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Abstract: In this paper, we propose an adaptive control approach to deal with the problems of
input saturation, external disturbances, and uncertainty in the unmanned autonomous helicopter
system. The dynamics of the system take into account the presence of input saturation, uncertainty,
and external disturbances. Auxiliary systems are built to handle the input saturation. The neural
networks are applied to approximate the uncertain terms. The control scheme combining integral
backstepping and sliding mode control is developed in position and attitude subsystems, respectively.
In the closed-loop system, the boundedness of the signals is proved by means of the Lyapunov theory.
The simulation demonstrates that the approach has good robustness and tracking performance.

Keywords: unmanned autonomous helicopter; integral backstepping; neural networks; sliding mode
control

1. Introduction

Unmanned autonomous helicopters (UAHs) have received increasing attention in
recent years due to their high cost-performance ratio and important contributions to
surveillance, search, remote sensing, geographic research, and various military and security
applications. UAHs have rotorcraft structures, enabling them to take off and land vertically,
hover in the air, fly at low altitudes, and more. Due to their portability and flexibility, the
application and research of miniature UAHs have rapidly developed. According to the rotor
type, UAHs can be divided into single rotors with tail rotor types, coaxial rotor types, tilting
rotor types, multi-rotor types, and so on [1]. Among them, conventional single-rotor UAHs
with tail rotors are the most widely equipped nowadays. Their structures are simple and
easy to operate. The main rotor is used to provide lift and the tail rotor is used to balance
the reverse torque generated by the high-speed rotation of the main rotor. In this paper,
we focus on the conventional single-rotor UAH with the tail rotor. Medium UAHs refer to
UAHs with takeoff weights of 500–1000 kg [2], which have more load and endurance, better
wind resistance, and anti-disturbance, and can perform more tasks that small helicopters
cannot accomplish. These advantages make medium UAHs have broader application
prospects in various fields. As a typical nonlinear strongly coupled underactuated system,
the UAH system inevitably suffers from various disturbances and uncertain factors in the
flight environment, such as model parameter changes, gust disturbances, air circulation, etc.
These adverse effects may cause flight performance degradation or even loss of the stability
provided by the control system. All of these bring challenges to the design of high-quality
UAH controllers. Therefore, it is of crucial theoretical and engineering practical significance
to investigate the applications of advanced control methods to UAH flight control systems.

With the booming development of control theory, many theoretical approaches have
been widely applied to UAH flight control. Among linear control methods, PID control
has played an important role due to its simple design process and independence from an
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accurate mathematical model [3,4]. In addition, H∞ control [5], linear quadratic regulator
(LQR) [6], µ-synthesis control [7], and fuzzy control [8] have also been implemented in flight
control. Unlike the linear controller, which only considers the system performance near the
operating point, the control method based on a nonlinear dynamics model has become a
research hotspot for flight control. In existing literature studies, most research studies and
applications of nonlinear UAH controls concentrate on dynamic inversion [9,10], feedback
linearization [11,12], the backstepping technique, sliding mode control, and so on.

As a classical recursive design method for nonlinear feedback systems, the back-
stepping technique benefits from its systematic design process and has been utilized in
various control systems. The authors of reference [13] designed an adaptive backstepping
method for the UAH system with parameter uncertainties to track the upper reference
trajectory. In [14], the attitude and altitude tracking controls were studied for the UAH
based on the backstepping method. Reference [15] took a class of UAHs modeled by the
rotation matrix as the research object and designed an adaptive backstepping tracking
controller. On the premise of accomplishing various practical aviation tasks, an adaptive
backstepping-based controller was designed in [16] for UAH; it makes the system stable
and ensures the tracking of the reference trajectory. The integral backstepping method is
improved on the basis of the traditional backstepping method by adding the integral term
of the tracking error, which can compensate for the steady-state error and ensure the high
precision of control [17]. It combines integration and backstepping to make the system
robustness stronger [18].

The sliding mode control (SMC), which is also known as the sliding mode variable
structure control, has been successfuly applied in nonlinear underactuated systems because
of its simplicity and insensitivity to parameter changes and disturbances [19–24]. Unfor-
tunately, the SMC’s disadvantages include discontinuous control signals and chattering.
Given the characteristics of the SMC and integral backstepping, the advantages of the two
methods can be combined to modify the controller. In [25], a controller that combines
integral backstepping and SMC was developed to solve the control problem of the wagon–
pendulum system. The results show that the controller can suppress disturbances well. This
control method was also proposed to figure out trajectory tracking control for a quadrotor
in [26]. It has obvious advantages in robustness to uncertain disturbances and tracking
accuracy. However, the application of this method to UAHs is still relatively rare. As
universal function approximation tools, neural networks (NNs) are popular in dealing with
the uncertainties of nonlinear systems. The control scheme that combines NNs with other
conventional control approaches has rapidly developed in UAHs [27–29]. An adaptive
observer based on NN and the extended Kalman filter was designed to detect faults in [30],
while an active fault-tolerant control was proposed on this basis so that the helicopter
could track the target trajectory uninterruptedly. In [31], a new multivariable finite-time
disturbance observer combined with NNs was investigated to process the disturbance and
uncertainty; it was applied to the tracking control of the unmanned helicopter formation.
NN was introduced to deal with the uncertainty and input dead zone of the helicopter
system in [32]. An adaptive safe tracking control was realized in [33] by combining NN
and the disturbance observer.

