
Citation: Wang, C.; Zhong, Z.; Xiang,

X.; Zhu, Y.; Wu, L.; Yin, D.; Li, J. UAV

Path Planning in Multi-Task

Environments with Risks through

Natural Language Understanding.

Drones 2023, 7, 147. https://doi.org/

10.3390/drones7030147

Academic Editor: Maarten Uijt de

Haag

Received: 22 January 2023

Revised: 10 February 2023

Accepted: 17 February 2023

Published: 21 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

UAV Path Planning in Multi-Task Environments with Risks
through Natural Language Understanding
Chang Wang 1 , Zhiwei Zhong 2,*, Xiaojia Xiang 1, Yi Zhu 3, Lizhen Wu 1, Dong Yin 1 and Jie Li 1

1 College of Intelligence Science and Technology, National University of Defense Technology,
Changsha 410073, China

2 College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
3 School of Information Engineering, Nanjing Audit University, Nanjing 211815, China
* Correspondence: zhongzhiwei1987@hnu.edu.cn

Abstract: Path planning using handcrafted waypoints is inefficient for a multi-task UAV operating in
dynamic environments with potential risks such as bad weather, obstacles, or forbidden zones, among
others. In this paper, we propose an automatic path planning method through natural language
that instructs the UAV with compound commands about the tasks and the corresponding regions
in a given map. First, we analyze the characteristics of the tasks and we model each task with a
parameterized zone. Then, we use deep neural networks to segment the natural language commands
into a sequence of labeled words, from which the semantics are extracted to select the waypoints and
trajectory patterns accordingly. Finally, paths between the waypoints are generated using rapidly
exploring random trees (RRT) or Dubins curves based on the task requirements. We demonstrate
the effectiveness of the proposed method using a simulated quadrotor UAV that follows sequential
commands in four typical tasks with potential risks.

Keywords: UAV; natural language understanding; path planning; RRT; Dubins curve

1. Introduction

Path planning is the fundamental capability for an autonomous UAV to carry out
real-world tasks such as logistics [1], warehouse construction [2], surveying [3] and envi-
ronmental monitoring [4], agriculture [5] and localization [6], and so on. Various methods
have been proposed for solving the UAV path-planning problem, e.g., genetic algorithm
(GA) [2], particle swarm optimization (PSO) [7], deep reinforcement learning (DRL) [8], A*
and rapidly-exploring random Tree (RRT) [9], et al. For example, local optima were avoided
by introducing nonlinear dynamic inertia weights into traditional PSO [7]. Considering
environmental risks such as enemy radar detection and missile attack, the dueling double
deep Q-networks (D3QN) algorithm was designed for action selection based on a situa-
tion assessment model [8]. By comparing two typical graph-based and sampling-based
algorithms, i.e., A* and RRT, their limitations were discussed, and they were improved
by ripple reduction and smoothing, respectively [9]. Recently, visual perception has been
integrated in the control loop of the UAVs, and deep neural networks have been used to
learn various sensorimotor skills in real-world environments, such as high-speed indoor
racing [10], acrobatics (the power Loop, the Barrel Roll, and the Matty Flip) [11], swarming
in a forest [12], among others. Due to the limitation of onboard computation resources, tra-
jectories have been optimized by leveraging relative gate observations [10], demonstrations
from an optimal controller [11], or geometrical configuration constraints [12].

Although artificial intelligence (AI) technologies have been developed to achieve
higher UAV autonomy, human supervision is still necessary to guarantee task efficiency as
well as UAV safety, as discussed in our previous work [13]. Specifically, the human operator
of the ground control station (GCS) needs to handle dynamic events (e.g., new task locations
or emerging risks) in multi-step tasks such as reconnaissance and surveillance. The human

Drones 2023, 7, 147. https://doi.org/10.3390/drones7030147 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7030147
https://doi.org/10.3390/drones7030147
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0003-0161-0591
https://orcid.org/0000-0002-3867-5674
https://doi.org/10.3390/drones7030147
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7030147?type=check_update&version=1

Drones 2023, 7, 147 2 of 14

workload would dramatically increase with the number of UAVs as well as task complexity.
Compared with traditional human-machine interfaces (e.g., keyboard, mouse, and touch
screen) [14], voice and gestures are more effective for controlling multiple UAVs [15]. As for
UAV path planning, augmented reality (AR) [16] and human action recognition [17] can also
be used. However, natural language is still considered to be the most convenient way for
an end-user to control an intelligent vehicle in urgent situations [18]. Based on our previous
work [15], we will further investigate how to automatically generate UAV paths based on
human voice commands. We note that we focus more on the interactive perspective of UAV
path planning rather than developing cutting-edge sensorimotor control or path-planning
algorithms as done in [10–12].

