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Abstract: In this paper, sensor fault diagnosis and fault tolerant control strategy are investigated for
quadcopters under sensor faults and disturbances. We propose the fault diagnosis estimation system
and the fault-tolerant control (FTC) method. The fault diagnosis system provides time-varying
sensor fault estimation under an unknown bound of disturbances. Moreover, the fault-tolerant
control eliminates disturbance that is estimated through the associated disturbance observer. Overall,
the proposed FTC guarantees the finite-time tracking convergence using nonsingular fast terminal
sliding mode algorithm. Stability of the closed-loop system is validated through the Lyapunov theory.
Finally, conventional nonsingular fast terminal sliding mode and adaptive neural network sliding
mode control are compared with the proposed method through simulations under sensor faults and
disturbances with different scenarios.

Keywords: sensor fault; fault diagnosis; fault tolerant control; sliding mode control

1. Introduction

Over past decades, the topic of unmanned aerial vehicles (UAVs) has been studied
widely because UAVs have promising applications in surveillance, rescue mission, enter-
tainment, military, remote sensing, etc. With the development of mechanical and electronic
technologies, different kinds of UAVs, such as fixed- and rotary-wing UAVs, have been
developed in recent years to extend the application of UAVs. Quadcopter UAVs, one type
of rotary-wing UAVs, have attracted special attention in industrial and academic field since
they have simple structures yet superior maneuverability and agility at an affordable price.

To avoid quadcopter UAVs’ crashing during tracking, desired trajectory, and reliable
attitude and position control systems are becoming more and more important. Many con-
trol system strategies have been suggested for quadcopters to track desired performance
such as adaptive control [1,2], fuzzy logic control [3,4], gain scheduling [5,6], sliding mode
control [7,8], proportional-integral-derivative control (PID) [9,10], and artificial intelligence
method [11,12]. However, these methods did not consider faults in the quadcopter system.
In case of actuator or sensor fault occurrence, these controllers cannot maintain normal
operation for quadcopters. To overcome this problem, a fault-tolerant control (FTC) tech-
nique should be used. Normally, FTC techniques are categorized into two groups: active
and passive schemes. The passive FTC (PFTC) scheme is designed as a robust controller to
reduce fault effects. However, the active FTC (AFTC) scheme has been utilized for fault
diagnosis and a fault accommodation approach to tolerate the faults. The AFTC scheme can
provide better performance in the case of large faults. In this article, the AFTC scheme is
investigated for the quadcopter system in the case of sensor fault occurrence. Accordingly,
sensor fault diagnosis and fault tolerant control is examined.

Many research studies on fault diagnosis (FD) have been proposed for the quadcopter
system. In [11,12], a robust fault diagnosis based on the Thau observer is presented for the
quadcopter in the presence of an actuator fault. The results showed that a fault estimation
algorithm can estimate the magnitude of a fault under model uncertainties. The fault
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detection and FD is proposed for a realistic non-linear UAV model [13]. The online fault
parameter is estimated by dual Unscented Kalman filter (UKF). A two-stage Kalman filter
algorithm is applied to estimate loss of control effectiveness in each actuator [14]. This
work is validated through experiment with a quadrotor helicopter testbed. In [15], the
magnitude of actuator fault is estimated through a parameter estimation scheme. Based on
the fault estimation information, a nonlinear adaptive controller is suggested to guarantee
the stability of the quadrotor system. In [16], a fault detection and isolation (FDI) based on
a neural network in the case of an actuator fault is investigated. Some studies have shown
promised results of an actuator fault diagnosis, but only few works focus on sensor diagnosis
for quadrotor UAVs. In [17], an FDI and estimation method is presented for a quadrotor in
the case of a gyroscope and accelerometer fault. In [18], a fault diagnosis strategy based on
the Thau observer and Lipschitz nonlinear model is presented for a quadrotor considering
actuator and sensor faults. An FDI scheme with various kinds of sensor faults is examined
in [19]. The nonlinear identity observer is suggested to detect faults, and the generalized
observer scheme is used to isolate the sensor faults. A sensor fault diagnosis of a quadrotor
UAV based on a two-stage Kalman filter algorithm is considered in [20]. In [21], a robust
sensor fault detection algorithm based on H∞ performance is proposed for the quadrotor.
The suggested strategy can show a good tracking performance under sensor faults and
external disturbances. In the latest article [22], a fault-tolerant control based on command
filter backstepping and dynamic control allocation is proposed for drone interceptors with
fixed wings and reaction jets in the presence of actuator faults. This control method consists
of two parts: nonlinear virtual control strategy and dynamic control allocation. Although the
virtual control law is designed to handle system uncertainties, the fault-weighing dynamic
control allocation is suggested to distribute the control signal for each actuator. The results
show that the proposed method can track quickly and smoothly acceleration commands
under actuator faults. Although a fault diagnosis algorithm is crucial, it is insufficient to
guarantee the normal operation of the quadrotor UAVs. Fault diagnosis is not the ultimate
goal in the control of a quadcopter system, whereas safety and reliability during operation is
a key feature. This means that the control system needs to be designed to maintain stability,
quality, and normal operation in the presence of faults [23]. This requires the emergence of
FTC systems.