In the UAH system, the control input saturation cannot be avoided due to the physical
condition of the actuator [34]. Input saturation can affect the control performance and lead
to unacceptable control errors in severe cases. From the perspective of system security,
input saturation is a hot research topic, and there have been many research studies in recent
years. In [35], an adaptive neural tracking controller for a near-space vehicle was designed
based on the backstepping method to cope with the input nonlinearity. In [36], auxiliary
systems were adopted to deal with actuator saturation and faults; the reliability and safety
operations of UAH were improved. An adaptive method was used for helicopters in [37] to
compensate for the saturation error and external perturbation. System uncertainty, external
disturbances, and input saturation should be considered when designing a control system.
Therefore, the control design of a medium UAH requires further research.
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Inspired by the above discussion, this paper presents an adaptive control for the UAH
with input saturation, external disturbances, and uncertainty. The developed integral
backstepping control strategy combined with NN and SMC avoids the discontinuity of
control signals and improves tracking accuracy. The layout of the remaining contents is
arranged as follows. Section 2 illustrates the simple theoretical analysis of modeling and
presents the problems and preliminaries. In Section 3, an adaptive controller is built to
guarantee the expected control performance. Some simulation results of the proposed
control scheme are given in Section 4. Section 5 presents a summary of the main content.

2. Problem Formulation

The helicopter model is the basis of flight control design and the premise of simulation
verification. Based on the previous research results, a simplified nonlinear mathematical
model of a six-degree-of-freedom medium UAH was established. Firstly, the UAH is re-
garded as a symmetric rigid body with constant mass. Secondly, two coordinates frequently
used in the modeling process are defined, namely the body’s fixed frame and the inertial
frame. The motion forms of the UAH are mainly divided into translation motion and
rotation motion. We define Pe = [x, y, z]T as the positional vector in the inertial coordinate
system and Ve = [u, v, w]T as the translational velocity vector. We define Λ = [φ, θ, ψ]T as
the angle vector in the body-fixed frame and Ω = [p, q, r]T as the angular rate vector.

Then, the Newton–Euler equation is used to describe the dynamics of the UAH, which
can be represented as [1,38]

Ṗe = Ve
V̇e = G + m−1Re

bFb
Λ̇ = HΩ
Ω̇ = −I−1

n Ω× InΩ + I−1
n Ξb

(1)

where the mass of UAH is denoted by m and G = [0, 0, g]T; g means the gravitational
acceleration. Fb = [0, 0,−Tm]

T and Ξb = [L, M, N]T, respectively, represent the resultant
external force vector and moment vector of the UAH. The inertia matrix is defined as
In = diag

{
Ixx, Iyy, Izz

}
. The matrix Re

b is expressed as [1,38]

Re
b =

 TcθTcψ TsφTsθTcψ− TcφTsψ TsφTsψ + TcφTsθTcψ
TsψTcθ TsφTsθTsψ + TcφTcψ −TsφTcψ + TcφTsθTsψ
−Tsθ TsφTcθ TcφTcθ

, (2)

which is the direction cosine converted from the body fixed frame to the inertial frame.
Moreover, H is the attitude kinematic matrix defined as [1,38]

H =

 1 TsφTtθ TcφTtθ
0 Tcφ −Tsφ
0 Tsφ

/
Tcθ Tcφ

/
Tcθ

. (3)

The symbols Tc, Ts, and Tt are abbreviations for the trigonometric functions cos, sin
and tan, respectively.

We define uc = [Tm, L, M, N]T. The saturation function of the control input is expressed
as [34]

sat(uci) =

{
sign(uci)ūci, |uci| > ūci

uci, |uci| ≤ ūci
(4)

where i = 1, 2, 3, 4, and ūci > 0 is the upper bound of the control signal.
To improve the control performance and reliability of the UAH system, the existence

of system uncertainty, external disturbance, and control input saturation should be taken
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into account during modeling. Let Fbs = [0, 0,−sat(Tm)]
T, Ξbs = [sat(L), sat(M), sat(N)]T.

The dynamics of the velocity/angular rate can be redefined as

V̇e = G + ∆G + m−1Re
bFbs + d1 (5)

Ω̇ = f (Ω) + ∆ f + I−1
n Ξbs + d2 (6)

where f (Ω) = −I−1
n Ω × InΩ, ∆G, and ∆ f are the system uncertainties, while d1 and

d2 are external force type disturbance and torque type disturbance acting on the UAH,
respectively.

The objective of the paper was to develop an adaptive control scheme for UAHs
that can ensure the tracking of desired signals and the boundedness of signals in the
overall closed-loop system in the presence of input saturation, uncertainty and external
disturbances.

To facilitate the handling of the UAH system’s control problem, some relevant assump-
tions and lemmas need to be briefly described.

