatively high.

1.1. Motivation

It can be seen from the analysis that the above algorithms still have some room and
possibility for improvement:

1. In order to meet the needs of most cooperative tasks of multiple UAVs, it is necessary
to introduce the time–space cooperative constraints to deal with the MUCPP. The
above algorithms focus more on spatial conflict avoidance but do not consider spatial
and temporal cooperative constraints at the same time.

2. The reactive collision avoidance methods mainly focus on conflict avoidance in local
areas and struggle to achieve time coordination. The coupling method adds the time
coordination constraint to the path planner of multiple UAVs, which will further
increase the calculation time and reduce the calculation efficiency. The decoupling
method can simplify the MUCPP problem to the single-UAV path planning problem.
Compared with the coupling method, the decoupling method has the possibility of
introducing time-space coordination constraints by adding less computation.

3. In the PP algorithm, if the random prioritization method is adopted, or only the colli-
sion number based on the space cooperative constraint is considered for prioritization,
the calculation efficiency of the algorithm will be reduced, and the calculation time
will be increased.

4. The existing single-UAV path planning algorithms usually take the shortest path as
the optimization standard. Additionally, the RRT* algorithm has been proved to be
able to quickly obtain the optimal solution in high-dimensional planning space [25].
However, the existing RRT* algorithm or its variant algorithms cannot meet the
time–space coordination constraints of UAVs.

Therefore, in combination with the above motivations, this paper introduces the
time–space cooperative constraints into the MUCPP problem so as to meet the needs
of most multi-UAV systems to perform tasks. Meanwhile, the decentralized priority
planning algorithm based on a decoupling method is further improved by combining the
prioritization strategy suitable for time–space cooperative constraints. Furthermore, the
RRT* algorithm is improved in the underlying single UAV planner to meet the time–space
cooperative constraint, so that the path can be quickly planned for each UAV.

1.2. Contributions

In this paper, we propose the HDP-TSRRT* algorithm to solve the MUCPP problem
based on time–space cooperative constraints. HDP-TSRRT* is a decoupled active coopera-
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tive path generation algorithm and adopts a hierarchical architecture. First, HDP-TSRRT*
uses a synchronous decentralized architecture based on the RRT* algorithm to quickly plan
the optimal pre-planning path for each UAV without considering cooperative constraints,
which is the foundation for cooperative planning. Second, in the path coordination level,
the heuristic decentralized prioritized planning algorithm (HDP) is proposed to coordi-
nate the path planning priorities of the multi-UAV. The algorithm ranks the priority of
UAVs by combining the number of potential collisions and the violation of the cooperative
time into a performance evaluation function, which makes the priority allocation more
reasonable and can improve the efficiency of cooperative planning. The algorithm also
uses the asynchronous decentralized prioritized planning framework to coordinate the
path planning of multiple UAVs to further improve the computational efficiency. Third,
the RRT* algorithm based on time–space cooperative constraints (TSRRT*) is proposed
as the execution algorithm of the underlying single-UAV cooperative path planner. The
TSRRT* algorithm designs a cost function based on time constraints to gradually optimize
the path. In the TSRRT* algorithm, the strategy of multiple sampling and cost function
evaluation of optimal sampling proposed in this paper is used to expand the new node,
and the time-constrained cost function is used to update the neighborhood nodes to quickly
plan the path that meets the time–space cooperative constraint for each UAV.

Compared with the existing cooperative path planning algorithm for multi-UAV, the
HDP-TSRRT* proposed in this paper mainly includes the following contributions:

1. A decoupled UAV cooperative path planning hierarchical framework is designed,
which is composed of a synchronous decentralized pre-planner, an asynchronous
decentralized prioritized planning path coordinator based on heuristic prioritiza-
tion, and a single-UAV cooperative path planner based on time–space coordination
constraint RRT*, to quickly plan a UAV’s time–space cooperative path.

2. In the path coordinator, a heuristic prioritization approach based on time–space
coordination constraints is proposed to sort the UAVs, so as to ensure the rationality
of the prioritization and reduce the calculation time of path coordination.

3. A cost function based on time coordination constraints is established to optimize the
planned path of UAVs so as to ensure that the single-UAV cooperative path planner
can find the path satisfying the time coordination constraint.

4. In the process of sampling and new node expansion of the single-UAV cooperative
path planner, a multi-sampling and cost function evaluation strategy is proposed to
expand the new node to improve the efficiency of cooperative path planning.

5. In the tree structure generation of the single-UAV cooperative path planner, a neighbor-
hood node update method based on the time coordination cost function is proposed
to guide the path generation meeting the time–space coordination constraints.

The rest of this paper is organized as follows: In Section 2, we introduce the related
works; Section 3 describes the MUCPP problems based on the time–space coordination
constraints; Section 4 introduces the HDP-TSRRT* algorithm in three aspects; Section 5
provides us with the simulation of the proposed algorithm and discusses the results; and
Section 6 describes some conclusions and future work.

2. Related Works

This section provides a brief introduction to the classical PP algorithm and the classical
RRT* algorithm.

2.1. Prioritized Planning Algorithm

PP is an algorithm that can quickly solve the cooperative path planning problems,
which was first proposed in [26]. Algorithm 1 gives the framework of classical PP. The
classical PP algorithm assigns different priorities to each robot. Then, the path planning
of each robot is carried out from the highest priority 1 to the lowest priority n. During
ith iteration, PP algorithm computes the path σi of the robot i that not only avoids the
threats in the environment, but also the time–space occupied area set Hi occupied by robots
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1, . . . , i− 1. The path of robot i is computed in function A ∗(X , Hi), which returns a path
for robot i such that the robot avoids not only the threats in the environment, but also the
paths that high-priority robots take. If the required path cannot be planned, the algorithm
stops. Otherwise, the algorithm will continue to be executed until the robot with the lowest
priority completes the planning.

Algorithm 1: Classical Prioritized Planning Algorithm

01 : X : Environment; Hi ← ∅
02 : for i = 1 . . . n
03 : σi ← A ∗ (X , Hi)
04 : if σi = ∅
05 : report failure and terminate
06 : end if
07 : Hi ← Hi ∪ σi(t)
08 : end for

In the classic PP, the A* algorithm [27] is used to complete the cooperative path
planning of a single UAV. However, as a grid-based search algorithm, the planning time of
A* usually increases exponentially with the increase in spatial dimensions and is rarely used
in UAV path planning in large three-dimensional environments. Meanwhile, some local
obstacle avoidance planning algorithms, such as artificial potential field (APF) [28] and
interfered fluid dynamic system (IFDS [29]), may encounter the problem of local minima.
Intelligent algorithms, such as genetic algorithm (GA) [30] and ant colony optimization
(ACO) [31] algorithm, may only find sub-optimal solutions when there are complex or
many constraints. In addition, the classic PP algorithm does not specify the approach of
prioritization. However, the prioritization approach is one of the important factors affecting
the quality and efficiency of the coordination path. Therefore, the design of prioritization is
particularly important while improving the PP algorithm framework.