Natural language processing (NLP) includes several topics such as automatic speech
recognition (ASR) [19], natural language understanding (NLU) [20], and machine trans-
lation [21], et al. Current state-of-the-art ASR systems are typically end-to-end based on
autoregressive models [22] or deep learning models [23]. Voice command recognition
can be used for controlling robots in simple robotic tasks using hidden Markov models
(HMMs) [24] or deep learning [25]. For example, the answer-set rules were designed, and
the commands were converted into a sequence of actions for robot task planning [26]. In
another work, a UAV was controlled by a domain-based speech-to-action method [27]. On
the other hand, NLU is more applicable for multi-task scenarios that involve information
gathering, question answering and dialogue management. It is essential to extract the
semantic elements from human utterance [28]. For example, human instructions were
inferenced by a probabilistic generative model for path planning [29,30]. The number
of command words and the difficulty of speech recognition were both reduced by using
location names instead of coordinates. However, assumptions were made that the accuracy
of speech recognition was sufficiently high.

In this paper, the main contributions are as follows:

(1) We propose a novel interactive framework for automatic path planning with a multi-
task UAV through the understanding of compound natural language commands.

(2) We propose a multi-task command understanding method using RNN-based tagging
and semantic annotation, which can extract keywords that describe the task types and
the task requirements instructed by the human operator.

(3) We propose a novel algorithm to efficiently select the start and the exit waypoints for
each task zone from a small set of candidate waypoints according to the tasks.

The rest of the paper is organized as follows. Section 2 analyzes the problem. Section 3
explains the proposed method. Section 4 discusses the simulations and results. Finally,
Section 5 concludes the paper.

2. Problem Statement

The choice of path-planning algorithms largely depends on task requirements and
environmental characteristics. For example, RRT-based or A*-based algorithms are possible
choices in simple navigation tasks [9]. In a coverage search task without any risks, the
optimal pattern of a UAV’s scanning lines can be planned along with its flying height
and the angle of its camera constrained by its field of view (FOV). In cluttered urban
environments, a risky-aware planning strategy can be developed to speed up the task while
minimizing the risk cost [31]. In a reconnaissance task with potential risks such as radars or
ground-to-air missiles [8,13], deep reinforcement learning algorithms can be used to find
the optimal path that maximizes the UAV’s accumulated rewards.

However, it has been assumed that a UAV is fully aware of the situation, and it can
autonomously adapt to environmental changes or task dynamics in a responsive manner.
This is not realistic in real-world applications that unexpected events can occur, which is
beyond the understanding of machines. In such cases, human intervention is necessary
to guarantee UAV safety while solving the given tasks. Typically, such events need to be
handled as soon as possible, and it is inefficient to manually select new waypoints using a

Drones 2023, 7, 147 3 of 14

mouse, a keyboard or a touch screen. Therefore, we propose to solve the path-planning
problem using natural language commands that are more convenient and informative.

This is still challenging due to several reasons. First, human utterances can be redun-
dant, with irrelevant information, and the speech recognition results can be nonsense with
keywords or parameters missing. Therefore, we need to design a concise format of natural
language commands that can convey necessary information as much as possible without
ambiguity or mistakes. Second, the commands can be compound- that is, they involve sev-
eral tasks or sequential actions. Each task or action may correspond to a trajectory pattern
such as a straight line, irregular line, circle, or curve. As a result, several path-planning
algorithms are needed, and the paths must be connected coherently with consideration of
UAV kinematics. In other words, we need to design a flexible algorithm that can orchestrate
several flyable paths in a unified manner. Finally, the symbol grounding problem must be
considered to correlate the uttered words with the entities and actions in a simulated or
a real-world environment. In our case, we need to model the task zones and define the
actions to enable automatic UAV path planning.

3. Method
3.1. System Framework

The system framework of the proposed method is shown in Figure 1. First of all,
the semantic extraction module is responsible for processing natural language commands.
Keywords about the task types and the requirements have to be extracted and ordered
in the form of a task sequence. Second, the task configuration module correlates the
commands with the task zones in a given map, and a small set of candidate waypoints
are generated for each task zone accordingly. We note that the constraints of waypoints
satisfy the requirements of human intentions, e.g., flying around a tree or a radar should be
different. In this way, path planning can be more efficient than searching in a large space.
Finally, the path planning module can generate a UAV trajectory by selecting the waypoints
and orchestrating them with lines or curves. We note that any path planning algorithms
can be used. However, we choose specific algorithms in this paper for the reconnaissance
and surveillance tasks with no-fly zones.