Assumption 1 ([14]). The pitch angle θ and roll angle φ are always kept within a reasonable range
that satisfies the inequality constraints: |φ| < π

2 and |θ| < π
2 .

Assumption 2 ([39]). The external disturbances of the UAH di(i = 1, 2) are bounded, i.e.,
‖di‖ ≤ d̄i with d̄i > 0.

Assumption 3 ([40]). Both the desired trajectory yd and its derivatives ẏd, ÿd are all bounded.
That is to say, there is a positive unknown constant od satisfying Ed := {(yd, ẏd, ÿd) : ‖yd‖2 +

‖ẏd‖2 + ‖ÿd‖2 ≤ od}, where Ed is a compact set.

Assumption 4 ([34]). The difference between the desired input and the actual input caused by
input saturation is bounded. In other words, ∆uci(i = 1, 2, 3, 4) satisfies the condition ‖∆uci‖ ≤ σi,
where ∆uci is the difference expressed as ∆uci = sat(uci) − uci and σi is an unknown positive
constant.

Lemma 1 ([41]). For the studied UAH system, there exists c0 > 0, κ > 0, and a positive
definite Lyapunov function V(x) that satisfies a few conditions: (1) the initial value is bounded;
(2) γ1(‖x‖) ≤ V(x) ≤ γ2(‖x‖), where γ1, γ2 : Rn → R are class K functions; (3) V̇(x) ≤
−κV(x) + c0. Consequently, the solution x(t) is uniformly bounded.

Lemma 2 ([42]). The radial basis function NN (RBFNN) is a popular feedforward NN, and its
strong nonlinear mapping ability makes it widely utilized in various uncertain nonlinear systems.
RBFNN can be frequently employed to estimate a continuous function λ(Z) : Rq → R; its
expression is as follows:

λ(Z) = Θ̂TΠ(Z) + ζ (7)

where Z means the input vector, ζ is the approximation error and satisfies the conditions |ζ| ≤ ζ̄,
and ζ̄ > 0 is an unknown constant. Θ̂ means the weight vector, and Π(Z) is the basis function
(generally picked as the Gaussian function).

Obviously, the function λ(Z) on the compact set ΩZ can be approximated by RBFNN with
any precision as

λ(Z) = Θ∗TΠ(Z) + ζ∗ (8)

where ζ∗ represents the minimum approximation error. Θ∗ is the optimal weight value expressed as

Θ∗ = arg min
Θ̂∈Rp

[
sup

Z∈ΩZ

∣∣λ̂(Z|Θ̂)− λ(Z)
∣∣] (9)

Remark 1. When the UAH is hovering or flying horizontally at a low speed, the flapping angle
of the main rotor is small. The lift of the main rotor is regarded as the primary control unit
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for the position loop, while torque (in the three directions of the body coordinate system) is used
for attitude control. During actual flight, operators primarily balance forces and torques on the
UAH by controlling two collective pitch inputs generated by the tail rotor and main rotor, as
well as longitudinal and transverse periodic pitch inputs produced by the main rotor, to maintain
stable flight.

3. Controller Design of the UAH with Input Saturation, Disturbances and Uncertainty

In this section, an adaptive control scheme for the UAH is proposed to track the target
trajectory, which is based on integral backstepping and the SMC. Moreover, it can reduce
the impact of input saturation, disturbances and uncertainty on the system performance.
The control of the position loop and attitude loop are considered separately. The control
design flow is given in Figure 1.

Position
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controller

Position

system

Attitude

loop

controller

sat(M)

sat(N)

sat(L)

dP

dy

dq
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Figure 1. Control design flow chart.

3.1. Positional Subsystem Controller

Firstly, the control scheme for the position loop is given. The detailed design steps are
as follows.

An auxiliary system is built to handle the input saturation as follows [35]:{
ξ̇1 = −κ1ξ1 + ξ2
ξ̇2 = −κ2ξ2 − ξ1 + m−1Re

b∆u1
(10)

where ∆u1 = Fbs − Fb, ξ1 and ξ2 are state variables of the auxiliary system, κ1 and κ2 are
diagonal and positive definite matrices.

In combination with the designed auxiliary system, we define the positional tracking
error as

e1 = Pe − Pd − ξ1 + K1

∫
(Pe − Pd − ξ1)dt (11)

where Pd is the desired position, and K1 ∈ R3×3 is an integral coefficient diagonal matrix
that is positive definite.

The Lyapunov function is selected as:

V1 =
1
2

eT
1 e1 (12)



Drones 2023, 7, 154 6 of 20

We define the velocity error as

e2 = Ve − α1 − ξ2 (13)

where α1 is the virtual control law to be designed.
Invoking (13) and taking the time derivative of V1, we have

V̇1 = eT
1 ė1

= eT
1 (Ve − Ṗd−ξ̇1 + K1(Pe − Pd−ξ1))

= eT
1 (e2 + α1+ξ2 − Ṗd−ξ̇1 + K1(Pe − Pd−ξ1))

= eT
1 (e2 + α1 − Ṗd + κ1ξ1 + K1(Pe − Pd − ξ1)) (14)

Then, we propose the virtual control input as

α1 = Ṗd − A1e1−κ1ξ1 − K1(Pe − Pd−ξ1) (15)

where A1 = AT
1 ∈ R3×3 is a positive definite matrix.

