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Abstract: Path planning using handcrafted waypoints is inefficient for a multi-task UAV operating in
dynamic environments with potential risks such as bad weather, obstacles, or forbidden zones, among
others. In this paper, we propose an automatic path planning method through natural language
that instructs the UAV with compound commands about the tasks and the corresponding regions
in a given map. First, we analyze the characteristics of the tasks and we model each task with a
parameterized zone. Then, we use deep neural networks to segment the natural language commands
into a sequence of labeled words, from which the semantics are extracted to select the waypoints and
trajectory patterns accordingly. Finally, paths between the waypoints are generated using rapidly
exploring random trees (RRT) or Dubins curves based on the task requirements. We demonstrate
the effectiveness of the proposed method using a simulated quadrotor UAV that follows sequential
commands in four typical tasks with potential risks.
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1. Introduction

Path planning is the fundamental capability for an autonomous UAV to carry out
real-world tasks such as logistics [1], warehouse construction [2], surveying [3] and envi-
ronmental monitoring [4], agriculture [5] and localization [6], and so on. Various methods
have been proposed for solving the UAV path-planning problem, e.g., genetic algorithm
(GA) [2], particle swarm optimization (PSO) [7], deep reinforcement learning (DRL) [8], A*
and rapidly-exploring random Tree (RRT) [9], et al. For example, local optima were avoided
by introducing nonlinear dynamic inertia weights into traditional PSO [7]. Considering
environmental risks such as enemy radar detection and missile attack, the dueling double
deep Q-networks (D3QN) algorithm was designed for action selection based on a situa-
tion assessment model [8]. By comparing two typical graph-based and sampling-based
algorithms, i.e., A* and RRT, their limitations were discussed, and they were improved
by ripple reduction and smoothing, respectively [9]. Recently, visual perception has been
integrated in the control loop of the UAVs, and deep neural networks have been used to
learn various sensorimotor skills in real-world environments, such as high-speed indoor
racing [10], acrobatics (the power Loop, the Barrel Roll, and the Matty Flip) [11], swarming
in a forest [12], among others. Due to the limitation of onboard computation resources, tra-
jectories have been optimized by leveraging relative gate observations [10], demonstrations
from an optimal controller [11], or geometrical configuration constraints [12].

Although artificial intelligence (AI) technologies have been developed to achieve
higher UAV autonomy, human supervision is still necessary to guarantee task efficiency as
well as UAV safety, as discussed in our previous work [13]. Specifically, the human operator
of the ground control station (GCS) needs to handle dynamic events (e.g., new task locations
or emerging risks) in multi-step tasks such as reconnaissance and surveillance. The human
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workload would dramatically increase with the number of UAVs as well as task complexity.
Compared with traditional human-machine interfaces (e.g., keyboard, mouse, and touch
screen) [14], voice and gestures are more effective for controlling multiple UAVs [15]. As for
UAV path planning, augmented reality (AR) [16] and human action recognition [17] can also
be used. However, natural language is still considered to be the most convenient way for
an end-user to control an intelligent vehicle in urgent situations [18]. Based on our previous
work [15], we will further investigate how to automatically generate UAV paths based on
human voice commands. We note that we focus more on the interactive perspective of UAV
path planning rather than developing cutting-edge sensorimotor control or path-planning
algorithms as done in [10–12].

Natural language processing (NLP) includes several topics such as automatic speech
recognition (ASR) [19], natural language understanding (NLU) [20], and machine trans-
lation [21], et al. Current state-of-the-art ASR systems are typically end-to-end based on
autoregressive models [22] or deep learning models [23]. Voice command recognition
can be used for controlling robots in simple robotic tasks using hidden Markov models
(HMMs) [24] or deep learning [25]. For example, the answer-set rules were designed, and
the commands were converted into a sequence of actions for robot task planning [26]. In
another work, a UAV was controlled by a domain-based speech-to-action method [27]. On
the other hand, NLU is more applicable for multi-task scenarios that involve information
gathering, question answering and dialogue management. It is essential to extract the
semantic elements from human utterance [28]. For example, human instructions were
inferenced by a probabilistic generative model for path planning [29,30]. The number
of command words and the difficulty of speech recognition were both reduced by using
location names instead of coordinates. However, assumptions were made that the accuracy
of speech recognition was sufficiently high.