Drones 2023, 7, x FOR PEER REVIEW 3 of 14

ner. This is not realistic in real-world applications that unexpected events can occur,
which is beyond the understanding of machines. In such cases, human intervention is
necessary to guarantee UAV safety while solving the given tasks. Typically, such events
need to be handled as soon as possible, and it is inefficient to manually select new way-
points using a mouse, a keyboard or a touch screen. Therefore, we propose to solve the
path-planning problem using natural language commands that are more convenient and
informative.

This is still challenging due to several reasons. First, human utterances can be re-
dundant, with irrelevant information, and the speech recognition results can be non-
sense with keywords or parameters missing. Therefore, we need to design a concise
format of natural language commands that can convey necessary information as much
as possible without ambiguity or mistakes. Second, the commands can be compound-
that is, they involve several tasks or sequential actions. Each task or action may corre-
spond to a trajectory pattern such as a straight line, irregular line, circle, or curve. As a
result, several path-planning algorithms are needed, and the paths must be connected
coherently with consideration of UAV kinematics. In other words, we need to design a
flexible algorithm that can orchestrate several flyable paths in a unified manner. Finally,
the symbol grounding problem must be considered to correlate the uttered words with
the entities and actions in a simulated or a real-world environment. In our case, we need
to model the task zones and define the actions to enable automatic UAV path planning.

3. Method
3.1. System Framework

The system framework of the proposed method is shown in Figure 1. First of all, the
semantic extraction module is responsible for processing natural language commands.
Keywords about the task types and the requirements have to be extracted and ordered
in the form of a task sequence. Second, the task configuration module correlates the
commands with the task zones in a given map, and a small set of candidate waypoints
are generated for each task zone accordingly. We note that the constraints of waypoints
satisfy the requirements of human intentions, e.g., flying around a tree or a radar should
be different. In this way, path planning can be more efficient than searching in a large
space. Finally, the path planning module can generate a UAV trajectory by selecting the
waypoints and orchestrating them with lines or curves. We note that any path planning
algorithms can be used. However, we choose specific algorithms in this paper for the
reconnaissance and surveillance tasks with no-fly zones.

Figure 1. System framework of the proposed path planning method.

3.2. Task Zone Modeling
There are several kinds of task zones with risks for a multi-task UAV [32]. On one

hand, high risks must be avoided to guarantee the UAV safety. For example, obstacle
avoidance is a fundamental capability for a UAV to avoid colliding with any objects that
may cause a deadly crash, e.g., trees, birds, or another UAV [33]. In addition, a UAV
must avoid no-fly zones with radar or ground-to-air missiles, and it is better to keep
away from these zones by following optimal policies as discussed in our previous work
[8Error! Reference source not found.]. In the above cases, UAV path planning must be
carried out in a responsive manner as fast as possible. On the other hand, low risks exist
in the tasks without counterattacks except for unexpected dangers. For example, a
quadrotor UAV searches over an open area to find wounded hill climbers, or hovers

Semantic
Extraction

Commands

Path
Planning

Task
Configuration

Trajectory

Figure 1. System framework of the proposed path planning method.

3.2. Task Zone Modeling

There are several kinds of task zones with risks for a multi-task UAV [32]. On one
hand, high risks must be avoided to guarantee the UAV safety. For example, obstacle
avoidance is a fundamental capability for a UAV to avoid colliding with any objects that
may cause a deadly crash, e.g., trees, birds, or another UAV [33]. In addition, a UAV must
avoid no-fly zones with radar or ground-to-air missiles, and it is better to keep away from
these zones by following optimal policies as discussed in our previous work [8]. In the
above cases, UAV path planning must be carried out in a responsive manner as fast as
possible. On the other hand, low risks exist in the tasks without counterattacks except for
unexpected dangers. For example, a quadrotor UAV searches over an open area to find
wounded hill climbers, or hovers over a flock of sheep to keep track of their traces. In
these cases, UAV path planning can be more persistent without many changes. Table 1
lists the abovementioned risks and proposes the corresponding approaches of modeling
and solutions.

Drones 2023, 7, 147 4 of 14

Table 1. Modeling and solutions for task zones.