2.2. RRT* Algorithm

On the basis of the RRT algorithm [32], which can only guarantee the probability
completeness, Karaman and Frazzoli proposed the RRT* algorithm [33], which introduced
the neighborhood node selection mechanism, thus ensuring both the probability complete-
ness and the asymptotic optimality. The framework of the goal-guided RRT* algorithm
is shown in Algorithm 2. During ith iteration of tree growth, RRT * algorithm generates
sampling node xrand through the goal node bias strategy (i.e., the probability number P
is randomly generated between 0 and 1. If P > 0.1, the xrand is generated by random
sampling; otherwise, the xrand is set as the goal gi). Then, the algorithm selects the node
xnearest nearest to xrand in the tree through function Nearest. After that, the new node xnew

is obtained by extending a certain distance along the
→

xnearestxrand through the function
Steer. If edge (xnew, xnearest) meets the collision checking constraints (i.e., obstacle_free),
the node xnew will be added to the tree T . Then, the function Near xnew as the center and γ
as the radius construct the neighborhood xnew, which selects the neighborhood node set
Xnear. Then, the parent node xnew.parent with the lowest cost of xnew is re-selected among
all neighbor nodes xnear. Then, compare the cost between xnew as the potential parent node
of all neighborhood nodes and the current parent node of neighborhood nodes. If the cost
becomes low, the parent node of xnear is updated to xnew. The algorithm continues to iterate
to expand the tree structure until a tree node falls into the goal region, and the path can be
found retroactively.
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Algorithm 2: RRT* Algorithm

01 : initialization Tree node :T .V← {si}; Tree edge : T .E← ∅
02 : for i = 1 to n
03 : if P :random([0, 1])< 0.1
04 : xrand ← gi
05 : else
06 : xrand ← Sample(X )
07 : end if
08 : xnearest ← Nearest(xrand)
09 : xnew ← Steer(xnearest)
10 : if obstacle_free(xnew, xnearest)
11 : T .V← T .V∪ {xnew}
12 : end if
13 : Xnear ← Near(xnew, T .V, γ)
14 : for all xnear ∈ Xnear
15 : if obstacle_free(xnear, xnew)∧

CostT (si, xnear) + CostT (xnear, xnew) < CostT (si, xnew)
16 : xnew.parent← xnear
17 : end if
18 : end for
19 : for all xnear ∈ Xnear
20 : if obstacle_free(xnew, xnear)∧

CostT (si, xnew) + CostT (xnew, xnear) < CostT (si, xnear)
21 : xnear.parent← xnew
22 : end if
23 : end for
24 : end for

The RRT* algorithm is widely used in the path planning of single UAVs due to its
advantages of fast solutions in highly dimensional spaces. However, for the MUCPP
problem, it is insufficient to rely only on RRT*, and the relevant research is relatively small.
It is noted that the RRT* can introduce space cooperative constraints into the collision
checking process, thus highly combining with the PP algorithm. Therefore, there are many
possibilities and advantages to improve the RRT* to find the single-UAV cooperative path,
which can meet the time–space cooperative path planning needs and effectively improve
the efficiency of planning.

Therefore, this paper mainly studies the decoupling cooperative path planning ap-
proach based on PP and RRT*.

3. Problem Formulation

Consider the UAVs group UAVN : (UAV1, . . . , UAVn) composed of n UAVs flying
in the planned space X ⊆ R3 composed of a three-dimensional battlefield environment.
In a cooperative flight, all UAVs in UAVN take off at the same time and reach the goal at
the same time. Any UAVi needs to start flying from its start node si and avoid all threats,
including radar, anti-aircraft gun, missile and terrain in flight (the model of the threats is
described in our previous work [34]), as well as the remaining UAVN/i : UAVN\UAVi, and
finally reach its goal node gi.

Since the start node or goal node of multiple UAVs may overlap, we assume that when
different UAVs are at the same start node or goal node, their positions do not coincide,
and there will be no conflict. In addition, we assume that each UAV in the group has
an independent path planner and wireless communication equipment. Meanwhile, we
assume that the communication equipment is completely reliable and has no delay.
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3.1. Cooperative Path Planning Constraints of UAVs

The related constraints of UAV cooperative path planning are mainly divided into
three categories, namely UAV performance constraints, planning space constraints and
multi-UAV cooperative constraints. Firstly, the performance constraints of UAV are defined
as follows.

1. UAV performance constraints

Assume that the planned path σi of UAVi consists of a set of path node P : {〈p1, . . . , pk
〉|pk = (xk, yk, zk)}. When planning the flight path of the UAV, it is necessary to take into
account the maximum flight distance Lmax, the maximum steering angle φmax and the
climbing/diving angle γmax, as well as the shortest flight distance before steering lmin.
Then, the performance constraints of UAVi can be expressed as [35]:

LUAVi =
k
∑

i=0

√
(xi+1 − xi)

2 + (yi+1 − yi)
2 + (zi+1 − zi)

2 ≤ Lmax∣∣φUAVi

∣∣ = ∣∣∣∣ ωT
i ωi+1

‖ωi‖2·‖ωi+1‖2

∣∣∣∣ ≤ φmax∣∣γUAVi

∣∣ = ∣∣∣arcsin( zi−zi−1
‖ωi‖2

)
∣∣∣ ≤ γmax

lUAVi
= ‖pi+1 − pi‖2 ≥ lmin

(1)

whereωi = [xi − xi−1, yi − yi−1]
T .

2. Planning space constraints

The threat types set in the planning space include terrain threats, which is built by dig-
ital elevation model map (DEM, i.e., the digital expression of terrain surface morphology),
radar, anti-aircraft guns and missiles. Then, the constraints of the planning space on UAVs
can be expressed as: {

zi − z(xi ,yi)DMG
≥ hmin

(pi, pi+1) ∩ Xobs = ∅ (2)

where z(xi ,yi)DMG
represents the terrain threat level when the UAV is at pi, and Xobs repre-

sents other threats.

3. Multi-UAV cooperative constraints

In this paper, we mainly study the MUCPP problem that simultaneously satisfies the
time–space coordination constraints. We first describe the space coordination constraint.

If any two UAVs in UAVN can maintain a certain safety distance Dmin at any time in
flight, then these two UAVs meet the space coordination constraint. Therefore, the space
coordination constraint can be expressed as:

‖σi(t)− σj(t)‖2 ≥ Dmin i, j =1, 2, . . . , k, i 6= j (3)

where σi(t) and σj(t), respectively, represent the positions of UAVi and UAVj at any time t.
In this paper, we assume that all UAVs pass through the planning space at the same velocity.
The path of UAVi is discretized according to the time information to obtain a group of
discrete path nodes. In order to determine the safe distance between UAVs more accurately,
this paper sets the time interval between two adjacent discrete path nodes of UAVi as 0.01s.
The potential collision between UAVi and UAVj is detected by comparing the distance
between two path nodes (i.e., ‖σi(t)− σj(t)‖2) and the minimum safety distance Dmin at
any same time t.

Meanwhile, in order to meet the mission requirements, UAVs need to take off at the
same time and reach their respective goal at the same time to achieve time coordination.
In this paper, we set all UAVs to fly at a constant speed and have the same speed range
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[Vmin,Vmax]—that is, the flight time of any UAV is
[
ti
min = σi/Vmax, ti

max = σi/Vmax
]
. The

time coordination constraint that the UAVN needs to meet is expressed as:

n
∩

i=1

[
ti
min, ti

max

]
6= ∅ (4)

3.2. Cooperative Path Planning Formulation

When dealing with the MUCPP problem, not only the performance constraints and
planning space constraints of a single UAV should be met, but also the coordination
constraints of all UAVs. Firstly, the description of satisfactory path problem of UAVi
is given.

Problem 1. (Satisfying Path Planning of UAVi). In the planning space X , for any UAVi in the
UAVN , a satisfactory path σi is planned for the given start-goal set [si, gi] so that σi meets the
constraint Equations (1) and (2).

If the satisfactory path σi and the satisfactory path σj of any UAVj in UAVN/i meet the
space coordination constraint (i.e., Equation (3)), σi and σj are said to be collision-free. If σi
and σj meet the time coordination constraint (i.e., Equation (4)), C σi and σj are said to be
time-consistent. Then, Problem 2 can be described as follows.

Problem 2. (MUCPP Problem based on time–space coordination constraints). Given the planning
space X , and the start-goal set [s1, g1], . . . , [sn, gn] of UAVN , find the satisfactory path σ1, . . . , σn
of all UAVs, and the σi and σj is collision-free and time-consistent.