In terms of FTC for quadcopter UAVs, most current studies emphasize actuator
faults [24–27]. Few research papers focus on the sensor FTC system in comparison with
the actuator FTC system. In [28], an attitude fault-tolerant control scheme is proposed for
the quadcopter in the presence of sensor faults. The attitude is estimated using an array
of nonlinear observer information. The observer information is applied to compensate the
amount of sensor faults. However, this method does not consider external disturbance in
quadrotor modeling. In [29], active fault-tolerant control is suggested for the quadrotor under
a sensor fault. Fault diagnosis based on the observer is designed to estimate the magnitude
of sensor fault. Then, this sensor fault estimation is integrated into PID control for sensor
fault compensation. However, the suggested fault diagnosis only considers the model of the
global positioning system (GPS) fault, which is not a general case. Moreover, the FTC control
technique based on PID is insufficient to handle the disturbances and model uncertainties.

In the study [30], robust tracking control and a fault detection algorithm is proposed
for the UAV. The suggested fault diagnosis can detect and isolate faults through residual
evaluations, but it cannot estimate the magnitude of faults which can integrate with the
designed controller for fault accommodation. In [31], sensor fault diagnosis based on
residual evaluation is presented to detect fault. After the fault is detected, a redundant sensor
is used for compensation. This method can provide a good strategy for real application
in the presence of the failure in the altitude sensor, but it is expensive when considering
all navigation sensors. In a recent article [32], a fault-tolerant control based on a sliding
mode and a neural network is proposed in the presence of an actuator and sensor fault. This
work used an adaption law through gradient descent method to tune the parameters in
radial basis function (RBF) neural networks. The results show that the controller can handle
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actuator and sensor faults. A sensor fault-tolerant control based on a nonlinear Kalman
filter is proposed in [33]. When all filters exceed the threshold values, a sensor bias term
is measured and added to the state values of the system. However, this method does not
consider external disturbance in the system model. Moreover, using a PID controller is not
enough to handle the nonlinear term of the system model. An active disturbance rejection-
based fault-tolerant control is presented in [34] to handle sensor faults and disturbance,
but the fault-tolerant control based on a proportional derivative controller is insufficient
to handle sudden faults or time-varying faults. To date, the development of sensor fault
diagnosis and tolerant control for quadcopter UAVs as a complete unit has not been studied
intensively. Furthermore, most of the above-mentioned studies did not extensively discuss
the finite-time convergence for the quadrotor system in the presence of both sensor faults
and disturbances.

To overcome the above limitations for improving the robustness of control perfor-
mance, this article presents a sliding mode observer-based fault diagnosis, and finite-time
FTC scheme for quadrotor UAVs against both sensor faults and disturbances. Major
contributions of this research work can be summarized as follows:

3 We develop a fault diagnosis and FTC system based on a sliding mode observer,
a disturbance observer, and a nonsingular fast terminal sliding mode to handle
external disturbances and sensor faults.

3 Stability of the closed-loop system is proved using the Lyapunov theory and the
proposed method is compared with existing algorithms.

3 Unlike previous studies on fault diagnosis algorithm, the proposed fault diagnosis
system can estimate the magnitude of sensor faults under an unknown bound of
external disturbances.

3 Unlike most current research papers, the proposed method guarantees that the control
system converges in a finite time with small steady-state errors.

The rest of this paper is organized as follows. The mathematical model of the quadrotor
is presented in Section 2. Then, the proposed fault diagnosis and FTC scheme are described
in Sections 3 and 4. Simulation results are shown in Section 5 to validate the effectiveness
of the proposed scheme. General conclusions of this paper are summarized in Section 6.