In this paper, the main contributions are as follows:

(1) We propose a novel interactive framework for automatic path planning with a multi-
task UAV through the understanding of compound natural language commands.

(2) We propose a multi-task command understanding method using RNN-based tagging
and semantic annotation, which can extract keywords that describe the task types and
the task requirements instructed by the human operator.

(3) We propose a novel algorithm to efficiently select the start and the exit waypoints for
each task zone from a small set of candidate waypoints according to the tasks.

The rest of the paper is organized as follows. Section 2 analyzes the problem. Section 3
explains the proposed method. Section 4 discusses the simulations and results. Finally,
Section 5 concludes the paper.

2. Problem Statement

The choice of path-planning algorithms largely depends on task requirements and
environmental characteristics. For example, RRT-based or A*-based algorithms are possible
choices in simple navigation tasks [9]. In a coverage search task without any risks, the
optimal pattern of a UAV’s scanning lines can be planned along with its flying height
and the angle of its camera constrained by its field of view (FOV). In cluttered urban
environments, a risky-aware planning strategy can be developed to speed up the task while
minimizing the risk cost [31]. In a reconnaissance task with potential risks such as radars or
ground-to-air missiles [8,13], deep reinforcement learning algorithms can be used to find
the optimal path that maximizes the UAV’s accumulated rewards.

However, it has been assumed that a UAV is fully aware of the situation, and it can
autonomously adapt to environmental changes or task dynamics in a responsive manner.
This is not realistic in real-world applications that unexpected events can occur, which is
beyond the understanding of machines. In such cases, human intervention is necessary
to guarantee UAV safety while solving the given tasks. Typically, such events need to be
handled as soon as possible, and it is inefficient to manually select new waypoints using a
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mouse, a keyboard or a touch screen. Therefore, we propose to solve the path-planning
problem using natural language commands that are more convenient and informative.

This is still challenging due to several reasons. First, human utterances can be redun-
dant, with irrelevant information, and the speech recognition results can be nonsense with
keywords or parameters missing. Therefore, we need to design a concise format of natural
language commands that can convey necessary information as much as possible without
ambiguity or mistakes. Second, the commands can be compound- that is, they involve sev-
eral tasks or sequential actions. Each task or action may correspond to a trajectory pattern
such as a straight line, irregular line, circle, or curve. As a result, several path-planning
algorithms are needed, and the paths must be connected coherently with consideration of
UAV kinematics. In other words, we need to design a flexible algorithm that can orchestrate
several flyable paths in a unified manner. Finally, the symbol grounding problem must be
considered to correlate the uttered words with the entities and actions in a simulated or
a real-world environment. In our case, we need to model the task zones and define the
actions to enable automatic UAV path planning.

3. Method
3.1. System Framework

The system framework of the proposed method is shown in Figure 1. First of all,
the semantic extraction module is responsible for processing natural language commands.
Keywords about the task types and the requirements have to be extracted and ordered
in the form of a task sequence. Second, the task configuration module correlates the
commands with the task zones in a given map, and a small set of candidate waypoints
are generated for each task zone accordingly. We note that the constraints of waypoints
satisfy the requirements of human intentions, e.g., flying around a tree or a radar should be
different. In this way, path planning can be more efficient than searching in a large space.
Finally, the path planning module can generate a UAV trajectory by selecting the waypoints
and orchestrating them with lines or curves. We note that any path planning algorithms
can be used. However, we choose specific algorithms in this paper for the reconnaissance
and surveillance tasks with no-fly zones.
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Figure 1. System framework of the proposed path planning method.

3.2. Task Zone Modeling

There are several kinds of task zones with risks for a multi-task UAV [32]. On one
hand, high risks must be avoided to guarantee the UAV safety. For example, obstacle
avoidance is a fundamental capability for a UAV to avoid colliding with any objects that
may cause a deadly crash, e.g., trees, birds, or another UAV [33]. In addition, a UAV must
avoid no-fly zones with radar or ground-to-air missiles, and it is better to keep away from
these zones by following optimal policies as discussed in our previous work [8]. In the
above cases, UAV path planning must be carried out in a responsive manner as fast as
possible. On the other hand, low risks exist in the tasks without counterattacks except for
unexpected dangers. For example, a quadrotor UAV searches over an open area to find
wounded hill climbers, or hovers over a flock of sheep to keep track of their traces. In
these cases, UAV path planning can be more persistent without many changes. Table 1
lists the abovementioned risks and proposes the corresponding approaches of modeling
and solutions.
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Table 1. Modeling and solutions for task zones.