4. HDP-TSRRT* Algorithm

In this paper, the HDP-TSRRT* algorithm is proposed to quickly plan the path satisfy-
ing the time–space cooperative constraint of multi-UAV. As a decoupled path coordination
algorithm, the algorithm realizes the path planning of a single UAV and the path coordina-
tion of multiple UAVs in a hierarchical manner. On the basis of finding the pre-planned
path, the heuristic prioritization-based asynchronous decentralized prioritized planning
algorithm (HDP) is used to allocate the cooperative path planning order of all UAVs. Then,
the cooperative path planning of each UAV from high priority to low priority is completed
by using the proposed TSRRT* algorithm so that the path can meet the time–space con-
straints at the same time. The HDP-TSRRT* algorithm will be introduced in detail through
the overall framework of the HDP-TSRRT* algorithm, the HDP algorithm and the TSRRT*
algorithm in the following subsections.

4.1. Overall Framework

The algorithm is mainly divided into three levels, i.e., the pre-planning level, the
planning coordination level and the single-UAV cooperative path planning level. The
pseudocode of HDP-TSRRT* is shown in Algorithm 3.



Drones 2023, 7, 170 9 of 28

Algorithm 3: HDP-TSRRT* Algorithm

1 : initialization Ti, T i ← ∅, σi, σi ← ∅, [s1, g1], . . . , [sn, gn], Hi ← ∅
/ ∗ pre-planning level ∗ /

2 : σi ← RRT ∗ (X , Ti, si, gi)/ ∗ Synchronous execution of all UAVs ∗ /
3 : costi ← Length(σi)
4 : wait for all UAVs to finish planning their own σi and costi
5 : σ ← (σ1, . . . , σn)
6 : t← (cost1/v1, . . . , costn/vn)
7 : tco ← max t
8 : σ1 ← arg max(Length(σ)/v)

/ ∗ planning coordination level & single−UAV cooperative path planning level ∗ /
9 :
〈
UAV1, . . . , UAVN〉← Heu_Prioritization(σ)

10 : Hi ←
(

Hi ∪
(
UAV1, σ1(t)

))
11 : σi ← TSRRT ∗

(
X\Hi, T i, si, gi, tco

)
/ ∗ single−UAV cooperative

path planning level ∗ /

12 : communicate Coor_message
(

UAVi, σi(t)
)

13 : wait forreceiving Coor_message of other UAVs

14 : while receiving Coor_message
(

UAVk, σk(t)
)

15 : if k < i
16 : Hi ←

({
Hi\

(
UAVk, σk′(t)

)}
∪
(

UAVk, σk(t)
))

17 : σi∗ ← TSRRT ∗
(
X\Hi, T i∗, si, gi, tco

)
/ ∗ single−UAV cooperative

path planning level ∗ /
18 : if σi∗ 6= σi

19 : σi ← σi∗

20 : communicate Coor_message
(

UAVi, σi(t)
)

21 : else
22 : σi ← σi

23 : keep silent
24 : end if
25 : end if
26 : if σ1, . . . , σn are collision− free and time− consitent
27 : terminate HDP-TSRRT∗

28 : else
29 : continue
30 : end if
31 : end while

The definitions of some symbols appearing in Algorithm 3 are as follows. Ti is the tree
structure of any UAVi . T i is the tree structure of UAVi with priority of i. σi is the current
path of any UAVi. σi is the current path of UAVi with priority of i. Hi is the time–space
occupied area set occupied by UAVs 1, . . . , i− 1. costi is the length of the path σi, which is
calculated by function Length. σ and t are the path set and ETA set of UAVs, respectively.
tco the minimum ETA of the UAVs group.

〈
UAV1, . . . , UAVN

〉
represents the priority

ranking set of all UAVs obtained through the function Heu_Prioritization(σ). The function
Coor_message contains the path information of the UAVk with priority k. obstacle− free
and time− consitent are defined in Equations (3) and (4).

Figure 1 shows the overall framework of HDP-TSRRT * algorithm. As shown in
Figure 1, the HDP-TSRRT * algorithm can be divided into three levels.
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1. The pre-planning level

This level mainly includes the synchronous decentralized pre-planning process, which
plans the initial optimal path for each UAV to obtain the shortest ETA and the initial
parameters of the HDP algorithm. In this part, the UAVs do not need to consider the
time–space coordination constraints when planning the path, and instead, only consider
the performance constraints and planning space constraints of UAVs and use the RRT*
algorithm (i.e., Algorithm 1) for optimal path planning. After each UAV obtains its optimal
path, the path length is obtained through the Length(σi) function, and then the flight
time set t : (t1, . . . , tn) of all UAVs is obtained. It should be noted that all UAVs use the
RRT* algorithm for optimal path planning, which means that all UAVs obtain the shortest
flight time. However, for the MUCPP based on time–space coordination constraints, if the
shortest flight time tj,min of UAVj is less than the shortest flight time ti,min of the UAVi, only
by increasing the tj,min to make it the same as the ti,min can the two UAVs achieve time
coordination. Therefore, it is necessary to take the maximum time in the flight time set t as
the ETA, tco, and set the UAV mapped by tco as the UAV with the highest priority to avoid
repeated planning of the same path.

2. The planning coordination level
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This level mainly includes the coordination process of multi-UAV path planning
priorities, which uses the proposed HDP algorithm to improve the efficiency of path
coordination. First, the priority assignment process from 2 to n of all UAVs based on the
heuristic prioritization approach is completed through the Heu_Prioritization(σ) function.
Since the cooperative constraints of UAVs are divided into two aspects, space and time,
a priority performance evaluation function composed of potential collision times and
cooperative time violations is designed in the algorithm. After Heu_Prioritization(σ)
outputs the priority order of all UAVs, the asynchronous decentralized prioritized planning
is used to coordinate the generation of time–space cooperative paths. In the asynchronous
decentralized prioritized planning, each low-priority UAV needs to avoid the time–space
occupied area set Hi =

(
UAVi, σi(t)

)
occupied by the high-priority UAV. In other words,

the time–space area set of low-priority UAVs should contain high-priority paths to avoid
collision with them.

3. The single-UAV cooperative path planning level

This level mainly includes the process of cooperative path planning for a single UAV,
which is realized by the TSRRT* algorithm. Under the framework of the HDP algorithm,
UAVs regard the time–space occupied area occupied by other UAVs as threats and use the
TSRRT* to plan the path satisfying the time–space coordination constraint for each UAV.
The TSRRT* algorithm evaluates the generated path through the cost function based on
the time coordination constraint so that the planned path can meet the time coordination
constraint on the basis of no collisions. In addition, we effectively reduce the computational
loss through the proposed multiple sampling and cost function evaluation strategy.

4.2. HDP Algorithm

This section describes the HDP algorithm from two aspects: the heuristic prioritization
approach and the framework of the HDP algorithm.

4.2.1. Heuristic Prioritization Approach

The priority level of a UAV affects the robustness and efficiency of cooperative path
generation. When the prioritized planning algorithm is used for the path coordination
of multiple UAVs, the inappropriate priority order will not only reduce the efficiency of
cooperative path planning but also cause the failure of cooperative path planning. To solve
this problem, the heuristic prioritization approach is proposed in this paper.