2. Mathematical Model of Quadcopter

The quadcopter configuration referred in this paper is depicted in Figure 1. Four motors
are mounted in a plus configuration. Motor 1 and 3 rotate clockwise, while the other
two motors spin counterclockwise. Forces induced by the motors are denoted as Ti, and
angular velocities as Ωi, i = 1, 2, 3, 4. The earth and body frames are presented in Figure 1
respectively as {E}(OE, XE, YE, ZE), and {B}(OB, XB, YB, ZB).

Figure 1. Quadcopter model.
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As shown in Figure 1, the total thrust in the ZB-direction is described as:

U1 =
4

∑
i=1

Ti = b
4

∑
i=1

Ω2
i (1)

where b is the thrust coefficient.
The control torques in the XB, YB, ZB direction are denoted by U2, U3, U4 as follow:

U2 = l(T4 − T2) = lb(Ω2
4 −Ω2

2)

U3 = l(T3 − T1) = lb(Ω2
3 −Ω2

1)

U4 = d(Ω2
1 −Ω2

2 + Ω2
3 −Ω2

4)

(2)

where l denotes as arm length which is the distance between the center of the quadcopter
to each motor, and d is drag coefficient.

The relationship between the control input [U1 U2 U3 U4]
T and output [Ω1 Ω2 Ω3 Ω4]

T

is expressed as:


U1
U2
U3
U4

 =


b b b b
0 −lb 0 lb

−lb 0 lb 0

d −d d −d




Ω2
1

Ω2
2

Ω2
3

Ω2
4

 (3)

According to the Newton–Euler law, the altitude and attitude of the quadcopter system
can be expressed as: 

..
z = −g +

{
U1(cos φ cos θ)− K3

.
z
}

/m + ζ3
..
φ =

(
U2 + (I2 − I3)

.
θ

.
ψ− K4

.
φ
)

/I1 + ζ4
..
θ =

(
U3 + (I3 − I1)

.
φ

.
ψ− K5

.
θ
)

/I2 + ζ5
..
ψ =

(
U4 + (I1 − I2)

.
φ

.
θ − K6

.
ψ
)

/I3 + ζ6

(4)

where g is the gravity constant, m denotes the total mass of the quadcopter, I1, I2, and
I3 represent inertia moments. The global position of the quadcopter is denoted as x, y, z.
Damping terms are represented as Ki, i = 3, 4, 5, 6. The roll, pitch, and yaw angles are
denoted as φ, θ, and ψ, respectively. Disturbances are denoted as ζi, i = 3, 4, 5, 6.

Let us define the state vector as:

x =
[
X11 X12 X13 X14 X21 X22 X23 X24

]T
=
[
z φ θ ψ

.
z

.
φ

.
θ

.
ψ
]T

(5)

General model of the quadcopter under an actuator fault may be expressed as:{ .
X1k = X2k.
X2k = fk(x) + gk(x)uk(t) + dk

(6)

where k = 1, 2, 3, 4 denotes each subsystem:


f1
f2
f3
f4

 =


−g− K3

.
z/m(

(I2 − I3)
.
θ

.
ψ− K4

.
φ
)

/I1(
(I3 − I1)

.
φ

.
ψ− K5

.
θ
)

/I2(
(I1 − I2)

.
φ

.
θ − K6

.
ψ
)

/I3

,


u1
u2
u3
u4

 =


U1
U2
U3
U4

,


g1
g2
g3
g4

 =


cos φ cos θ/m
1/I1
1/I2
1/I3

,


d1
d2
d3
d4

 =


ζ3
ζ4
ζ5
ζ6

 (7)
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3. Fault Diagnosis Scheme for Quadcopter

From Equation (7), the state-space model of the sensor fault in the attitude system can
be expressed by: { .

x(t) = Ax(t) + Bu(t) + g(t, x) + Edd(t)
y(t) = Cx(t) + Fs fs

(8)

where x(t) =
[
φ θ ψ

.
φ

.
θ

.
ψ
]T

, u(t) =
[
U2 U3 U4

]T , y(t) are the state, input,
and output vector respectively; fs(t) is the sensor fault vector; the disturbance term denotes
as d(t) =

[
ζ4 ζ5 ζ6

]T , g(t, x) =
[
0 0 0 f2 f3 f4

]T . Matrices A, B, C, Ed, Fs are
chosen as:

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, B =



0 0 0
0 0 0
0 0 0

1/I1 0 0
0 1/I2 0
0 0 1/I3

, C = I6

Ed =



0.001 0 0
0 0.001 0
0 0 0.001
1 0 0
0 1 0
0 0 1

, Fs =



50 0 0
0 50 0
0 0 50
0 0 0
0 0 0
0 0 0

.