Task Type Task Zone Modeling Solution

Avoid obstacles Cylinder, Cuboid Bypass closely
Avoid radar or missile Hemisphere Bypass far enough

Reconnaissance Rectangle, Circle Coverage search
Surveillance Circle Hover tracking

For obstacles such as trees or buildings, we use cylinders and cuboids to represent the
envelop zones around them. We assume that the obstacles are static, and the parameters
of their sizes are known to the UAV in a given map. In this case, the UAV is expected to
bypass closely around the obstacles without the need of keeping too far away from them.
In contrast, we use hemispheres to model the risky zones around the radars and missiles,
and the UAV must bypass them far enough for safety reasons. We note that the radius of a
hemisphere is also known. As a result, typical path planning algorithms can be used to
avoid these risky zones.

For targets such as ground vehicles, humans or livestock, we use rectangles or circles
to model the task zones around them. For example, scanning lines are typically used for
coverage search of targets in a reconnaissance task. If a specific target has to be tracked in
a surveillance task, a quadrotor UAV can hang in the air or a fixed-wing UAV can hover
in a circle. The parameters of the scanning lines or circles are related to the visual sensor
parameters of the UAV. In this paper, we also assume they are known for path planning.

Under the above assumptions and discussions, we need to propose a path planning
algorithm that can generate lines and circles for these risky zones and orchestrate them in
a coherent manner. Moreover, we need to extract relevant locations and parameters for
automatic path planning from the uttered commands.

3.3. RNN-Based NLU for UAV Path Planning

In the uttered sentences, words are organized with non-linear structures, which can
be transformed into tree-like graphs. The main task of NLU is to reveal the dependencies
between the words and obtain the tree structures of the sentences. A variety of methods
have been proposed for NLU, including random forests [34], attention-based deep neural
networks [35], co-interactive Transformer [36], graph LSTM [37], parallel interactive net-
work (PIN) [38], and recurrent neural network (RNN) [39]. In this paper, we choose RNN
to analyze the commands because RNN has good performance for discovering semantics
from sequential data. Furthermore, RNN can handle utterances with acoustically confusing
words [40]. Figure 2 illustrates an example of confusion network for the ground-truth
utterance “avoid obstacle two”.

Drones 2023, 7, x FOR PEER REVIEW 5 of 14

Figure 2. An example of confusion network for ground-truth utterance “avoid obstacle two”.

Moreover, s is an internal status relevant with the system status s = s (h, C, y). Since
the solution of the current system state requires the use of the internal state data of the
previous time step, the calculation of the cycle unit needs to be recursive. Under the in-
fluence of tree structure, all previous time step cycle cells are regarded as the parent
node of current time step cycle cells. In the formula, f refers to the excitation function or
an encapsulated feedforward neural network. The former mainly corresponds to the
simple cyclic network (SRN) structure, and the latter corresponds to the gating algo-
rithm and commonly used deep learning algorithm. Hyperbolic tangent function and
logistic function are the commonly used excitation functions.

In this paper, we design a structure of natural language commands in the sequen-
tial format of “action + location”. As we only consider the path planning of one UAV in
this paper, the subject “UAV” can be omitted. We will leave the discussion of mul-
ti-UAVs for future work. We annotate each compound command in the above format.
Therefore, the resulting semantic sequence annotation can be checked if any necessary
information is missing for path planning. If the human operator does not mention which
entity in the environment should be avoided, searched or tracked, the previous action
would be used for the current entity. If no previous actions were available, the human
operator would be reminded to give the command again.

Sequence tagging is usually considered to be a fundamental problem for NLP. In
other words, each word in a sentence needs to be tagged with a label in a linear manner.
In the sequel, we illustrate how semantic tags are used to extract semantics based on an
RNN model.

In reconnaissance and surveillance tasks, a typical command can be segmented into
an annotated structure in two steps. First, each word is tagged using RNN. Specifically,
a semantic tag set can be defined as {VE, AD, NO, CL}, where VE is a verb (e.g., bypass
and search), AD is an adjective or adverb that describe how the action should be exe-
cuted (e.g., static, fully, and slightly), NO is a quantifier (e.g., numbers), and CL is a
noun (e.g., target and region). Second, relevant words are combined according to the
predefined format of command annotation. In other words, a VE and an AD combine as
a predefined action command, while an NO and a CL combine as a task location in the
given map. For example, the command “bypass area 1, thorough search area 2, track
target 3” can be annotated as shown in Figure 3.

Then, the annotations of actions and locations are grounded in a simulated or a re-
al-world environment. For example, each action represents a defined trajectory such as a
segmented line, circle, or combined. On the other hand, each location represents a de-
fined coordinate in the given map. In this way, relevant information can be extracted
from the annotated command for further path planning.

void

avoid

afford

hostable

obstacle

postictal

to

tees

two

A
coustic C

onfusability A
xis

Contextual Content Axis

Figure 2. An example of confusion network for ground-truth utterance “avoid obstacle two”.