Since the algorithm proposed in this paper is mainly used for path planning of mul-
tiple UAVs that satisfy the time-space coordination constraints, the design of heuristic
prioritization approach should take into account the impact of both time and space co-
ordination constraints. For the time coordination constraint, if the pre-planned path of
UAVi is significantly different from the minimum ETA time to be met, it is obvious that the
cooperative re-planning path of the UAVi will also change more. Furthermore, because the
re-planning path of the UAVi changes greatly, the change of its space and time occupied
area set will be greater, and the impact on other UAVs will be greater. Therefore, we need to
set the priority of the UAVi higher, so that the UAVi can carry out cooperative re-planning
before other UAVs to reduce the impact on other UAVs. For the space coordination con-
straints, which are similar to the time coordination constraints, if the number of potential
collisions between the pre-planned paths of UAVi and other UAVs is more, the path of
the UAVi will change more during the collaborative re-planning, which means that more
other UAVs will be affected. Therefore, if the priority of the UAVi is assigned higher, the
less other UAVs will be affected by its re-planning. It can be seen from the analysis that
the heuristic prioritization approach based on time–space coordination constraints can
improve the planning efficiency.

In the heuristic prioritization approach, we designed a performance evaluation func-
tion consisting of the number of potential collisions and the amount of cooperative time
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violations of the pre-planned path to assign reasonable priority to all UAVs. The evaluation
function is defined as follows:

f UAVi
hp = λcol fcol(UAVi) + λtime ftime(UAVi)

s.t.λcol + λtime = 1
(5)

where fcol(UAVi) is the space cost function, representing the normalized potential collision
number cost between UAVi and other UAVs. ftime(UAVi) is the time cost function, i.e.,
the normalized violation of UAVi and cooperative ETA tco. The final priority performance
score of UAVi is f UAVi

hp . λcol and λtime are weights.
The purpose of the heuristic prioritization approach is to allocate the priority for

each UAV reasonably, and the performance evaluation function designed will be used
to evaluate the priority level. In addition, it is not difficult to find that the f UAVi

hp of any
UAVi is positively correlated with the number of collisions and the cost of cooperation time
violation. Therefore, we give the prioritization definition of UAVs based on performance
evaluation function as follows.

Definition 1. (Prioritization evaluation based on performance evaluation function) Given a group
of UAVN : (UAV1, . . . , UAVn) and any group of weights [λl , λt] : λl + λt = 1, the performance

evaluation function set
{

N−1
∪

i=1
f UAVi
hp

}
of UAVN is ranked from largest to smallest to generate the

set
{

N−1
∪

i=1
f

UAVi
hp }
→

max→min
, whose elements map the priority of {1, . . . , N} of UAVN in turn.

First, we analyze the calculation process of fcol(UAVi). Based on the space coordina-
tion constraint (Equation (3)), the potential collision number Coli,j between the UAVi and
any other UAVj based on the pre-planned path can be calculated as follows:{

Coli,j ‖σi(t)− σj(t)‖2 < Dmin
0 ‖σi(t)− σj(t)‖2 ≥ Dmin

s.t.j = 1, . . . , N and i 6= j
(6)

Obviously, the number of collisions of the same UAV is zero. In addition, if the number
of collisions between UAVi and UAVj is Coli,j, the number of collisions between UAVj and
UAVi is Colj,i, where Coli,j = Colj,i. From this, the total number of collisions of UAVN can
be determined as:

f all
col =

N
∑

i=1,j=1
Coli,j

2
(7)

Then, the fcol(UAVi) of UAVi can be expressed as:

fcol(UAVi) =

N−1
∑

j=1
Coli,j

f all
col

(8)

For the calculation of cooperative time violation cost ftime(UAVi) based on the time
coordination constraint of UAVi, the path length L0

i needs to be obtained through the
pre-planned path, so as to calculate the ETA time t0

i = L0
i /vi. Then, the ftime(UAVi) is:

ftime(UAVi) =

∣∣tco − t0
i

∣∣
tco

(9)
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It should be noted that there may be a specific situation, i.e., when the performance
evaluation function of some UAVs may be equal, in which the priority of UAVs with equal
fhp can be randomly assigned.

Then, the heuristic prioritization approach framework is shown in Algorithm 4.

Algorithm 4: Heuristic prioritization approach (i.e., Heu_Prioritization(σ))

01 : UAVN−1: UAVN\UAVm

02 : f UAVN−1
hp ← ∅

03 : f all
col ←

N
∑

i=1,j=1
Coli,j

2
04 : for i = 1 to N − 1

05 : f UAVi
hp ← λcol

N−1
∑

j=1
Coli,j

f all
col

+ λtime
|tco−t0

i |
tco

06 : f UAVN−1
hp ← f UAVN−1

hp ∪
{

f UAVi
hp

}
07 : end for
08 : for k = 2 to N
09 : UAVk ← arg max f UAVN−1

hp

10 : f UAVN−1
hp ← f UAVN−1

hp \max f UAVN−1
hp

11 : end for

4.2.2. The Framework of HDP Algorithm

This paper proposes the HDP algorithm, which improves the ADRPP algorithm. The
HDP algorithm introduces a heuristic prioritization approach based on time–space coordi-
nation constraints, which can reasonably prioritize UAVs, thus improving the efficiency
and robustness of path coordination. In addition, in order to deal with the MUCPP problem
based on time–space cooperative constraints, we propose the TSRRT* algorithm in the
single-UAV cooperative path planner of the HDP algorithm, which will be described in
Section 4.3.

The framework of the HDP algorithm is shown in Algorithm 3. First, the priority of the
UAV is ranked by the heuristic prioritization approach (i.e., function Heu_Prioritization(σ)).
Then, any UAVk

i with a priority of k only needs to receive and process the path change
message of the UAVm<k

j with higher priority and response. If receiving the path change

message from the UAVm<k
j , UAVk

i will update the information of the time–space occupied

area Hi to the current path information of UAVm<k
j . After that, UAVk

i checks whether the
planned path based on the current Hi can meet the space–time coordination constraints.
If not, UAVk

i uses the TSRRT* algorithm to re-plan the path that meets the time–space
coordination constraints in combination with the current Hi. Otherwise, UAVk

i does not
need to re-plan the path and keeps the communication silent. The algorithm stops until all
UAVs plan paths that meet the time–space cooperation constraints.

4.3. TSRRT* Algorithm

As a decoupled cooperative path planning algorithm, the HDP-TSRRT* algorithm
needs to carry out path planning for each UAV that meets the time–space cooperative
constraints after using the HDP algorithm to coordinate the planning of multi-UAV. In
addition, it is noted that when the HDP algorithm is used for planning coordination, many
rounds of path re-planning may be required for a single UAV to ensure that all UAVs can
meet the coordination constraints, which is a great challenge to the efficiency of the path
planning algorithm for a single UAV. If the efficiency of path planning is low, it will greatly
increase the planning time of the cooperative path.

Therefore, this paper proposes the TSRRT* algorithm as the single-UAV cooperative
path planning algorithm. The TSRRT* algorithm will be introduced in four parts, i.e., the
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cost function based on time–space coordination constraints, the tree expansion based on
multi-sampling strategy, the neighborhood node optimization approach and the framework
of TSRRT*.

4.3.1. Evaluation of the Cost Function Based on Time-Coordination Constraint

After obtaining the shortest cooperative ETA (i.e., tco), we can obtain the path length
Li

co of any UAVi meeting the time cooperative constraint according to tco, where Li
co = tcovi.

Therefore, in the TSRRT* algorithm, we introduce a new cost function that can constrain the
length of the planned path, i.e., the cost function based on the time coordination constraint,
so as to ensure that the planned path meets the time coordination constraint.

The cost function based on the time coordination constraint is no longer aimed at
minimizing the path length but at minimizing the difference between the actual path length
and the constrained path length. The cost function is defined as follows:

f ∗T (x) = | fT (x)− Lco| (10)

where fT (x) = gT (x) + λhD hD(x). gT (x) represents the actual distance from the start node
si to the current tree node x. hD(x) represents the estimated distance from the x to the
goal node gi, and λhD is the estimated distance coefficient. This paper takes the Euclidean
distance between two nodes as the estimated distance hD(x), where hD(x) = ‖x− gi‖2.