(9)

From Equations (4) and (7), we can see that disturbance terms d(t) affect mainly the
second derivative of roll, pitch, and yaw. Therefore, the matrix Ed is considered as shown
in Equation (9).

We assume that attitude angles are prone to fault during the flight test. Therefore, the
first three states of faulty matrix are nonzero such that the Assumption 5 [35] (presented
in the next section) is satisfied. Similarly, if we consider the fault of angular velocity, the
last three terms of matrix Fs are nonzero, and the first three terms are zero. In this article,
we only use three states for fault diagnosis. It is not possible to use six states due to the
Assumption 5 and reference [35], which is limitation of current works.

Denote x(t) =
[
xT(t) f T

s (t)
]T . The augmented system can be described as:{ .

x(t) = Ax(t) + Bu(t) + Edd(t) + g(x, t) + N
.
f s(t)

y(t) = Cx(t)
(10)

where
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c
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. The adaptive fault 

diagnosis observer model is constructed as: 

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( , ) ( ( ) ( ))
ˆ ˆ( ) ( )

dx t Ax t Bu t E v t g x t L y t y t

y t Cx t

 = + + + − −


=


 (12) 

where ˆ ( )x t , ˆ ( )y t , L is the state observer vector, output vector, and observer gain, L is 

chosen such that ( )A LC−  is a stable matrix, 
( )

( ) ( )
( )
y

y

Ke t
v t m t

Ke t δ
= −

+
 with the gain ( )m t  

updated by 

( ) ( )ym t Ke t= Γ  (13) 

where Γ  is the positive gain and δ is a small positive number. 
Let us define: 

ˆ ˆ ˆ, , ( , ) ( , ), ( ) ( )x ye x x e y y g g t x g t x m t m t M= − = − Δ = − = −  (14) 

Dynamics of estimation error is described by: 

( ) ( ) ( ) ( ( ) ( )) ( ) ( )
ˆ

x x d s

y x

e t A LC e t E v t d t g t Nf t

e y y Ce

= − + − + Δ −

= − =


 

(15) 

.

Development of the fault diagnosis scheme is based on several assumptions and
lemmas stated here.

Assumption 1. (A, C) is observable.

Assumption 2. There exists an unknown M such that the disturbance term is norm-bounded
‖d(t)‖ ≤ M.

Assumption 3. ([35,36]) fs is differentiable after their occurrence.

Assumption 4. Nonlinear vector function g(t, x) in Equation (8) is a continuously differentiable
and assumed to be locally Lipschitz with constant γ, i.e., ‖g(t, x1)− g(t, x2)‖ ≤ γ‖x1 − x2‖.

Assumption 5. ([35]) The matrix Ed has full column rank with rank(CEd) = rank(Ed) < 6
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Lemma 1. ([29]) Given a scalar η > 0 and a symmetric positive definite matrix P, then the
following inequality holds:

2xTy ≤ 1
η

xT Px + ηyT P−1y (11)

Lemma 2. [30] If a positive-definite function, V(x), satisfies
.

V(x) < −ςV(x)− c(V(x)))γ with
x 6= 0, c > 0, ς > 0 and 0 < γ < 1, V(x) can be defined as the fast-finite-time stability, and Tf

is the settling time required to reach V(x) = 0, Tf ≤ 1
c(γ+1) ln c(V(0))1−γ+ς

ς . The adaptive fault
diagnosis observer model is constructed as:{ .

x̂(t) = Ax̂(t) + Bu(t) + Edv(t) + g(x̂, t)− L(ŷ(t)− y(t))

ŷ(t) = Cx̂(t)
(12)

where x̂(t), ŷ(t), L is the state observer vector, output vector, and observer gain, L is

chosen such that (A− LC) is a stable matrix, v(t) = −m(t) Key(t)
‖Key(t)‖+δ

with the gain m(t)

updated by

.
m(t) = Γ

∥∥Key(t)
∥∥ (13)

where Γ is the positive gain and δ is a small positive number.

Let us define:

ex = x̂− x, ey = ŷ− y, ∆g = g(t, x̂)− g(t, x), m̃(t) = m(t)−M (14)

Dynamics of estimation error is described by:

.
ex(t) = (A− LC)ex(t) + Ed(v(t)− d(t)) + ∆g(t)− N

.
f s(t)

ey = ŷ− y = Cex
(15)

Remark 1. After several iterations v(t)→ d(t) , then the uncertain term v(t) is separated from
the estimation error (15). Therefore, we can estimate these disturbances. The suitable choice of
matrix K and positive scalar δ can eliminate the term v(t) but the first derivative of fs still remains
on the expression of

.
ex. Two purposes are examined to design observer (4) as follows:

A1. The estimation error
.
ex is asymptotically stable if

.
f s = 0.