Drones 2023, 7, 147 5 of 14

The main component of RNN is a directed graph, i.e., digraph. The elements linked
by chains in the digraph are called cyclic units. In general, the chained connections are
comparable with the hidden layers in the feedforward neural network. The concept of layer
in RNN refers to the cycle unit of a single time step. The learning data input in sequence
are C = C1 + C2 + . . . + Cτ, where τ is the unfolded length of the RNN. At the time step t
the system status of the RNN can be represented as h(t) = f

(
s(t−1), C(t), θ

)
. In the view of

dynamic system, the system status mainly describes the changes of all points in a given
space with time steps, so it can be applied to the system state equation.

Moreover, s is an internal status relevant with the system status s = s (h, C, y). Since
the solution of the current system state requires the use of the internal state data of the
previous time step, the calculation of the cycle unit needs to be recursive. Under the
influence of tree structure, all previous time step cycle cells are regarded as the parent
node of current time step cycle cells. In the formula, f refers to the excitation function
or an encapsulated feedforward neural network. The former mainly corresponds to the
simple cyclic network (SRN) structure, and the latter corresponds to the gating algorithm
and commonly used deep learning algorithm. Hyperbolic tangent function and logistic
function are the commonly used excitation functions.

In this paper, we design a structure of natural language commands in the sequential
format of “action + location”. As we only consider the path planning of one UAV in this
paper, the subject “UAV” can be omitted. We will leave the discussion of multi-UAVs for
future work. We annotate each compound command in the above format. Therefore, the
resulting semantic sequence annotation can be checked if any necessary information is
missing for path planning. If the human operator does not mention which entity in the
environment should be avoided, searched or tracked, the previous action would be used
for the current entity. If no previous actions were available, the human operator would be
reminded to give the command again.

Sequence tagging is usually considered to be a fundamental problem for NLP. In
other words, each word in a sentence needs to be tagged with a label in a linear manner.
In the sequel, we illustrate how semantic tags are used to extract semantics based on an
RNN model.

In reconnaissance and surveillance tasks, a typical command can be segmented into
an annotated structure in two steps. First, each word is tagged using RNN. Specifically, a
semantic tag set can be defined as {VE, AD, NO, CL}, where VE is a verb (e.g., bypass and
search), AD is an adjective or adverb that describe how the action should be executed (e.g.,
static, fully, and slightly), NO is a quantifier (e.g., numbers), and CL is a noun (e.g., target
and region). Second, relevant words are combined according to the predefined format of
command annotation. In other words, a VE and an AD combine as a predefined action
command, while an NO and a CL combine as a task location in the given map. For example,
the command “bypass area 1, thorough search area 2, track target 3” can be annotated as
shown in Figure 3.

Drones 2023, 7, x FOR PEER REVIEW 6 of 14

Figure 3. Command understanding through RNN-based tagging and semantic annotation.

3.4. Path Planning with RRT and Dubins Curves
According to the analysis of risky zones and task solutions in Table 1, we choose

Rapid-exploration Random Tree (RRT) and Dubins curves as the two candidates for
UAV path planning. The reasons for this choice are as follows. On one hand, RRT is a
sampling-based path planning method with high search efficiency in multi-dimensional
spaces [9], it can balance the random exploration and the goal-directed exploitation in
complex environments cluttered with obstacles. On the other hand, Dubins curves can
handle the path planning problems with given start and end positions, along with cor-
responding moving directions that meet the requirements of the UAV kinematics, i.e.,
finding the shortest path with consideration of the UAV’s turning radius [41]. We illus-
trate the ideas of RRT and Dubins curves in Figure 4.

Figure 4. Illustration of RRT algorithm (up) and Dubins curves (down) that are LSL, LSR and LRL.

Qstart

Qend

Obstacle

Qrand
Qnew

Qnearest

Figure 3. Command understanding through RNN-based tagging and semantic annotation.

Drones 2023, 7, 147 6 of 14

Then, the annotations of actions and locations are grounded in a simulated or a real-
world environment. For example, each action represents a defined trajectory such as a
segmented line, circle, or combined. On the other hand, each location represents a defined
coordinate in the given map. In this way, relevant information can be extracted from the
annotated command for further path planning.