4.3.2. Node Expansion Based on Multi-Sampling Strategy

In the tree structure of the classical RRT* algorithm, the expansion of a new node is
only completed through one sampling. However, due to the large flight environment of
UAVs, even though the generation of sampling points is guided by some offset sampling
methods [36–38], there is still great randomness in the expansion, which affects the effi-
ciency of path planning. For the decoupled cooperative path planning algorithm, the path
planning efficiency of a single UAV is crucial.

Therefore, in order to ensure the efficiency of planning, this paper proposes a multi-
sampling strategy, which directly selects the goal as the sampling point during sampling
or selects a batch of sampling points for pre-expansion so as to reduce the probability
of adding low-quality sampling nodes to the tree for expansions to improve efficiency.
Algorithm 5 shows the process of the new node expansion approach based on a multiple
sampling strategy.

When P ≥ 0.1, the multi-sampling process is executed. First, we select a group of
K ∈ R+ sampling nodes from the planning space, and any potential sampling point is xm

rand,
where m ∈ {1, 2, . . . , K}. Then, we calculate the corresponding potential expansion nodes{

x1
temp, . . . , xK

temp

}
for all potential sampling points, and the calculation formula for any

potential expansion node xm
rand is as follows:

xm
temp = xm

nearest + lextend
(xm

rand−xm
nearest)

‖xm
rand−xm

nearest‖2
s.t. Eq.(1), (2), (3)

(11)

where xm
temp, xm

rand, xm
nearest are UAV position coordinates. For potential expansion nodes

that meet UAV performance constraints, planning space constraints and space coordination
constraints, the expansion length of nodes is determined by the expansion step lextend.
Then, we use the sampling node xm

rand and the nearest node xm
nearest from xm

rand in the tree to
determine the potential expansion node xm

temp. If xm
temp does not meet the above constraints,

it will be discarded.
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Algorithm 5: Node expansion based on multi-sampling strategy (MultSample_Extend)

01 : P = random([0, 1])
02 : if P< 0.1
03 : xrand ← gi
04 : xnearest ← Nearest(xrand)
05 : xnew ← Steer(xnearest)
06 : if obstacle_free(xnew, xnearest) ∧UAV_free(xnew, xnearest)
07 : T .V← T .V∪ {xnew}
08 : end if
09 : else

10 : XK
rand ←

K
∪

m=1
Sample(X )

11 : for m = 1 to K
12 : xm

nearest ← Nearest
(
xm

rand
)

13 : xm
temp ← Steer(xm

nearest)

14 : if obstacle_free
(

xm
temp, xm

nearest

)
∧UAV_free

(
xm

temp, xm
nearest

)
15 : f ∗T

(
xm

temp

)
←
∣∣∣ fT (xm

temp

)
− Lco

∣∣∣
16 : f ∗T ,all ← f ∗T ,all ∪ f ∗T

(
xm

temp

)
17 : end if
18 : end for
19 : xnew ← argmin f ∗T ,all
20 : end if

After obtaining the potential expansion nodes set Xtemp that meet the constraints, the
cost function based on time constraints is used to select the optimal potential expansion
node as the new node xnew for expansion, that is,

xnew = argmin f ∗T
(
Xtemp

)
(12)

It can be seen that the new node expansion method based on multiple sampling and
cost function evaluation strategy is divided into three steps. First, we select the expansion
method of the new node—that is, we select the target point as the sampling point or
conduct multi-sampling. If multi-sampling is selected, a batch of nodes are randomly
sampled through multi-sampling strategy for pre-expansion to ensure the randomness of
tree structure expansion. Then, all potential expansion nodes that meet the constraints
are evaluated using the cost function based on the time coordination constraint to obtain
the optimal expansion node as a new node. This method can reduce the randomness of
the expansion of new nodes to a certain extent and ensure that the expansion of the tree
structure can meet the solution of the time coordination constraint so as to improve the
planning efficiency and make the planned path close to the optimal path under the current
cost function. In addition, the evaluation process directly discards some sampling points
with poor performance so that these nodes will not be subject to subsequent neighborhood
node updates and other operations with high computational complexity, which can also
reduce the planning time.

4.3.3. Neighborhood Nodes Update Approach Based on the Cost Function of Time
Coordination Constraint

It should be noted that the key to ensuring the progressive optimality of the traditional
RRT* algorithm is the introduction of neighborhood node optimization. Therefore, in
the TSRRT* algorithm, in order to plan a path that meets the time–space coordination
constraints, on the basis of obtaining the xnew of the new node, the cost function based on
the time coordination constraint should also be used in the neighborhood node update to
guide the parent node’s updating and rewiring of the new node to ensure that the planned
path gradually meets the time coordination constraint.
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Because the neighborhood node update includes the parent node update process
and the rewiring of the new node xnew, the two processes are basically the same. There-
fore, Algorithm 6 gives a general framework for neighborhood node optimization of the
TSRRT* algorithm.

Algorithm 6: Neighborhood node update (i.e., Rewire_TSRRT ∗ (x1, x2))

01 : if obstacle_free(x1, x2) ∧UAV_free(x1, x2)
02 : cos t← ‖x1 − x2‖2
03 : if | fT (x1) + cos t + hD(x2)− Lco| < f ∗T (x2)
04 : x2.parent← x1
05 : end if
06 : end if

First, we analyze the process of performing Rewire_TSRRT∗ for the first time—that is,
the process of selecting the parent node with less cost based on the time cooperation con-
straint in the neighborhood for xnew. Firstly, it is determined whether the edge

(
xk

near, xnew

)
composed of any node xk

near in the neighborhood, and xnew meets the UAV performance
constraints, planning space constraints and space coordination constraints. If the con-
straints are met, the distance between two nodes is calculated. Note that all nodes in
the neighborhood have been added to the tree, so we can directly obtain the actual path
length from the start node si to xk

near in the tree. Then, the estimated distance hD(x2) from
xnew to the goal node gi is calculated. Then, the cost f ∗′T (xnew) based on time coordination
constraint from si through xk

near to xnew is

f ∗′T (xnew) = | fT (x1) + cos t + hD(x2)− Lco| (13)

After calculating the cost of all neighborhood nodes, the node with the lowest cost is
selected as the parent node of xnew.

The process of the second Rewire_TSRRT∗ is basically similar to that of the first. The
only difference is that this operation takes xnew as the potential parent node of all nodes in
the neighborhood to optimize the neighborhood nodes.

4.3.4. The Framework of TSRRT* Algorithm

This section mainly analyzes the overall framework of the TSRRT* algorithm, which is
shown in Algorithm 7. After designing the cost function based on the time coordination
constraint as the evaluation standard in TSRRT*, the multiple sampling and cost function
evaluation strategy is designed in the tree node expansion process to improve the planning
efficiency. Then, the cost function based on time coordination constraint is used to guide
the updating and rewiring of nodes in the neighborhood.

When the new node xnew extends into the goal region, a path σi(si, gi) can be found. If
the deviation between the path length CostT (si, gi) of σi(si, gi) and the Lco is greater than
or equal to the given tolerance ε, the tree structure is updated using the Algorithm 7, Line
3–12 to optimize the σi(si, gi)σi(si, gi). When CostT (si, gi)− Lco < ε, the path satisfying the
time–space coordination constraints is output.
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Algorithm 7: TSRRT* algorithm

01 : initialization Ti.V← {si}; Ti.E← ∅
02 : Lco ← tcovi
03 : for i = 1 to n
04 : xnew ←MultSample_Extend(Ti)
05 : Ti.V← Ti.V∪ {xnew}
06 : Xnear ← Near(xnew, Ti.V, γ)
07 : for all xnear ∈ Xnear
08 : Rewire_TSRRT∗(xnear, xnew)
09 : end for
10 : for all xnear ∈ Xnear
11 : Rewire_TSRRT∗(xnew, xnear)
12 : end for
13 : if xnew ∈ Gi
14 : gi ← xnew
15 : end if
16 : end for
17 : while |CostT (si, gi)− Lco| ≥ ε

18 : Update Ti.xnew with Line 03− 12
19 : end while
20 : return σi(si, gi)

5. Simulation Results and Discussion

In this section, we show the simulation results of the HDP-TSRRT* algorithm and
compare them with those of other algorithms to verify the feasibility, robustness and
efficiency of the proposed algorithm in solving the MUCPP problem based on the time–
space cooperative constraints.