A2. For all nonzero
.
f s, the H∞ performance index function is defined by:

J =
∞∫

0

[
eT

x (t)ex(t)− δ2 f T
s fs

]
dt

where δ denotes a positive scalar, then the following theorem is considered.

Theorem 1. Let Assumption 1–4 hold. If there exists a symmetric positive definite matrix P ∈ Rn×n

with given positive constants ε > 0, δ > 0, γ > 0 such that the following conditions holds:

Ξ =

 H P −PN
P −εI 0

−NT P 0 −δ2 I

 < 0 (16)

ET
d P = KC (17)

where H = AT P+ PA−YC−CTYT + εγ2 I + I with Y = PL, then the state and fault estimation
error are asymptotically stable.
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Proof of Theorem 1. The Lyapunov function is selected as

V(t) = eT
x (t)Pex(t) + m̃T(t)Γ−1m̃(t) (18)

The first derivative of V(t) is achieved by:

.
V(t) =

.
eT

x (t)Pex(t) + eT
x P

.
ex(t) + 2

.
m̃(t)Γ−1m̃(t)

= eT
x (t)[P(A− LC) + (A− LC)T P]ex(t) + 2eT

x P∆g
+2eT

x (t)PEd(v(t)− d(t))− 2eT
x (t)PN

.
f s(t) + 2

∥∥Key(t)
∥∥(m(t)−M)

(19)

According to (17) and positive definite matrix P in Theorem 1, one gets:

2eT
x (t)PEd(v(t)− d(t))

= 2(ET
d Pex)

T
(v(t)− d(t))

= 2
(
Key
)T
(
−m(t) Key(t)

‖Key(t)‖ − d(t)
)

≤ −2
∥∥Key(t)

∥∥(m(t)−M)

(20)

From Assumption 4, Lemma 1, and Equation (14), one achieves [36]:

2eT
x (t)P∆g ≤ ε−1eT

x (t)PPex(t) + εγ2eT
x (t)ex(t) (21)

Insert Equations (20) and (21) to (19), one obtains:

.
V(t) ≤ eT

x (t)
[

P(A− LC) + (A− LC)T P + ε−1PP + εγ2 I
]
ex(t)− 2eT

x (t)PN
.
f s(t) (22)

The H∞ performance index function is chosen to ensure that the adaptive observer is
robust against the external disturbance as

J =
∞∫

0

[
eT

x (t)ex(t)− δ2 f T
s fs

]
dt (23)

With the initial conditions (V(0) = 0, V(∞) > 0), we obtain:

J =
∞∫
0

[
eT

x (t)ex(t)− δ2 f T
s (t) fs(t) +

.
V(t)

]
dt + V(0)−V(∞)

≤
∞∫
0

[
eT

x (t)ex(t)− δ2 f T
s (t) fs(t) +

.
V(t)

]
dt

≤
∞∫
0

eTΞedt ≤
∞∫
0
−‖e‖2λmin(−Ξ)dt

(24)

where e =
[
eT

x
.
f

T
s

]T
and λmin(·) is the minimum eigenvalue of the matrix.

From Theorem 1, one can see that the term J < 0 holds, thus:

∞∫
0

eTedt ≤ δ2
∞∫

0

f T
s (t) fs(t)dt (25)

We conclude from Equation (18) that the state and fault estimation error are asymptot-
ically stable such that:

‖e‖ ≤ δ‖ fs‖ (26)

This completes the proof. �

Remark 2. The adaptation law (13) is developed based on the quadratic Lyapunov function (18).
As discussed in [37,38], non-quadratic Lyapunov functions usually lead to a better performance in
adaptive algorithms.
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4. Fault-Tolerant Control with Disturbance Observer

This section first introduces the design of disturbance observer. Then, the nonsingular
fast terminal sliding mode surface and the control law are designed and integrated with
the observer.

4.1. Disturbance Observer Design

Assumption 6. The disturbance di(t) in system (6) is norm bounded as:

|di(t)| ≤ ∆i (27)

where ∆i > 0 is a known constant.