Task Type Task Zone Modeling Solution

Avoid obstacles Cylinder, Cuboid Bypass closely
Avoid radar or missile Hemisphere Bypass far enough

Reconnaissance Rectangle, Circle Coverage search
Surveillance Circle Hover tracking

For obstacles such as trees or buildings, we use cylinders and cuboids to represent the
envelop zones around them. We assume that the obstacles are static, and the parameters
of their sizes are known to the UAV in a given map. In this case, the UAV is expected to
bypass closely around the obstacles without the need of keeping too far away from them.
In contrast, we use hemispheres to model the risky zones around the radars and missiles,
and the UAV must bypass them far enough for safety reasons. We note that the radius of a
hemisphere is also known. As a result, typical path planning algorithms can be used to
avoid these risky zones.

For targets such as ground vehicles, humans or livestock, we use rectangles or circles
to model the task zones around them. For example, scanning lines are typically used for
coverage search of targets in a reconnaissance task. If a specific target has to be tracked in
a surveillance task, a quadrotor UAV can hang in the air or a fixed-wing UAV can hover
in a circle. The parameters of the scanning lines or circles are related to the visual sensor
parameters of the UAV. In this paper, we also assume they are known for path planning.

Under the above assumptions and discussions, we need to propose a path planning
algorithm that can generate lines and circles for these risky zones and orchestrate them in
a coherent manner. Moreover, we need to extract relevant locations and parameters for
automatic path planning from the uttered commands.

3.3. RNN-Based NLU for UAV Path Planning

In the uttered sentences, words are organized with non-linear structures, which can
be transformed into tree-like graphs. The main task of NLU is to reveal the dependencies
between the words and obtain the tree structures of the sentences. A variety of methods
have been proposed for NLU, including random forests [34], attention-based deep neural
networks [35], co-interactive Transformer [36], graph LSTM [37], parallel interactive net-
work (PIN) [38], and recurrent neural network (RNN) [39]. In this paper, we choose RNN
to analyze the commands because RNN has good performance for discovering semantics
from sequential data. Furthermore, RNN can handle utterances with acoustically confusing
words [40]. Figure 2 illustrates an example of confusion network for the ground-truth
utterance “avoid obstacle two”.
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The main component of RNN is a directed graph, i.e., digraph. The elements linked
by chains in the digraph are called cyclic units. In general, the chained connections are
comparable with the hidden layers in the feedforward neural network. The concept of layer
in RNN refers to the cycle unit of a single time step. The learning data input in sequence
are C = C1 + C2 + . . . + Cτ, where τ is the unfolded length of the RNN. At the time step t
the system status of the RNN can be represented as h(t) = f

(
s(t−1), C(t), θ

)
. In the view of

dynamic system, the system status mainly describes the changes of all points in a given
space with time steps, so it can be applied to the system state equation.

Moreover, s is an internal status relevant with the system status s = s (h, C, y). Since
the solution of the current system state requires the use of the internal state data of the
previous time step, the calculation of the cycle unit needs to be recursive. Under the
influence of tree structure, all previous time step cycle cells are regarded as the parent
node of current time step cycle cells. In the formula, f refers to the excitation function
or an encapsulated feedforward neural network. The former mainly corresponds to the
simple cyclic network (SRN) structure, and the latter corresponds to the gating algorithm
and commonly used deep learning algorithm. Hyperbolic tangent function and logistic
function are the commonly used excitation functions.

In this paper, we design a structure of natural language commands in the sequential
format of “action + location”. As we only consider the path planning of one UAV in this
paper, the subject “UAV” can be omitted. We will leave the discussion of multi-UAVs for
future work. We annotate each compound command in the above format. Therefore, the
resulting semantic sequence annotation can be checked if any necessary information is
missing for path planning. If the human operator does not mention which entity in the
environment should be avoided, searched or tracked, the previous action would be used
for the current entity. If no previous actions were available, the human operator would be
reminded to give the command again.