5.1. Environments and Parameters

Due to the diversity of tasks performed by multi-UAV systems, the cooperative path
planning problem of multiple UAVs has many forms. In order to comprehensively demon-
strate the effectiveness and performance of the HDP-TSRRT* algorithm in dealing with
MUCPP problems based on the time–space cooperative constraints, this paper designs
a flight environment simulating real scenarios based on two different task categories to
simulate and test the HDP-TSRRT* algorithm, i.e., rendezvous tasks [39] and allocation
tasks [40].

For each planning example, we assume that the UAV can use its own independent
CPU to calculate its path so as to achieve decentralized planning. In order to count and
analyze the performance of HDP-TSRRT*, we use discrete events to simulate the parallel
operation of the algorithm, including the simulation of cooperative message execution
time and algorithm planning time between unmanned aerial vehicles to ensure that the
process of executing the algorithm with the respective CPU of the UAVN is consistent. Each
UAV adopts a simulated idealized communication module, which can rely on zero-delay
communication to achieve the sending and receiving of cooperative messages. The paths of
synchronous decentralized pre-planning and the paths of single-UAV cooperative planning
are the optimal paths. In addition, UAVs in all planning cases take off at the same time.

The following shows the simulation environment designed based on two types of
tasks and the setting of some basic parameters.

1. Rendezvous tasks

The goal of MUCPP in this task is to find the path from different start nodes to the
goal for each UAV in the planning space. Additionally, all UAVs must reach the same
target position at the same time to perform specific tasks. Figure 2a shows the planning
space based on rendezvous tasks, including the real terrain (DEM map), radar, missile,
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anti-aircraft gun and conical no-flight tower. See Table 1 for the relevant parameters
of threats.

Drones 2023, 7, x FOR PEER REVIEW 18 of 29 
 

5. Simulation Results and Discussion 
In this section, we show the simulation results of the HDP-TSRRT* algorithm and 

compare them with those of other algorithms to verify the feasibility, robustness and effi-
ciency of the proposed algorithm in solving the MUCPP problem based on the time–space 
cooperative constraints. 

5.1. Environments and Parameters 
Due to the diversity of tasks performed by multi-UAV systems, the cooperative path 

planning problem of multiple UAVs has many forms. In order to comprehensively 
demonstrate the effectiveness and performance of the HDP-TSRRT* algorithm in dealing 
with MUCPP problems based on the time–space cooperative constraints, this paper de-
signs a flight environment simulating real scenarios based on two different task categories 
to simulate and test the HDP-TSRRT* algorithm, i.e., rendezvous tasks [39] and allocation 
tasks [40]. 

For each planning example, we assume that the UAV can use its own independent 
CPU to calculate its path so as to achieve decentralized planning. In order to count and 
analyze the performance of HDP-TSRRT*, we use discrete events to simulate the parallel 
operation of the algorithm, including the simulation of cooperative message execution 
time and algorithm planning time between unmanned aerial vehicles to ensure that the 
process of executing the algorithm with the respective CPU of the UAVN  is consistent. 
Each UAV adopts a simulated idealized communication module, which can rely on zero-
delay communication to achieve the sending and receiving of cooperative messages. The 
paths of synchronous decentralized pre-planning and the paths of single-UAV coopera-
tive planning are the optimal paths. In addition, UAVs in all planning cases take off at the 
same time. 

The following shows the simulation environment designed based on two types of 
tasks and the setting of some basic parameters. 
1. Rendezvous tasks 

The goal of MUCPP in this task is to find the path from different start nodes to the 
goal for each UAV in the planning space. Additionally, all UAVs must reach the same 
target position at the same time to perform specific tasks. Figure 2a shows the planning 
space based on rendezvous tasks, including the real terrain (DEM map), radar, missile, 
anti-aircraft gun and conical no-flight tower. See Table 1 for the relevant parameters of 
threats. 

 

 

(a) (b) 

Drones 2023, 7, x FOR PEER REVIEW 19 of 29 
 

 

 

(c) (d) 

Figure 2. Rendezvous task scenario. The black dot indicates the target location of all UAVs. (a) The 
flight environment of rendezvous tasks, and the optimal path of 15 UAVs through RRT* synchro-
nous decentralized pre-planning. (b) The top-down view of (a). (c) Fifteen UAVs use the HDP-
TSRRT* algorithm to obtain the path that meets the time–space coordination constraints. (d) The 
top-down view of (c). 

Table 1. Rendezvous task scenario. 

Rendezvous 
tasks Scenario 

Radar 
Center 

1:(100,350,5) m 
2:(170,210,20) m 

radius  
35 m 
35 m 

Missile 
Center 

1:(70,250,0) m 
2:(300,100,20) m 

Radius 
30 m 
30 m 

Height 
40 m 
40 m 

Anti-aircraft 
gun 

Center 
1:(170,100,0) m 

2:(280,280,20) m 

Radius 
30 m 
25 m 

Height 
40 m 
40 m 

No-fly Tower 
Center 

1:(170,100,0) m 
Radius 

15 m 
Height 

50 m 

2. Allocation tasks 
The goal of cooperative path planning of multiple UAVs in this mission is to plan the 

flight path from different starting positions to different target positions for each UAV in 
the flight environment. In addition, in order to meet the requirements of some tasks, such 
as a multi-target cooperative strike, all UAVs should be able to reach the target point at 
the same time. Figure 5a shows the planning space based on allocation tasks, including 
the real terrain (DEM map), radar, anti-aircraft missile, anti-aircraft gun and conical no-
flight tower. See Table 2 for the relevant parameters of threats. 

Table 2. Allocation task scenario. 

Allocation tasks 
Scenario 

Radar 
Center 

1:(360,230,5) m 
2:(190,210,20) m 

radius  
35 m 
35 m 

Missile 
Center 

1:(90,290,0) m 
2:(300,100,20) m 

Radius 
30 m 
30 m 

Height 
40 m 
40 m 

Figure 2. Rendezvous task scenario. The black dot indicates the target location of all UAVs. (a) The
flight environment of rendezvous tasks, and the optimal path of 15 UAVs through RRT* synchronous
decentralized pre-planning. (b) The top-down view of (a). (c) Fifteen UAVs use the HDP-TSRRT*
algorithm to obtain the path that meets the time–space coordination constraints. (d) The top-down
view of (c).

Table 1. Rendezvous task scenario.

Rendezvous tasks
Scenario

Radar
Center

1:(100,350,5) m
2:(170,210,20) m

radius
35 m
35 m

Missile
Center

1:(70,250,0) m
2:(300,100,20) m

Radius
30 m
30 m

Height
40 m
40 m

Anti-aircraft gun
Center

1:(170,100,0) m
2:(280,280,20) m

Radius
30 m
25 m

Height
40 m
40 m

No-fly Tower Center
1:(170,100,0) m

Radius
15 m

Height
50 m
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2. Allocation tasks

The goal of cooperative path planning of multiple UAVs in this mission is to plan the
flight path from different starting positions to different target positions for each UAV in the
flight environment. In addition, in order to meet the requirements of some tasks, such as
a multi-target cooperative strike, all UAVs should be able to reach the target point at the
same time. Figure 5a shows the planning space based on allocation tasks, including the
real terrain (DEM map), radar, anti-aircraft missile, anti-aircraft gun and conical no-flight
tower. See Table 2 for the relevant parameters of threats.