Thus, we substitute (15) into (14) to obtain

V̇1 = −eT
1 A1e1 + eT

1 e2 (16)

From (5), we know that the position subsystem is uncertain. To solve the difficulty, a
RBFNN is applied to estimate the unknown uncertainty ∆G with the precision of minimum
approximation error ζ1, which is written as [42]

∆G = Θ∗T1 Π(x1) + ζ1 (17)

where x1 = [PT
e , VT

e ]
T, ζ1 satisfies ‖ζ1‖ ≤ ζ̄1, ζ̄1 > 0 is an unknown constant, and Θ∗1

denotes the optimal weight of RBFNN.
By substituting (17) into (5), we have

V̇e = G + Θ∗T1 Π(x1) + m−1Re
bFbs + ε1 (18)

where ε1 = ζ1 + d1. Combining Assumption 2 with Lemma 2, we have ‖ε1‖ ≤ δ1, and a
positive constant δ1 is the upper bound.

We consider the following sliding surface:

s1 = e2

= Ve −
(

Ṗd − A1e1 − κ1ξ1 − K1(Pe − Pd − ξ1)
)
− ξ2

= Ṗe − Ṗd − ξ̇1 + K1(Pe − Pd − ξ1) + A1e1

= ė1 + A1e1 (19)

Invoking (10), (15) and (18), the time derivative of s1 is

ṡ1 = V̇e − α̇1 − ξ̇2

= G+Θ∗T1 Π(x1) + m−1U1 + ε1 − α̇1 + κ2ξ2 + ξ1 (20)

where U1 = Re
bFb.

The dynamic surface control technique is applied to overcome differential explosion
and obtain the derivative of the virtual control input. Pass α1 through the first-order filter
to obtain a1 as follow [34]:

r1 ȧ1 + a1 = α1, a1(0) = α1(0) (21)

where r1 is a time constant matrix that satisfies r1 = diag{r11, r12, r13} > 0.
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Defining eα1 = a1 − α1, we have

ėα1 = ȧ1 − α̇1 = −r−1
1 eα1 + N1(Ṗd, ξ1, e1) (22)

where N1(Ṗd, ξ1, e1)= − (∂α1
/

∂Pd)Ṗd − (∂α1
/

∂ξ1)ξ̇1 − (∂α1
/

∂e1)ė1 represents the
sufficiently smooth function vector. According to assumption 3, N1(•) is bounded un-
der the given initial condition, which is satisfied ‖N1(•)‖ ≤ N̄1, N̄1 > 0 [43].

The candidate Lyapunov function is

V2 =
1
2

eT
1 e1 +

1
2

sT
1 s1 +

1
2

tr(Θ̃T
1 Γ−1

1 Θ̃1)+
1
2

2

∑
i=1

ξT
i ξi +

1
2

eT
α eα (23)

where Θ̃1 = Θ̂1 −Θ∗1 , Γ1 > 0 is a diagonal matrix to be computed.
Its time derivative is

V̇2 = eT
1 ė1 + sT

1 ṡ1+tr(Θ̃T
1 Γ−1

1
˙̃Θ1) + ξT

1 ξ̇1 + ξT
2 ξ̇2 + eT

α ėα

= eT
1 (−A1e1 + s1) + sT

1 (V̇e − α̇1 − ξ̇2)+tr(Θ̃T
1 Γ−1

1
˙̂Θ1)+ξT

1 ξ̇1 + ξT
2 ξ̇2 + eT

α1 ėα1

= eT
1 (−A1e1 + s1) + sT

1 (G+Θ∗T1 Π(x1) + m−1U1 + ε1 − α̇1 + κ2ξ2 + ξ1)

+tr(Θ̃T
1 Γ−1

1
˙̂Θ1)− ξT

1 κ1ξ1 − ξT
2 κ2ξ2 + ξT

2 (m
−1Re

b∆u1) + eT
α ėα (24)

The control input of the position subsystem is

U1 = m(−G− e1 + ȧ1 − κ2ξ2 − ξ1 − η1Sign(s1)− T1s1 − Θ̂T
1 Π(x1)) (25)

where T1 > 0 is a designed diagonal matrix, and η1 is a parameter satisfying η1 − ‖ε1‖ ≥ 0.
Sign(s1) = [sign(s11), sign(s12), sign(s13)]

T, and the definition of the sign function is

sign(υ) =


1, υ > 0
0, υ = 0
−1, υ < 0

(26)

Remark 2. Due to the discontinuous switching on the sliding mode surface, high frequency
chattering exists in the SMC. To smooth the control signal, in (25), the hyperbolic tangent function
can be selected to replace the sign function, which is defined as

tanh(υ) =
−e−υ + eυ

e−υ + eυ
(27)

Thus, to avoid chattering, the control low is rewritten as

U1 = m(−G− e1 + ȧ1 − κ2ξ2 − ξ1 − η1Tanh(s1)− T1s1 − Θ̂T
1 Π(x1)) (28)

where Tanh(s1) = [tanh(s11), tanh(s12), tanh(s13)]
T.