Sequence tagging is usually considered to be a fundamental problem for NLP. In
other words, each word in a sentence needs to be tagged with a label in a linear manner.
In the sequel, we illustrate how semantic tags are used to extract semantics based on an
RNN model.

In reconnaissance and surveillance tasks, a typical command can be segmented into
an annotated structure in two steps. First, each word is tagged using RNN. Specifically, a
semantic tag set can be defined as {VE, AD, NO, CL}, where VE is a verb (e.g., bypass and
search), AD is an adjective or adverb that describe how the action should be executed (e.g.,
static, fully, and slightly), NO is a quantifier (e.g., numbers), and CL is a noun (e.g., target
and region). Second, relevant words are combined according to the predefined format of
command annotation. In other words, a VE and an AD combine as a predefined action
command, while an NO and a CL combine as a task location in the given map. For example,
the command “bypass area 1, thorough search area 2, track target 3” can be annotated as
shown in Figure 3.
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Then, the annotations of actions and locations are grounded in a simulated or a real-
world environment. For example, each action represents a defined trajectory such as a
segmented line, circle, or combined. On the other hand, each location represents a defined
coordinate in the given map. In this way, relevant information can be extracted from the
annotated command for further path planning.

3.4. Path Planning with RRT and Dubins Curves

According to the analysis of risky zones and task solutions in Table 1, we choose Rapid-
exploration Random Tree (RRT) and Dubins curves as the two candidates for UAV path
planning. The reasons for this choice are as follows. On one hand, RRT is a sampling-based
path planning method with high search efficiency in multi-dimensional spaces [9], it can
balance the random exploration and the goal-directed exploitation in complex environments
cluttered with obstacles. On the other hand, Dubins curves can handle the path planning
problems with given start and end positions, along with corresponding moving directions
that meet the requirements of the UAV kinematics, i.e., finding the shortest path with
consideration of the UAV’s turning radius [41]. We illustrate the ideas of RRT and Dubins
curves in Figure 4.
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The main idea of RRT is to generate a tree-like path T from the start position Qstart
to the end position Qend. Before finding a new waypoint Qnew at each step, a reference
point Qrand is generated randomly from the nearest waypoint Qnearest in T towards Qend
or generated randomly in the free space unoccupied by obstacles. If Qnew is accessible
(i.e., not in the area of any obstacles), then it is added to T. Otherwise, a new Qrand would
be generated. Finally, when Qnearest is close enough to Qend, all the waypoints in T are
connected to obtain the planned path.

Dubins curves combine the maximum curvature arc (C) and the straight-line segment
(S) to meet the UAV kinematic constraints [41]. For a given entry angle and an exit angle, a
Dubins curve can either be CSC curve (LSL, LSR) or CCC curve (LRL), where L represents
counterclockwise rotation to the left while R represents clockwise rotation to the right, see
Figure 4.

In this paper, we consider UAV path planning with sequential tasks in risky environ-
ments as shown in Table 1. We note that RRT and Dubins curves are good choices for the
four types of tasks (i.e., obstacle avoidance, radar or missile avoidance, reconnaissance, and
surveillance) based on natural language understanding. On one hand, RRT is efficient to
plan a path for any two waypoints with no obstacles in between or with convex shapes of
obstacles (e.g., cylinders or cuboids). On the other hand, Dubins curves are effective for
circular maneuvers required by the kinematics of UAVs, especially the fixed wings. The
UAV path planning algorithm (WGS-NLU) is summarized as follows.

We assume that the start point (S0) and the end point (En+1) are known, and the
structured commands {Acti, Loci}, (i = 1, 2, . . . , n) have been extracted through natural
language understanding (NLU). Each command pair {Acti, Loci} corresponds with a task
type. Denote by {Taski}, (i = 1, 2, . . . , n) the corresponding sequence of tasks, and the risky
zone Zi for Taski can be located in the grid map, see the dashed areas in Figure 4. Then,
the set of candidate waypoints can be found around the task zone. For example, “Acti =
bypass far enough, Zi = radar“ means that the candidate waypoints {WPk(Zi)} should be at
least one grid away from Zi in all directions (the green solid circles), while “Acti+1 = bypass
closely, Loci+1 = obstacle” means the candidate waypoints {WPk(Zi+1)} can be the closest
grid vertices to the obstacle in all directions (the gray solid circles).