Table 2. Allocation task scenario.

Allocation tasks
Scenario

Radar
Center

1:(360,230,5) m
2:(190,210,20) m

radius
35 m
35 m

Missile
Center

1:(90,290,0) m
2:(300,100,20) m

Radius
30 m
30 m

Height
40 m
40 m

Anti-aircraft gun
Center

1:(90,110,0) m
2:(280,280,20) m

Radius
30 m
25 m

Height
40 m
40 m

No-fly Tower Center
1:(200,290,10) m

Radius
15 m

Height
50 m

Some common basic parameters of the HDP-TSRRT* algorithm in two kinds of task
scenario and comparative simulation are shown in Table 3.

Table 3. Basic parameters of TSRRT*.

Parameter Value

[λcol , λtime] [0.4, 0.6]
Dmin 2 m

v for all UAVs 8 m/s
λhD 1
K 16
ε 0.35 s

Node expansion length 30 m

5.2. Simulation of HDP-TSRRT* Algorithm in Different Categories of Task Scenarios

This section conducts benchmark simulation experiments on HDP-TSRRT* in a ren-
dezvous task scenario and allocation task scenario, respectively, and shows the process of
using HDP-TSRRT* to achieve time–space collaborative constraint paths in both scenarios.
The simulation results show that HDP-TSRRT* can plan the cooperative path of multi-UAV
satisfying the time–space cooperative constraints in two scenarios.

5.2.1. Rendezvous Task Scenario

In the rendezvous task scenario, we show the cooperative planning process of UAVN ,
where N = 15. The pre-path obtained through the synchronous decentralized pre-planning
process of the HDP-TSRRT* algorithm is shown in Figure 2a,b. Note that the purpose of
pre-planning is to obtain the number of potential collisions and the shortest cooperative
ETA so as to lay the foundation for the subsequent priority allocation and coordination path
planning. The pre-planned path lengths of the 15 UAVs are 510.1156, 483.2191, 466.5199,
440.6697, 418.8264, 404.5157, 387.4666, 382.2667, 504.2721, 480.8086, 454.6412, 431.5821,
413.4772, 403.0816 and 391.2380 m. The number of potential collisions are 3, 2, 1, 2, 2, 0, 1, 1,
0, 2, 2, 2, 0, 1, 1 and 1. The shortest cooperative ETA in this instance is tco = 63.89s through
the pre-planned path length set.
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Figure 2c,d show the time–space cooperative path map finally obtained by UAVs using
HDP-TSRRT* in this scenario. It is difficult to determine whether the path of each UAV
meets the time–space coordination constraint only through Figure 2c,d. Therefore, Figure 3
shows the shortest paired distance lmin

co of the cooperative path of 15 UAVs at any time. The
lmin
co of any t is:

lmin
co = min

 N
∪

i, j = 1
i 6= j

‖σi(t)− σj(t)‖2

 (14)
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Figure 3. Minimum distance between any pair of UAVs. Note that the experimental scenario is a
rendezvous task scenario, so collision checking ends when it reaches the path nodes before the target
node (i.e., assuming there are no collisions in the target region).

Since the scenario of this planning example is a rendezvous task scenario, we assume
that all UAVs will not collide at the target location. It can be seen in Figure 3 that at
every moment, the actual shortest distance between any two UAVs is greater than the
minimum safe distance Dmin, so it can be proved that all cooperative paths meet the
spatial cooperative constraint. Figure 4 shows the collaboration time tolerance ∆ti of the
coordination path. The coordination time tolerance of any UAVi is,

∆ti =
Li − Lco

vi
(15)
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As can be seen from Figure 4, the time tolerance of all cooperative paths is ∆ti < ε = 0.35,
which means that all paths meet the time cooperative constraint. Therefore, the simulation
shows that HDP-TSRRT* can plan the cooperative path that meets the time–space cooperative
constraints in the rendezvous tasks scenario.
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5.2.2. Allocation Tasks Scenario

In the allocation task scenario, we show the cooperative planning process of UAVN ,
where N = 15. The pre-planning path obtained through the synchronous decentralized
planning layer of the HDP-TSRRT* algorithm is shown in Figure 5a,b. In order to better
demonstrate the performance of the HDP-TSRRT* algorithm, in this planning example, we
will divide 15 UAVs into 3 groups, with 5 in each group. The three groups of UAVs cross
fly. As with the rendezvous task scenario, the pre-planned optimal path is obtained by
the RRT* algorithm. The shortest cooperative ETA in this instance is tco = 56.21s through
the pre-planned path length set. Figure 5c,d show the time–space cooperative path finally
obtained UAVN using HDP-TSRRT*. Figures 6 and 7, respectively, show the shortest paired
distance of UAVN at any time and the time tolerance in the allocation tasks scenario. It
can be seen that the finally found path meets the time–space coordination constraints.
Therefore, the simulation shows that HDP-TSRRT* can plan the cooperative path that meets
the time–space coordination constraints in the allocation task scenario.
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the time–space coordination constraints. (d) The top-down view of (c).
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5.3. Comparison and Algorithm Performance Analysis

In this section, we compare the planning coordination level and the single-UAV
cooperative path planning level of HDP-TSRRT* with some existing algorithms and analyze
the performance of HDP-TSRRT*.

5.3.1. Comparison and Performance Analysis of Planning Coordination Level
of HDP-TSRRT*

Note that the existing asynchronous prioritized planning algorithms and their deriva-
tive algorithms do not consider both time and space coordination constraints. Therefore,
in order to eliminate the impact of the single-UAV cooperative path planning algorithm
and accurately verify the performance of the HDP-TSRRT* algorithm, we uniformly take
TSRRT* as the single-UAV cooperative path planning algorithm and compare HDP-TSRRT*
with the asynchronous decentralized prioritized planning algorithm based on three differ-
ent prioritization approaches. These three algorithms are the asynchronous decentralized
prioritized planning algorithm based on random prioritization (ADRPP) [23], asynchronous
decentralized prioritized planning algorithm based on distance heuristic prioritization
(DH-ADRPP) [26] and asynchronous decentralized priority planning algorithm based on
collision heuristic prioritization (CH-ADRPP) [41].

This simulation compares the two types of task scenarios mentioned in Section 5.1
at the planning coordination level. In order to fully analyze the performance of the HDP-
TSRRT* algorithm, in the rendezvous tasks scenario, the HDP-TSRRT* algorithm and the
other three algorithms are, respectively, used to perform cooperative path planning in ten
groups of different numbers of UAVs, including NRT = 3, 6, 9, 12, 15, 18, 21, 24, 27, 30. In the
allocation tasks scenario, ten groups of UAVs with a given number are also compared, in-
cluding NAT = 4, 8, 12, 16, 20, 24, 28, 32, 36, 40. Each group of UAVs with different numbers
in the 2 kinds of mission scenarios are simulated 30 times.

We compared the following performance of HDP-TSRRT* with other three algorithms.

1. The average running time of the successful termination of the algorithm, which
evaluates the efficiency and stability of the algorithm.



Drones 2023, 7, 170 23 of 28

2. The average acceleration ratio of the four algorithms relative to the RPP algorithm,
which evaluates the asynchronous execution effect of the algorithm using different

prioritization approaches. The calculation formula of the acceleration ratio is tRPP
i

tAD_ALG
i

,

where tRPP
i represents the running time of the RPP algorithm, and tAD_ALG

i represents
the running time of the four comparison algorithms.