To estimate the disturbance di(t), a nonlinear disturbance observer is obtained as
δi(t) = X2i − hi(t)
d̂i(t) = µ0δi(t) + µ1sign(δi(t)).
hi(t) = µ0δi(t) + µ1sign(δi(t)) + fi(x) + gi(x)ui

(28)

where hi(t) is the auxiliary variable of nonlinear observer; µ0 and µ1 are the observer gains.

Theorem 2. Consider the quadcopter system model (6) with the disturbance observer defined by
(28). If the Lyapunov function is chosen as Equation (29), then d̂i(t) can estimate di(t) precisely.
Thus, d̃i(t) ≡ 0 after finite time.

Proof of Theorem 2. The Lyapunov function is selected as:

V1(t) =
1
2

δ2
i (t) (29)

The first derivative of Lyapunov function is:
.

V1(t) = δi
.
δi = δi(

.
X2i(t)−

.
hi(t)) =

= δi( fi(x) + gi(x)ui + di(t)− µ0δi − µ0sign(δi)− fi(x)− gi(x)ui)

= δi(di(t)− µ0δi − µ1sign(δi))

≤ |δi||di(t)| − µ0δ2
i − µ1|δi| = −µ0δ2

i − (µ1 − |di(t)|)|δi|
≤ −α0V1(t)− β0V1/2

1 (t)

(30)

where α0 = 2µ0 > 0, β0 =
√

2(µ1 − |di|) > 0
From Lemma 2, Equation (30) implies that δi(t) converges to the equilibrium in

finite time.
The disturbance error is calculated as:

d̃i(t) = di(t)− d̂i(t) = di(t)− µ0δi(t)− µ1sign(δi(t))
= (

.
X2i − fi(x)− gi(x)ui − µ0δi(t)− µ1sign(δi(t))

=
.

X2i(t)−
.
h(t) =

.
δi(t)

(31)

From the conclusion of Equation (30), we can obtain d̃i(t) ≡ 0. �

4.2. Integrate Nonsingular Fast Terminal Sliding Mode Control with Disturbance Observer

The sliding surface for the quadcopter system can be expressed as:

si = e1i + k1i|e1i|αi + k2i|e2i|βi sign(e2i) (32)

where e1i = X1i − Xdi, e2i =
.

X1i −
.

Xdi.
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The derivative of the sliding surface is:

.
si =

.
e1i + k1iαi|e1i|αi−1 .

e1i + k2iβi|e2i|βi−1 .
e2i

= e2i + k1iαi|e1i|αi−1e2i + k2iβi|e2i|βi−1(
..
X1i −

..
Xdi)

= e2i + k1iαi|e1i|αi−1e2i + k2iβi|e2i|βi−1( fi(x) + gi(x)ui + di(t)−
..
Xdi)

(33)

Theorem 3. Consider the system (6) and the sliding surface (33), recall the estimated attitude
sensor faults and disturbances observer, if the control law is designed as:

ui =
1

gi(x)

[
− fi(x) +

..
Xdi −

1
βik2i

|e2i|2−βi (1 + αik1i|ê1i|αi−1)sign(e2i)− ε0si − ε1sign(si)− d̂i

]
(34)

where ε0 > 0, ε1 > 0, αi > βi, 1 < βi < 2, and the Lyapunov function designed as Equation (35),
then the tracking error converges to equilibrium within finite time.

Proof. Choosing the Lyapunov function as

V2(t) =
1
2

s2
i (35)

Recall sensor fault estimation in Section 3, the derivative of the Lyapunov function is
achieved through Equation (34) as:

.
V2(t) = si

.
si = e2i + k1iαi|ê1i|αi−1e2i + k2iβi|e2i|βi−1( fi(x) + gi(x)ui + di(t)−

..
Xdi)

= βik2i|e2i|βi−1si

[
−ε0si − ε1sign(si) + d̃i

]
≤ βik2i|e2i|βi−1

[
−ε0s2

i − ε1|si|+ |si|
∣∣∣d̃i

∣∣∣]
(36)

From Equation (31), one obtains:

.
V2(t) ≤ βik2i|e2i|βi−1

[
−ε0s2

i − ε1|si|
]
= −µ1iV2 − µ2iV

1/2
2 (37)

where µ1i = 2βik2|e2i|βi−1ε0 > 0, µ2i = βik2|e2i|βi−1√2ε1 > 0.
Therefore, the stability of the proposed controller can be guaranteed with the suggested

control law (34) in the presence of disturbances. �

Remark 3. In the control law (34), the term gi(x) is defined through Equation (6). Assume the
attitude angles are limited within the range as:0 ≤ φ < π/2, 0 ≤ θ < π/2, 0 ≤ ψ < π/2, then
the term gi is nonzero vector because the inertia moment values (I2, I3, I4) are nonzero.