As mentioned above, Dubins curves are chosen for avoiding radars (see the brown
arrows connecting Si and Ei in Figure 5), while RRT is chosen for avoiding obstacles (see
the blue arrows connecting Si+1 and Ei+1 in Figure 5). Then we use a distance criteria for
selecting the start point Si∈{WPk(Zi)} and the end point Ei∈{WPk(Zi)}. If i = 1, then Si is the
closest point in {WPk(Zi) to S0; otherwise, Si is the closest point in {WPk(Zi)} to the previous
waypoint Ei-1. If i = n, then Ei is the closest point in {WPk(Zi)} to En+1; otherwise, Ei is the
closest point in {WPk(Zi)} to the center Oi+1 of the next task area Zi+1.
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We note that the complexity of Algorithm 1 is positively proportional to the number of
task zones, the sizes of the candidate waypoints of the task zones, as well as the complexity
of the chosen path planning algorithms for the task zones.

Algorithm 1 Waypoints generation and selection based on NLU results

Input: structured commands {Acti, Loci}, (i = 1, 2, . . . , n);
start point S0 and end point En+1.

Output: waypoints {WPj} and connections.
1 Obtain the sequence of tasks {Taski}, (i = 1, 2, . . . , n);
2 For 1≤i≤n
3 Locate the corresponding risky zone Zi;
4 Generate a set of candidate waypoints {WPk(Zi)};
5 Select a path planning algorithm Algi;
6 Select the start point Si∈{WPk(Zi)} closest to Ei-1 or S0;
7 Select the end point Ei∈{WPk(Zi)} closest to Oi+1 or En+1;
8 End
9 Connect {S0, S1, E1, . . . , Sn, En, En+1}.

4. Simulations and Results
4.1. Environmental Settings

In this paper, we designed a simulation environment to verify the proposed method
using the XTDrone platform based on the Robot Operating System (ROS), PX4 and Gazebo.
A default quadrotor UAV model was loaded into the simulation, and then the UAV was
controlled using the off-board mode. The workflow of the simulation is shown in Figure 6.
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First of all, we used a Linux SDK provided by the IFLYTEK open platform for speech
recognition [42]. Then, a text message was obtained and sent to the semantic understanding
module for keywords extraction. As discussed in Section 3.3, the recognized text of the voice
command was annotated into a sequence of “action + location”. Then, the semantics of the
command could be correlated with the entities in the given map. Accordingly, the path
planning module orchestrated the segmented paths generated by RTT or Dubins curves.
Finally, the waypoints were sent to Gazebo and PX4 for simulation and visualization. The
simulation was run on a desktop computer equipped with a CPU of Intel(R) Core(TM)
i7-9750H 2.60GHz and a GPU of NVIDIA GeForce RTX 2070.

4.2. Simulation Results

We carried out two simulations to test the proposed method. The first simulation
was a simple obstacle avoidance task, and the second simulation was a more complex
reconnaissance and surveillance task.

4.2.1. Simulation 1: Obstacle Avoidance

The task environment with four modeled entities is shown in Figure 7. As introduced
in Section 3.2, cuboids and cylinders were used to represent obstacles, i.e., all the four
entities (1, 2, 3, 4) were obstacles that should be avoided.
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Figure 7. An example of task environment with four obstacles.

In simulation 1, the uttered command was “avoid obstacle 1, obstacle 2, obstacle 3, obsta-
cle 4”. Based on the RNN-based tagging method, the command was tagged as “avoid (VE)
obstacle (CL) 1(NO), obstacle (CL) 2(NO), obstacle (CL) 3(NO), obstacle (CL) 4(NO)”. The
semantic combination result was “(avoid/Action) (obstacle 1/Location), (none/Action) (obsta-
cle 2/Location), (none/Action) (obstacle 3/Location), (none/Action) (obstacle 4/Location)”.
Then, the result was checked, and the final annotated sequence was “(avoid/Action) (obstacle
1/Location), (avoid/Action) (obstacle 2/Location), (avoid/Action) (obstacle 3/Location),
(avoid/Action) (obstacle 4/Location)”.