3. The average number of Coor_message sent by the UAV. Whenever the UAV running
the algorithm re-plans the path, it will send new path information to other UAVs.
Therefore, the number of Coor_message transmissions directly corresponds to the
number of times the UAV is re-planned.

4. Success rate, which verifies the effectiveness of the algorithm.

We can see from Figure 8 that HDP-TSRRT* takes the shortest amount of time to
plan the cooperative path in all different UAV groups in the two kinds of task scenarios.
In addition, compared with the other three algorithms, HDP-TSRRT* has the highest
acceleration ratio. This shows that the heuristic prioritization algorithm based on the
time–space coordination constraint of HDP-TSRRT* is more reasonable, efficient and robust
than the heuristic prioritization algorithm that only considers the length or the number
of collisions and the random prioritization algorithm. Therefore, it can be proved that
HDP-TSRRT* has the best planning efficiency and stability when dealing with the MUCPP
problem based on the time–space coordination constraint.
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Furthermore, it can be that seen the average number of Coor_message of each UAV in
HDP-TSRRT* is also the lowest. That is to say, HDP-TSRRT* has the least path re-planning,
so it can complete the cooperative path planning of all UAVs in the shortest time, and the
planning efficiency is higher. Note that the four comparison algorithms are only different



Drones 2023, 7, 170 24 of 28

in the prioritization algorithm, so it also proves that the prioritization approach of HDP-
TSRRT* is more reasonable and efficient than other algorithms. As the four algorithms are
asynchronous decentralized improved algorithms based on RPP algorithm, the success rate
is basically the same.

5.3.2. Comparison and Performance Analysis of Single-UAV Cooperative Path
Planning Level

The single-UAV cooperative path planning algorithm TSRRT* uses multiple sampling
strategies to complete a batch of K pre-sampling nodes in sampling and new node expan-
sion and optimizes the selection of sampling nodes in combination with the time–space
coordination cost function. In this process, the selection of the pre-defined parameter K
is crucial. If K is too small, the number of samples that can be evaluated by the time–
space cost function is also very small, and there is a certain probability that the quality
of this batch of samples is very low. On the other hand, if the K is too large, the cost of
evaluating sampling nodes and the cost of the computing time of collision checking will
also increase correspondingly. Therefore, whether the value of K is reasonable directly
determines whether the TSRRT* algorithm can obtain better expansion nodes to complete
the cooperative path planning faster, and then affects the efficiency of the HDP-TSRRT*
algorithm to complete the cooperative path planning.

Therefore, we first simulated and evaluated the planning time of the TSRRT* algorithm
with different values of K. In the experiment, 60 simulations were performed when
K = 1, 4, 8, 12, 16, 20, 24, 28, including 30 runs for the rendezvous tasks scenario and 30 runs
for the allocation tasks scenario. Figure 9 shows the relationship between the value of K and
the running time. It can be seen that when K is between 16 and 20, the TSRRT* algorithm
has the highest planning efficiency and the most stable robustness, and the planning time
is basically the same. Therefore, we choose K = 16 to execute HDP-TSRRT*.
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When introducing the proposed algorithm, this paper theoretically demonstrates that
the new node expansion strategy combined with the multi-sampling approach and time–
space cost function optimization can improve the efficiency of cooperative path planning.
In this section, we prove this view by comparing simulation results.

Because TSRRT* introduces a time–space-based cost function to evaluate the expansion
of new nodes and the optimization of neighborhood nodes, in order to compare and discuss
the performance of TSRRT* more accurately, when comparing TSRRT* with the classical
RRT* algorithm (i.e., Algorithm 1) based on random sampling, this paper unifies the
cost function of the two algorithms into the time–space-constrained cost function. The
maximum planning time of the simulation is 10s, and the optimal path cost of TSRRT* is
taken as the baseline.
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Figure 10 shows the change in path cost based on multi-sampling and the time–space
cost function of TSRRT* and the number of nodes in the tree structure, as well as the
number of nodes in random sampling and the tree structure of the RRT* algorithm. As
shown in Figure 10, using the multiple sampling and optimization strategy proposed in
this paper, TSRRT* can find the first feasible path within a few milliseconds, and the cost
will be reduced rapidly after that. In contrast, the RRT* algorithm takes nearly 1000 ms
to find the first feasible path, and it takes longer to approach the optimal path. As we
selected a reasonable number of multiple samples, the algorithm in this paper generates
higher quality samples. Therefore, the algorithm in this paper is more likely to obtain the
optimal solution with higher efficiency and faster convergence speed. In addition, from
the distribution of the number of nodes in the tree structure, it can be seen that the quality
of the tree structure generated by the algorithm in this paper is higher than that of RRT*,
and the optimal path can be obtained faster in the generation of fewer tree nodes. This also
proves that TSRRT* has advantages in planning efficiency.
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Furthermore, we conducted 60 cooperative path planning simulations involving two
types of task scenarios (every scenario runs 30 trials) using TSRRT*, RRT* (in the cooperative
path planning) and PRRT* [42] (in the cooperative path planning) algorithms based on
the time–space coordination. The simulation results are shown in Figure 11. It can be
seen that TSRRT* has the shortest and most stable planning time to achieve the optimal
time–space path.
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Therefore, through comparative simulations, we have proved that TSRRT* can plan the
cooperation path that meets the time–space cooperation constraints, the planning efficiency
is high, and the stability is good.

6. Conclusions

In this paper, a decoupling cooperative path planning algorithm named HDP-TSRRT*
is proposed to solve the MUCPP based on the time–space cooperative constraints. Each
UAV shares the same arrival time, and there is no conflict or threat avoidance among them.
The proposed algorithm adopts a hierarchical architecture. The first is the pre-planning
level, which aims to obtain the relevant parameter information and lay the foundation of
cooperative path planning. Then, at the coordination planning level, an HDP algorithm
is proposed, which introduces the heuristic prioritization approach based on time–space
coordination constraints so as to assign reasonable priority to each UAV to improve the
planning efficiency and robustness. Lastly, at the single-UAV cooperative path planning
level, we propose the TSRRT* algorithm, which can quickly and stably plan a path that
meets the time–space cooperative constraints for a single UAV.

In future work, we plan to expand the HDP-TSRRT* algorithm to the multi-UAV
system with local communication to complete the real outdoor experiment. In real ex-
periments, the proposed algorithm requires each UAV to have a separate communication
unit to achieve real-time information reception and broadcast. However, ensuring the
reliability and real-time of communication between UAVs is also a difficult problem to be
faced in the implementation of this algorithm. In addition, we plan to use the decoupling
prioritized planning algorithm or its derivative algorithm to deal with the MUCPP problem
in a dynamic environment.
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Nomenclature
The nomenclature of all acronyms in the paper is shown in the following:
Acronyms Definition
UAVs Unmanned aerial vehicles
Multi-UAVs Multiple unmanned aerial vehicles
MUCPP Multi-UAV cooperative path planning
RRT* Rapidly exploring random trees
HDP Heuristic decentralized prioritized planning algorithm
TSRRT* the time–space cooperative constraints-based RRT*
ETA Estimated time of arrival
DRCA Distributed reactive collision avoidance
ORCA Optimal reciprocal collision avoidance
CSP Constraint satisfaction problem
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LP Linear programming
ICTS Incremental cost tree search
CBS Conflict-based search
HCA* Hierarchical cooperative A* algorithm
PP Prioritized planning algorithm
ADRPP Asynchronous decentralized prioritized planning
DEM Digital elevation model map
DH-ADRP Asynchronous decentralized prioritized planning algorithm based on

distance heuristic prioritization
CH-ADRPP Asynchronous decentralized priority planning algorithm based on

collision heuristic prioritization
PRRT* Potential functions based RRT*
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