The adaptive update law for ˙̂Θ1 is designed as

˙̂Θ1 = Γ1(Π(x1)sT
1 − τ1Θ̂1) (29)

where τ1 > 0 is a design parameter.
We substitute (10), (28), and (29) into (24) to obtain

V̇2 = −eT
1 A1e1 + sT

1 ε1 + s1 ėα1 − sT
1 η1Tanh(s1)− sT

1 T1s1 − τ1tr(Θ̃T
1 Θ̂1)− ξT

1 κ1ξ1

−ξT
2 κ2ξ2 + ξT

2 (m
−1Re

b∆u1) + eT
α1 ėα1 (30)

We define β = Sign(s1)− Tanh(s1). Then, we obtain
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V̇2 = −eT
1 A1e1 + sT

1 ε1 + s1 ėα1 − sT
1 η1(Sign(s1)− β)− sT

1 T1s1 − τ1tr(Θ̃T
1 Θ̂1)− ξT

1 κ1ξ1

−ξT
2 κ2ξ2 + ξT

2 (m
−1Re

b∆u1) + eT
α1 ėα1

≤ −eT
1 A1e1 + s1 ėα1 + sT

1 η1β− sT
1 T1s1 − τ1tr(Θ̃T

1 Θ̂1)− ξT
1 κ1ξ1 − ξT

2 κ2ξ2

+ξT
2 (m

−1Re
b∆u1) + eT

α1 ėα1 (31)

Consider the following inequalities

−τ1tr(Θ̃T
1 Θ̂1) ≤ −1

2
τ1‖Θ̃1‖2 +

1
2

τ1‖Θ∗1‖2

sT
1 η1β ≤ η1ρ‖s1‖ ≤

b
2

η2
1ρ2sT

1 s1 +
1
2b

ξT
2 (m

−1Re
b∆u1) ≤

1
2o1

B2
1 +

o1

2
ξT

2 ξ2

s1 ėα1 ≤ sT
1 (

1
2

∥∥∥r−1
1

∥∥∥2
+

1
2
)s1 +

1
2

eT
α1eα1 +

1
2

N̄2
1 (32)

where ‖β‖ = ‖Sign(s1)− Tanh(s1)‖ ≤ ρ, 0 ≤ ρ ≤ 2
√

3,
∥∥m−1Re

b∆u1
∥∥ ≤ B1, b and o1 are

positive constants.
Substituting (32) into (31), we have

V̇2 ≤ −eT
1 A1e1 − sT

1 (T1 − (
b
2

η2
1ρ2 +

1
2

∥∥∥r−1
1

∥∥∥2
+

1
2
)I)s1 −

τ1

2

∥∥Θ̃1
∥∥2

−ξT
1 κ1ξ1 − ξT

2 (κ2 −
o1

2
I)ξ − eT

α1(r
−1
1 − I)eα1

+
τ1

2
‖Θ∗1‖

2 +
1
2b

+
1

2o1
B2

1 + N̄2
1 (33)

3.2. Attitude Subsystem Controller

The UAH is a typical underactuated system that has four inputs but six outputs. For
the attitude subsystem and position subsystem, coupling exists between the two. So the
yaw angle ψd is given as a predetermined value, and the remaining two attitude angles
need to be solved by the following formula [44] φd = arctan

(
cos θd(ux sin ψd−uy cos ψd)

uz

)
θd = arctan

(
ux cos ψd+uy sin ψd

uz

) (34)

where the control input U1 is written as U1 = [ux, uy, uz]T.
Through the inverse solution of formula U1 = Re

bFb and the controller (28), the main
rotor lift can be described as

Tm =
uz

cos φd cos θd
(35)

In this subsection, the control scheme of the attitude system is similar to the previous
subsystem. The dynamic surface method is applied to process the desired signal.

We define the expected value Λd = [φd, θd, ψd]
T. In order to avoid the variable unavail-

ability and differential explosion caused by multiple derivatives, we adopt the dynamic
surface technique to obtain its available derivative. We pass Λd through the first-order filter
to obtain λd as follows [34]:

γλ̇d + λd = Λd, λ(0) = Λd(0) (36)

where γ is the time constant matrix that satisfies γ = diag{γ1, γ2, γ3} > 0.
Defining e f = λd −Λd, we have

ė f = λ̇d − Λ̇d = −γ−1e f + M(a1, e1, s1, ξ1, ξ2) (37)
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where M(a1, e1, s1, ξ1, ξ2) = −(∂Λd
/

∂a1)ȧ1− (∂Λd
/

∂e1)ė1− (∂Λd
/

∂s1)ṡ1− (∂Λd
/

∂ξ1)ξ̇1−
(∂Λd

/
∂ξ2)ξ̇2 represents the sufficiently smooth function vector. According to Assumption 3,

M(•) is bounded under the given initial condition, which is satisfied ‖M(•)‖ ≤ M̄, M̄ > 0 [43].
To handle the input saturation, another auxiliary system is constructed as follows [35]:{

ξ̇3 = −κ3ξ3 + Hξ4
ξ̇4 = −κ4ξ4 − HTξ3 + HI−1

n ∆Ξ
(38)

where ∆Ξ = Ξbs − Ξb, ξ3, and ξ4 are internal states of the auxiliary system, and κ3 and κ4
are diagonal and positive-definite matrices.