In the given map, Algorithm 1 was used to plan the waypoints as shown in Figure 8.
The whole path was segmented into several parts. For example, the path for avoiding
obstacle 1 was {(7,8), (7,3), (12,3)}, and the path for avoiding obstacle 4 was {(19,−2), (19,−4),
(16,−7), (13,−7)}. We note that the UAV was allowed to keep close to the obstacles while
flying around them, and both RRT and Dubins curves were used for path planning. The
actual flying 3D and 2D trajectories are shown in Figure 9.
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4.2.2. Simulation 2: Reconnaissance and Surveillance

The task environment with four modeled entities is shown in Figure 10. As introduced
in Section 3.2, a cuboid was used for obstacle 1, a hemisphere was used for radar 2, a
rectangle was used for area 3, and a circle was used for target 4.
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Figure 10. An example of task environment with four types of risky task zones (entity 1 denotes
an obstacle, entity 2 denotes a radar, entity 3 denotes a reconnaissance area, and entity denotes a
surveillance area).

The uttered command was “avoid obstacle 1, avoid radar 2, thorough search area
3, hover track target 4”. Based on the RNN-based tagging method, the command was
tagged as “avoid (VE) obstacle (CL) 1 (NO), avoid (VE) radar (CL) 2 (NO), thorough (AD)
search (VE) area (CL) 3 (NO), hover (AD) track (VE) target (CL) 4 (NO)”. The semantic
combination result was “(avoid/Action) (obstacle 1/Location), (avoid/Action) (radar
2/Location), (thorough search/Action) (area 3/Location), (hover track/Action) (target
4/Location)”.

In the given map, Algorithm 1 was used to plan the waypoints as shown in Figure 11.
The actual flying 3D and 2D trajectories are shown in Figure 12. We note that Dubins
curves were used for area 2, 3, and 4, while RRT was used for area 1 and other connections
between the waypoints.
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4.2.3. Operational Time

We compared the operational time of the proposed method with manual selection
of the waypoints. We assumed that the operational time period of the manual approach
started from mouse clicking on the given map for waypoints selection, and it ended when
a path was generated. The path generation method was simplified as connecting the
waypoints with straight lines, which obviously cost much less time than any path planning
algorithms. In contrast, the operational time period of our approach started from a human
uttering the command, followed by speech recognition and understanding, and it also
ended when a path was generated using Algorithm 1. One author of this paper ran the two
simulations using the two methods ten times, and the averaged results are given in Table 2.

Table 2. Comparison of operational time.

Method Average Time (In Seconds)

Simulation 1 Manual waypoints selection 9.39
Ours 4.62

Simulation 2 Manual waypoints selection 17.66
Ours 6.91
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As can be seen, the manual approach took a few more seconds than ours. The time
was almost spent on reading the map, checking the task zones, and clicking the mouse.
This process involved cognitive workload for the human operator, and the workload would
increase with task complexity. In contrast, much less cognitive workload was needed
for our approach. Most time was spent on uttering the command, i.e., about 4 s for
simulation 1 and 6 s for simulation 2. In other words, the cost time increased with the
length of the uttered command. The average time of speech recognition along with speech
understanding was 0.26 s, while the average time of path planning was 0.43 s. We note
that the comparison was not rigorous due to the biased settings and insufficient subject
experiments. However, our method demonstrated time efficiency for solving path planning
problems in multi-task scenarios.

5. Conclusions

In this paper, we have proposed a novel approach of automatic UAV path planning in
risky environments through natural language understanding (NLU). Using RNN-based
tagging and semantic combination, a compound command can be segmented into a se-
quence of paired action and location, and then the keywords of task types and risky zones
can be extracted and correlated with the entities of the given map. We have proposed an
algorithm to generate candidate waypoints for each task, as well as to select the waypoints
based on a distance criterion. We have demonstrated the effectiveness of the proposed
method in two simulations. In future work, we will consider a more complex scenario of
multi-UAV collaboration, and we will consider the kinematics of fixed-wing UAVs which
are more complicated than that of the quadrotor UAVs.
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