Remark 4. The fault diagnosis system based on observer method in Equation (12) and fault tolerant
control algorithm in Equation (34) are not complex. These methods do not require high computation
for an embedded system, which is feasible to implement on a real quadcopter system.

5. Simulations

The proposed FTC method is compared with an adaptive neural sliding mode con-
trol (ANNSMC) [33] and a conventional nonsingular fast terminal sliding mode control
(NSFTSMC) [39] in this section. The parameters of quadcopter DJI F330 [40] are chosen as
I1 = 0.004 kg·m2, I2 = 0.004 kg·m2, I3 = 0.0084 kg·m2, l = 0.1 m, b = 2.9842× 10−3 N·s2,
d = 3.232× 10−2 N·m·s2, m = 0.74 kg. Equations (16) and (17) of the fault diagnosis
system is solved using the linear matrix inequality (LMI) toolbox as
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L =



0.415 0 0 1.0050 0 0
0 0.0415 0 0 1.0050 0
0 0 0.0415 0 0 1.0050

0.0008 0 0 46.9910 0 0
0 0.0008 0 0 46.9910 0
0 0 0.0008 0 0 46.9910

3.4429 0 0 −0.0155 0 0
0 3.4429 0 0 −0.0155 0
0 0 3.4429 0 0 −0.0155


, K =

[
0 0 0 10, 563 0 0
0 0 0 0 10, 563 0
0 0 0 0 0 10, 563

]

The positive gain in Equation (13) is chosen as Γ = 1.5, while the parameters of FTC in
Equation (34) are selected as follows:ε0 = 2, ε1 = 1, α1 = α2 = α3 = 1.3, β1 = β2 = β3 = 1.1,
k11 = k12 = k13 = k21 = k22 = k23 = 1. They are selected by trial and error.

Four scenarios are set up to show effectiveness of the proposed methods. The first sce-
nario investigates the proposed fault diagnosis algorithm, whereas the remaining scenarios
examine the suggested FTC strategies.

5.1. Fault Diagnosis Test

To show the effectiveness of the proposed fault diagnosis, constant and time-varying
sensor faults are injected into the roll, pitch, and yaw angles as follow:

fsφ =

{
0 0 ≤ t < 10
0.1 t ≥ 10

, fsθ =

{
0 0 ≤ t < 10
0.1 sin t t ≥ 10

, fsψ =


0 0 ≤ t < 10
0.01t 10 ≤ t < 20
−0.01t 20 ≤ t < 30
0 t ≥ 30

(38)

The time-varying disturbances are chosen as d2 = d3 = d4 = 1.1 sin(t). It can
be seen from Figure 2 that while faults occur in attitude measurements starting from
t = 10 s, the estimated values converge to actual fault values quickly. Hence, the proposed
fault diagnosis algorithm can estimate the fault signals accurately under time-varying
disturbances. The estimation of fault diagnosis will be used in the FTC system.

Figure 2. Sensor fault estimation under time-varying disturbance: (a) For roll angle; (b) For pitch
angle; (c) For yaw angle.
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5.2. Fault Tolerant Control Test

Three scenarios are set up to show the effectiveness of the proposed FTC system. Firstly,
the constant sensor faults are injected into the quadcopter system as fsφ = fsθ

= fsψ = 0.02
at t = 10 s without considering the disturbances of the quadcopter model. The results of
attitude are shown in Figure 3. It is seen that the roll, pitch, and yaw from conventional
NSFTSMC and ANNSMC cannot converge to desired values. On the contrary, the proposed
FTC method provides a good tracking performance. Commanded roll, pitch, and yaw
can be tracked again after the faults have occurred. Estimation of constant sensor faults
is depicted in Figure 4. Fault estimation from the fault diagnosis algorithm in Section 3
converges accurately to the desired value of 0.02 in roll, pitch, and yaw angles.

In the second scenario, constant faults of the first scenario are still employed. However,
time-varying disturbances of d2 = d3 = d4 = 1.1 sin(t) are injected to roll, pitch, and
yaw motion. The tracking performance of the roll, pitch, and yaw angles is presented
in Figure 5. Under time-varying disturbance, the attitude performance of conventional
NSFTSMC has oscillations and deviations during tracking performance, while that of
ANNSMC shows deviations from the desired position. Neither method could track the
desired value well. On the other hand, the proposed method provides good tracking
performance under constant fault and time-varying disturbance. Corresponding fault
estimation and disturbance estimation in roll, pitch, and yaw are shown in Figures 6 and 7.
Both estimations converge quickly to the actual values, yielding good tracking performance.