3.4. Path Planning with RRT and Dubins Curves

According to the analysis of risky zones and task solutions in Table 1, we choose Rapid-
exploration Random Tree (RRT) and Dubins curves as the two candidates for UAV path
planning. The reasons for this choice are as follows. On one hand, RRT is a sampling-based
path planning method with high search efficiency in multi-dimensional spaces [9], it can
balance the random exploration and the goal-directed exploitation in complex environments
cluttered with obstacles. On the other hand, Dubins curves can handle the path planning
problems with given start and end positions, along with corresponding moving directions
that meet the requirements of the UAV kinematics, i.e., finding the shortest path with
consideration of the UAV’s turning radius [41]. We illustrate the ideas of RRT and Dubins
curves in Figure 4.

Drones 2023, 7, x FOR PEER REVIEW 6 of 14

Figure 3. Command understanding through RNN-based tagging and semantic annotation.

3.4. Path Planning with RRT and Dubins Curves
According to the analysis of risky zones and task solutions in Table 1, we choose

Rapid-exploration Random Tree (RRT) and Dubins curves as the two candidates for
UAV path planning. The reasons for this choice are as follows. On one hand, RRT is a
sampling-based path planning method with high search efficiency in multi-dimensional
spaces [9], it can balance the random exploration and the goal-directed exploitation in
complex environments cluttered with obstacles. On the other hand, Dubins curves can
handle the path planning problems with given start and end positions, along with cor-
responding moving directions that meet the requirements of the UAV kinematics, i.e.,
finding the shortest path with consideration of the UAV’s turning radius [41]. We illus-
trate the ideas of RRT and Dubins curves in Figure 4.

Figure 4. Illustration of RRT algorithm (up) and Dubins curves (down) that are LSL, LSR and LRL.

Qstart

Qend

Obstacle

Qrand
Qnew

Qnearest

Figure 4. Illustration of RRT algorithm (up) and Dubins curves (down) that are LSL, LSR and LRL.

Drones 2023, 7, 147 7 of 14

The main idea of RRT is to generate a tree-like path T from the start position Qstart
to the end position Qend. Before finding a new waypoint Qnew at each step, a reference
point Qrand is generated randomly from the nearest waypoint Qnearest in T towards Qend
or generated randomly in the free space unoccupied by obstacles. If Qnew is accessible
(i.e., not in the area of any obstacles), then it is added to T. Otherwise, a new Qrand would
be generated. Finally, when Qnearest is close enough to Qend, all the waypoints in T are
connected to obtain the planned path.

Dubins curves combine the maximum curvature arc (C) and the straight-line segment
(S) to meet the UAV kinematic constraints [41]. For a given entry angle and an exit angle, a
Dubins curve can either be CSC curve (LSL, LSR) or CCC curve (LRL), where L represents
counterclockwise rotation to the left while R represents clockwise rotation to the right, see
Figure 4.

In this paper, we consider UAV path planning with sequential tasks in risky environ-
ments as shown in Table 1. We note that RRT and Dubins curves are good choices for the
four types of tasks (i.e., obstacle avoidance, radar or missile avoidance, reconnaissance, and
surveillance) based on natural language understanding. On one hand, RRT is efficient to
plan a path for any two waypoints with no obstacles in between or with convex shapes of
obstacles (e.g., cylinders or cuboids). On the other hand, Dubins curves are effective for
circular maneuvers required by the kinematics of UAVs, especially the fixed wings. The
UAV path planning algorithm (WGS-NLU) is summarized as follows.

We assume that the start point (S0) and the end point (En+1) are known, and the
structured commands {Acti, Loci}, (i = 1, 2, . . . , n) have been extracted through natural
language understanding (NLU). Each command pair {Acti, Loci} corresponds with a task
type. Denote by {Taski}, (i = 1, 2, . . . , n) the corresponding sequence of tasks, and the risky
zone Zi for Taski can be located in the grid map, see the dashed areas in Figure 4. Then,
the set of candidate waypoints can be found around the task zone. For example, “Acti =
bypass far enough, Zi = radar“ means that the candidate waypoints {WPk(Zi)} should be at
least one grid away from Zi in all directions (the green solid circles), while “Acti+1 = bypass
closely, Loci+1 = obstacle” means the candidate waypoints {WPk(Zi+1)} can be the closest
grid vertices to the obstacle in all directions (the gray solid circles).

As mentioned above, Dubins curves are chosen for avoiding radars (see the brown
arrows connecting Si and Ei in Figure 5), while RRT is chosen for avoiding obstacles (see
the blue arrows connecting Si+1 and Ei+1 in Figure 5). Then we use a distance criteria for
selecting the start point Si∈{WPk(Zi)} and the end point Ei∈{WPk(Zi)}. If i = 1, then Si is the
closest point in {WPk(Zi) to S0; otherwise, Si is the closest point in {WPk(Zi)} to the previous
waypoint Ei-1. If i = n, then Ei is the closest point in {WPk(Zi)} to En+1; otherwise, Ei is the
closest point in {WPk(Zi)} to the center Oi+1 of the next task area Zi+1.