In combination with the designed auxiliary system, we define the attitude tracking
error as

e3 = Λ− λd − ξ3 + K3

∫
(Λ− λd − ξ3)dt (39)

We define the velocity error as

e4 = Λ̇− α3 − ξ4 (40)

where α3 is the virtual control input.
We select the Lyapunov function candidate as

V3 =
1
2

eT
3 e3 (41)

We take the derivative of V3 to have

V̇3 = eT
3 ė3

= eT
3 (Λ̇− λ̇d − ξ̇3 + K3(Λ− λd − ξ3))

= eT
3 (e4 + α3 + ξ4 − λ̇d + κ3ξ3 − Hξ4 + K3(Λ− λd − ξ3)) (42)

Then, we design the virtual control input as

α3 = λ̇d − A3e3 − κ3ξ3 + (H − I)ξ4 − K3(Λ− λd − ξ3) (43)

Substituting (43) into (42), we have

V̇3 = eT
3 (−A3e3 + e4) (44)

Similar to the idea of the positional subsystem, we use a RBFNN to estimate the
unknown uncertainty ∆ f expressed as [42]

∆ f = Θ∗T2 Π(x2) + ζ2 (45)

where Θ∗2 denotes the optimal weight of the RBFNN, ζ2 denotes the minimum error that
satisfies ‖ζ2‖ ≤ ζ̄2, and ζ̄2 > 0 is an unknown constant.

Substituting (45) into (6), we have

Ω̇ = f (Ω) + Θ∗T2 Π(x2) + I−1
n Ξbs + ε2 (46)

where x2 = [ΛT, ΩT]T, ε2 = ζ2 + d2. Combining Assumption 2 with Lemma 2, we have
‖ε2‖ ≤ δ2, where δ2 is a positive constant.

Thus, we can obtain the sliding surface as

s2 = e4

= Λ̇− λ̇d − ξ̇3 + K3(Λ− λd − ξ3) + A3e3

= ė3 + A3e3 (47)
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Invoking (38), (43), and (46), the time derivative of s2 is

ṡ2 = Λ̈− α̇3−ξ̇4

= ḢΩ+HΩ̇− α̇3 − (−κ4ξ4 − HTξ3 + HI−1
n ∆Ξ)

= ḢΩ + H( f + Θ∗T2 Π(x2) + I−1
n Ξb + ε2)− α̇3 + κ4ξ4 + HTξ3 (48)

We pass α3 through the following filter to obtain a3 [34]:

r3 ȧ3 + a3 = α3, a3(0) = α3(0) (49)

where the time constant matrix r3 satisfies r3 = diag{r31, r32, r33} > 0.
Defining eα3 = a3 − α3, we have

ėα3 = ȧ3 − α̇3 = −r−1
3 eα3 + N3(λd, ξ3, ξ4, e3) (50)

where N3(λd, ξ3, ξ4, e3) = −(∂α3
/

∂λd)λ̇d − (∂α3
/

∂ξ3)ξ̇3 − (∂α3
/

∂ξ4)ξ̇4 − (∂α3
/

∂e3)ė3 rep-
resents the sufficiently smooth function. According to Assumption 3, N3(•) is bounded
under the given initial condition, which is satisfied ‖N3(•)‖ ≤ N̄3, N̄3 > 0 [43].

The candidate Lyapunov function is

V4 =
1
2

eT
3 e3 +

1
2

sT
2 s2 +

1
2

tr(Θ̃T
2 Γ−1

2 Θ̃2)+
1
2

4

∑
i=3

ξT
i ξi +

1
2

eT
α3eα3 +

1
2

eT
f e f (51)

where Θ̃2=Θ̂2 −Θ∗2 , and Γ2 > 0 is a diagonal matrix to be designed.
Its time derivative is

V̇4 = eT
3 ė3 + sT

2 ṡ2 + tr(Θ̃T
2 Γ−1

2
˙̃Θ2) + ξT

3 ξ̇3 + ξT
4 ξ̇4 + eT

α3 ėα3 + eT
f ė f

= eT
3 (−A3e3 + s2) + sT

2 (ḢΩ + H( f + Θ∗T2 Π(x2) + I−1
n Ξb + ε2)− α̇3 + κ4ξ4 + HTξ3)

+tr(Θ̃T
2 Γ−1

2
˙̂Θ2) + ξT

3 ξ̇3 + ξT
4 ξ̇4 + eT

α3 ėα3 + eT
f ė f (52)

The control input is designed as

Ξb = In(−( f + Θ̂T
2 Π(x2) + η2Sign(HTs2)) + H−1(−ḢΩ + ȧ3 − κ4ξ4

−HTξ3 − e3 − T2s2)) (53)

where T2 > 0 is a diagonal matrix, while η2 is a positive definite parameter satisfying
‖ε2‖ − η2 ≤ 0.