Figure 3. Tracking performance under constant fault without disturbance: (a) Roll motion; (b) Pitch
motion; (c) Yaw motion.
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Figure 4. Fault estimation under constant fault without disturbance: (a) In roll motion; (b) In pitch
motion; (c) in yaw motion.
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Figure 6. Fault estimation under constant fault and time-varying disturbance: (a) Roll motion;
(b) Pitch motion; (c) Yaw motion.

Figure 7. Disturbance estimation under constant fault and time-varying disturbance: (a) In Roll
motion; (b) In Pitch motion; (c) In Yaw motion.
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Integral square error (ISE) performance index can be used to quantitatively compare
among NSFTSMC, ANNSMC, and proposed FTC methods:

ISE =

t f∫
ti

e2dt (39)

where ti and t f are the initial and final instants, and e the tracking error. From two scenarios
above, the results can be concluded in Tables 1 and 2. It is apparent that the proposed
method, which yields accurate tracking and fewer errors in the presence of sensor faults and
time-varying disturbances, is superior to the NSFTSMC and ANNSMC control approaches.

Table 1. ISE performance indexes for constant faults.

State ANNSMC NSFTSMC Proposed Method

φ 0.01609 0.0183 2.853× 10−8

θ 0.01609 0.0183 2.721× 10−9

ψ 0.01609 0.0183 4.348× 10−9

Table 2. ISE performance indexes for constant faults and disturbances.

State ANNSMC NSFTSMC Proposed Method

φ 0.01609 0.0183 2.189× 10−6

θ 0.01609 0.0183 2.509× 10−6

ψ 0.01609 0.0183 1.419× 10−6

In the previous two scenarios, the proposed method has a better performance com-
pared to other techniques. To show the robustness of the proposed method under both
time-varying faults and time-varying disturbances, the time-varying faults are injected to
roll, pitch, and yaw angle as:

fsφ =

{
0 0 ≤ t < 10
0.1 t ≥ 10

, fsθ
=

{
0 0 ≤ t < 10
0.1 sin t t ≥ 10

, fsψ =

{
0 0 ≤ t < 10
0.2 + 0.02 sin t t ≥ 10

(40)

with the same time-varying disturbances as in the second scenario. Attitude performance
is depicted in Figure 8. The proposed FTC algorithm can track desired roll, pitch, and
yaw angles accurately. Sensor fault estimation is shown in Figure 9. The proposed fault
diagnosis algorithm quickly converges to actual values of roll, pitch, and yaw angles.

Remark 5. For testing the suggested algorithm on a quadcopter system, an outdoor environment
can be applied for flight tests. The essential hardware and software, such as a mission planner using
a ground control system, and a flight controller are utilized during trials. The status of a drone can
be achieved by receivers (known as telemetry). Navigation of the quadcopter is accomplished by
sending the attitude and altitude commands.
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Figure 8. Tracking performance under time-varying sensor fault and time-varying disturbance: (a) In
Roll motion; (b) In Pitch motion; (c) In Yaw motion.

Figure 9. Fault estimation under time-varying sensor fault and time-varying disturbance: (a) In Roll
angle; (b) In Pitch angle; (c) In Yaw angle.
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6. Conclusions

This paper presents fault diagnosis and a fault-tolerant control algorithm for quad-
copters to handle sensor faults and disturbances. The suggested fault diagnosis system
can estimate sensor fault under an unknown upper bound of disturbance. This estimation
information is then applied to the fault-tolerant control system. In terms of the proposed
FTC, it can estimate the magnitude of disturbance, which avoids the burden of the high
gain from the fault-tolerant control system. Compared with conventional nonsingular
fast terminal sliding mode control and adaptive neural network sliding mode control, our
approach demonstrates fast tracking, fewer errors, and superior robustness under various
fault and disturbance conditions. In this paper, only IMU sensor faults are considered, but
sensor noise, angular velocity, GPS and actuator faults are also important and not discussed
intensively so far, which is the limitation of this paper. We plan to apply the proposed
fault diagnosis and fault-tolerant control system to the real UAV. It is expected to enhance
the reliability and stability during flight tests under hazardous environments. Moreover,
artificial intelligence-based fault-tolerant control will be investigated to handle the actuator,
IMU, GPS faults, and sensor noise as a complete unit.
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