Drones 2023, 7, x FOR PEER REVIEW 7 of 14

The main idea of RRT is to generate a tree-like path T from the start position Qstart to
the end position Qend. Before finding a new waypoint Qnew at each step, a reference point
Qrand is generated randomly from the nearest waypoint Qnearest in T towards Qend or gen-
erated randomly in the free space unoccupied by obstacles. If Qnew is accessible (i.e., not
in the area of any obstacles), then it is added to T. Otherwise, a new Qrand would be gen-
erated. Finally, when Qnearest is close enough to Qend, all the waypoints in T are connected
to obtain the planned path.

Dubins curves combine the maximum curvature arc (C) and the straight-line seg-
ment (S) to meet the UAV kinematic constraints [41]. For a given entry angle and an exit
angle, a Dubins curve can either be CSC curve (LSL, LSR) or CCC curve (LRL), where L
represents counterclockwise rotation to the left while R represents clockwise rotation to
the right, see Figure 4.

In this paper, we consider UAV path planning with sequential tasks in risky envi-
ronments as shown in Table 1. We note that RRT and Dubins curves are good choices for
the four types of tasks (i.e., obstacle avoidance, radar or missile avoidance, reconnais-
sance, and surveillance) based on natural language understanding. On one hand, RRT is
efficient to plan a path for any two waypoints with no obstacles in between or with con-
vex shapes of obstacles (e.g., cylinders or cuboids). On the other hand, Dubins curves are
effective for circular maneuvers required by the kinematics of UAVs, especially the fixed
wings. The UAV path planning algorithm (WGS-NLU) is summarized as follows.

We assume that the start point (S0) and the end point (En+1) are known, and the
structured commands {Acti, Loci}, (i = 1, 2, …, n) have been extracted through natural
language understanding (NLU). Each command pair {Acti, Loci} corresponds with a task
type. Denote by {Taski}, (i = 1, 2, …, n) the corresponding sequence of tasks, and the risky
zone Zi for Taski can be located in the grid map, see the dashed areas in Figure 4. Then,
the set of candidate waypoints can be found around the task zone. For example, “Acti =
bypass far enough, Zi = radar“ means that the candidate waypoints {WPk(Zi)} should be
at least one grid away from Zi in all directions (the green solid circles), while “Acti+1 =
bypass closely, Loci+1 = obstacle” means the candidate waypoints {WPk(Zi+1)} can be the
closest grid vertices to the obstacle in all directions (the gray solid circles).

As mentioned above, Dubins curves are chosen for avoiding radars (see the brown
arrows connecting Si and Ei in Figure 5), while RRT is chosen for avoiding obstacles (see
the blue arrows connecting Si+1 and Ei+1 in Figure 5). Then we use a distance criteria for
selecting the start point Si∈{WPk(Zi)} and the end point Ei∈{WPk(Zi)}. If i = 1, then Si is
the closest point in {WPk(Zi) to S0; otherwise, Si is the closest point in {WPk(Zi)} to the
previous waypoint Ei-1. If i = n, then Ei is the closest point in {WPk(Zi)} to En+1; otherwise, Ei
is the closest point in {WPk(Zi)} to the center Oi+1 of the next task area Zi+1.

Figure 5. Illustration of generating and selecting waypoints based on the results of NLU.

radar

obstacle

Si

Si+1Ei Ei+1

Zi

Zi+1

S0

En+1Oi

Oi+1

Figure 5. Illustration of generating and selecting waypoints based on the results of NLU.

Drones 2023, 7, 147 8 of 14

We note that the complexity of Algorithm 1 is positively proportional to the number of
task zones, the sizes of the candidate waypoints of the task zones, as well as the complexity
of the chosen path planning algorithms for the task zones.

Algorithm 1 Waypoints generation and selection based on NLU results

Input: structured commands {Acti, Loci}, (i = 1, 2, . . . , n);
start point S0 and end point En+1.

Output: waypoints {WPj} and connections.
1 Obtain the sequence of tasks {Taski}, (i = 1, 2, . . . , n);
2 For 1≤i≤n
3 Locate the corresponding risky zone Zi;
4 Generate a set of candidate waypoints {WPk(Zi)};
5 Select a path planning algorithm Algi;
6 Select the start point Si∈{WPk(Zi)} closest to Ei-1 or S0;
7 Select the end point Ei∈{WPk(Zi)} closest to Oi+1 or En+1;
8 End
9 Connect {S0, S1, E1, . . . , Sn, En, En+1}.