The adaptive update law for ˙̂Θ2 is designed as

˙̂Θ2 = Γ2(Π(x2)sT
2 H − τ2Θ̂2) (54)

where τ2 > 0 is a designed parameter.
Invoking (38), (52), (53), and (54), we can obtain

V̇4 = −eT
3 A3e3 − sT

2 T2s2 + sT
2 H(ε2 − η2Sign(HTs2)) + s2 ėα3 − τ2tr(Θ̃T

2 Θ̂2)

−ξT
3 κ3ξ3 − ξT

4 κ4ξ4 + ξT
4 (HI−1

n ∆Ξ) + eT
α3 ėα3 + eT

f ė f (55)



Drones 2023, 7, 154 11 of 20

The following inequalities hold:

−τ2tr(Θ̃T
2 Θ̂2) ≤ −1

2
τ2‖Θ̃2‖2 +

1
2

τ2‖Θ∗2‖2

ξT
4 (HI−1

n ∆Ξ) ≤ 1
2o2

B2
2 +

o2

2
ξT

4 ξ4

s2 ėα3 ≤ sT
2 (

1
2

∥∥∥r−1
3

∥∥∥2
+

1
2
)s2 +

1
2

eT
α3eα3 +

1
2

N̄2
3

eT
α3 ėα3 ≤ −eT

α3(r
−1
3 −

1
2

I)eα3 +
1
2

N̄2
3

eT
f ė f ≤ −eT

f (γ
−1 − 1

2
I)e f +

1
2

M̄2 (56)

where
∥∥HI−1

n ∆Ξ
∥∥ ≤ B2, and o2 is a positive constant.

Substituting (56) into (55), we have

V̇4 ≤ −eT
3 A3e3 − sT

2 (T2 − (
1
2

∥∥∥r−1
3

∥∥∥2
+

1
2
)I)s2 −

τ2

2

∥∥Θ̃2
∥∥2 − ξT

3 κ3ξ3 − ξT
4 (κ4 −

o2

2
I)ξ4

−eT
α3(r

−1
3 − I)eα3 − eT

f (γ
−1 − 1

2
I)e f +

τ2

2
‖Θ∗2‖

2 +
1

2o2
B2

2 + N̄2
3 +

1
2

M̄2 (57)

The Lyapunov function candidate selected for the whole system is shown as follows:

V = V2 + V4 (58)

Differentiating (58) yields
V̇ = V̇2 + V̇4 (59)

Invoking (33) and (57), we have

V̇ ≤ −eT
1 A1e1 − sT

1 (T1 − (
b
2

η2
1ρ2 +

1
2

∥∥∥r−1
1

∥∥∥2
+

1
2
)I)s1 − ξT

1 κ1ξ1 − ξT
2 (κ2 −

o1

2
I)ξ

−eT
α1(r

−1
1 − I)eα1 − eT

3 A3e3 − sT
2 (T2 − (

1
2

∥∥∥r−1
3

∥∥∥2
+

1
2
)I)s2 −

τ1

2

∥∥Θ̃1
∥∥2 − τ2

2

∥∥Θ̃2
∥∥2

−ξT
3 κ3ξ3 − ξT

4 (κ4 −
o2

2
I)ξ4 − eT

α3(r
−1
3 − I)eα3 − eT

f (γ
−1 − 1

2
I)e f

+
τ1

2
‖Θ∗1‖

2 +
1
2b

+
1

2o1
B2

1 + N̄2
1 +

τ2

2
‖Θ∗2‖

2 + N̄2
3 +

1
2o2

B2
2 +

1
2

M̄2

≤ −2h̄V + ` (60)

where

h̄ = min


λmin(A1), λmin(T1 − ( b

2 η2
1ρ2 + 1

2

∥∥∥r−1
1

∥∥∥2
+ 1

2 )I), λmin(T2 − ( 1
2

∥∥∥r−1
3

∥∥∥2
+ 1

2 )I),

λmin(A3),
τ1

2λmax(Γ1)
, τ2

2λmax(Γ2)
, λmin(r−1

1 − I), λmin(κ1), λmin(κ3),

λmin(κ2 − o1
2 I), λmin(κ4 − o2

2 I), λmin(r−1
3 − I), λmin(γ

−1 − 1
2 I)

 (61)

` =
τ1

2
‖Θ∗1‖

2 +
1
2b

+
1

2o1
B2

1 + N̄2
1 +

τ2

2
‖Θ∗2‖

2 + N̄2
3 +

1
2o2

B2
2 +

1
2

M̄2 (62)

The stability of the closed-loop system can be guaranteed only if the parameters are
selected to meet the conditions as follows:

T1 − ( b
2 η2

1ρ2 + 1
2

∥∥∥r−1
1

∥∥∥2
+ 1

2 )I > 0, T2 − ( 1
2

∥∥∥r−1
3

∥∥∥2
+ 1

2 )I > 0

r−1
1 − I > 0, κ2 − o1

2 I > 0, κ4 − o2
2 I > 0

r−1
3 − I > 0, γ−1 − 1

2 I > 0
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From (60), by choosing the appropriate parameters, the controller can make the signal
of the whole system bounded. Thus, there exists a bound for all sliding mode surfaces and
tracking errors on the basis of Lemma 1, and the expected signal can be well-tracked.

4. Simulation Results

Some simulations on the medium UAH are given to demonstrate the performance of
the presented control scheme.

In this section, the physical properties related to the medium UAH are shown in
Table 1.

Table 1. Physical properties of the medium UAH.

Symbol Definition Value(unit)

m Mass of UAH 800 kg
g Acceleration of gravity 9.8 m/s2

Ixx Moment of inertia along x axis 358.4 kg ·m2

Iyy Moment of inertia along y axis 777.9 kg ·m2

Izz Moment of inertia along z axis 601.4 kg ·m2

In this example, the initial states are assumed as Pe(0) = [0, 0,−98]T(m), Λ(0) =
[0.1, 0.1, 0.1]T(rad). Moreover, the tracking position trajectory is set as

Pd = [8 sin(0.2t), 6 sin(0.2t),−100− 2t]T(m) (63)

The expected attitude angle is set to ψd = 0.5 sin(0.5t)(rad), and the remaining two
angles are obtained by Formula (34).

Moreover, we consider the existence of system uncertainty and set it at 20%, while the
external disturbances are chosen as

d1 = [0.5 ∗ sin(0.4t), 0.2 ∗ sin(0.4t), 0.3 ∗ sin(0.4t)]T,

d2 = [0.2 ∗ sin(0.3t), 0.3 ∗ sin(0.5t), 0.4 ∗ sin(0.2t)]T.

where the 3D graphs of d1 and d2 are shown in Figure 2.
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Figure 2. The 3D graphs of d1 and d2.
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Remark 3. The premise of the proposed control method is that the performance of the UAH system
is controllable in complex environments, such as uncertainty and bounded disturbances. If these
conditions are not met (e.g., an unbounded disturbance (hurricane)), then the designed controller is
invalid. When simulating external disturbances, we need to select the appropriate amplitude and
frequency. They should not be too large, otherwise the UAH cannot provide the corresponding force
and torque to achieve the control effect.

Furthermore, the relevant controller design parameters are, respectively, chosen as
K1 = diag{1, 1, 1}, A1 = diag{0.1, 0.1, 0.1}, K3 = diag{1, 1, 0.75}, A3 = diag{2, 3, 2},
η1 = 0.8, T1 = diag{5, 5, 10}, Γ1 = 50, τ1 = 0.1, η2 = 1, T2 = diag{10, 10, 10},
Γ2 = 50, τ2 = 0.1, κ1 = κ2 = κ3 = κ4 = diag{10, 10, 10}, r1 = r3= diag{0.5, 0.5, 0.5},
γ = diag{0.05, 0.05, 0.05}.

The backstepping SMC (green lines), the integral backstepping SMC without NN (red
lines), and the proposed integral backstepping SMC combined with NN (blue lines) are
selected, and their tracking effects are compared without considering input saturation.
The tracking errors of the three controllers are shown in Figures 3 and 4. Because the
proposed control strategy combines the advantages of the backstepping SMC and NN, the
tracking errors have shorter convergence times in the position and attitude angles, and the
oscillation amplitude is smaller than that of other controllers.

Figures 5–7 show the position and attitude-tracking response curves of the UAH
system with the input saturation, disturbances, and uncertainty under the control scheme
proposed in this paper. Figure 6 shows the 3D tracking renderings of the position. From
Figure 5, it can be seen that trajectory tracking along the three axes is achieved. Figure 7
displays the tracking response curves of the three attitude angles. As can be observed from
Figures 5–7, the system can fast-track the expected signal without being affected by input
saturation, uncertainty, and external disturbance.
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Figure 3. Position tracking error comparison.
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Figure 7. Tracking response of the attitude.

We use attitude angle tracking as an example. It can be seen from Figure 8 that the
sign function can generate chattering; replacing it with the tanh function can make the
tracking effect smoother.
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Figure 8. Attitude tracking curve with the sign function.

Figure 9 presents the control input of lift force and the control input with saturation
in the position subsystem, while the control input of torques and the control input with
saturation in the attitude subsystem are shown in Figure 10. The weights of the NN are
shown in Figures 11 and 12; the control effect shows that the NN can better compensate
for the system uncertainty. To summarize, the proposed control design scheme has good
robustness.
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Figure 9. Control force of the position subsystem.
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Figure 10. Control torques of the attitude subsystem.
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Figure 12. Norms of NN weight values, i.e., ‖Θ2‖.

5. Conclusions

In this paper, a NN-based integral backstepping SMC scheme is proposed for a
medium UAH subjected to input saturation, unknown system uncertainty, and distur-
bances. The auxiliary system was constructed to compensate for the adverse effects of input
saturation. The unknown uncertainties were estimated by RBFNN; the estimation errors
and the external disturbances were regarded as compound disturbances. The sliding mode
controller was developed by the integral backstepping method to tackle the compound
disturbances. The boundedness of the closed-loop system was guaranteed by the Lyapunov
analysis. Finally, some numerical simulations confirmed that the controllers are effective
and have good performance.
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