4. Simulations and Results
4.1. Environmental Settings

In this paper, we designed a simulation environment to verify the proposed method
using the XTDrone platform based on the Robot Operating System (ROS), PX4 and Gazebo.
A default quadrotor UAV model was loaded into the simulation, and then the UAV was
controlled using the off-board mode. The workflow of the simulation is shown in Figure 6.

Drones 2023, 7, x FOR PEER REVIEW 8 of 14

We note that the complexity of Algorithm 1 is positively proportional to the num-
ber of task zones, the sizes of the candidate waypoints of the task zones, as well as the
complexity of the chosen path planning algorithms for the task zones.

Algorithm 1 Waypoints generation and selection based on NLU results
Input: structured commands {Acti, Loci}, (i = 1, 2, …, n);

start point S0 and end point En+1.
Output: waypoints {WPj} and connections.
1 Obtain the sequence of tasks {Taski}, (i = 1, 2, …, n);
2 For 1≤i≤n
3 Locate the corresponding risky zone Zi;
4 Generate a set of candidate waypoints {WPk(Zi)};
5 Select a path planning algorithm Algi;
6 Select the start point Si∈{WPk(Zi)} closest to Ei-1 or S0;
7 Select the end point Ei∈{WPk(Zi)} closest to Oi+1 or En+1;
8 End
9 Connect {S0, S1, E1,…, Sn, En, En+1}.

4. Simulations and Results
4.1. Environmental Settings

In this paper, we designed a simulation environment to verify the proposed meth-
od using the XTDrone platform based on the Robot Operating System (ROS), PX4 and
Gazebo. A default quadrotor UAV model was loaded into the simulation, and then the
UAV was controlled using the off-board mode. The workflow of the simulation is shown
in Figure 6.

Figure 6. Workflow of the simulation.

First of all, we used a Linux SDK provided by the IFLYTEK open platform for
speech recognition [42]. Then, a text message was obtained and sent to the semantic un-
derstanding module for keywords extraction. As discussed in Section 3.3, the recognized
text of the voice command was annotated into a sequence of “action + location”. Then,
the semantics of the command could be correlated with the entities in the given map.
Accordingly, the path planning module orchestrated the segmented paths generated by
RTT or Dubins curves. Finally, the waypoints were sent to Gazebo and PX4 for simula-
tion and visualization. The simulation was run on a desktop computer equipped with a
CPU of Intel(R) Core(TM) i7-9750H 2.60GHz and a GPU of NVIDIA GeForce RTX 2070.

4.2. Simulation Results
We carried out two simulations to test the proposed method. The first simulation

was a simple obstacle avoidance task, and the second simulation was a more complex
reconnaissance and surveillance task.

4.2.1. Simulation 1: Obstacle Avoidance
The task environment with four modeled entities is shown in Figure 7. As intro-

duced in Section 3.2, cuboids and cylinders were used to represent obstacles, i.e., all the
four entities (1, 2, 3, 4) were obstacles that should be avoided.

Figure 6. Workflow of the simulation.

First of all, we used a Linux SDK provided by the IFLYTEK open platform for speech
recognition [42]. Then, a text message was obtained and sent to the semantic understanding
module for keywords extraction. As discussed in Section 3.3, the recognized text of the voice
command was annotated into a sequence of “action + location”. Then, the semantics of the
command could be correlated with the entities in the given map. Accordingly, the path
planning module orchestrated the segmented paths generated by RTT or Dubins curves.
Finally, the waypoints were sent to Gazebo and PX4 for simulation and visualization. The
simulation was run on a desktop computer equipped with a CPU of Intel(R) Core(TM)
i7-9750H 2.60GHz and a GPU of NVIDIA GeForce RTX 2070.

4.2. Simulation Results

We carried out two simulations to test the proposed method. The first simulation
was a simple obstacle avoidance task, and the second simulation was a more complex
reconnaissance and surveillance task.

4.2.1. Simulation 1: Obstacle Avoidance

The task environment with four modeled entities is shown in Figure 7. As introduced
in Section 3.2, cuboids and cylinders were used to represent obstacles, i.e., all the four
entities (1, 2, 3, 4) were obstacles that should be avoided.

Drones 2023, 7, 147 9 of 14Drones 2023, 7, x FOR PEER REVIEW 9 of 14

Figure 7. An example of task environment with four obstacles.

In simulation 1, the uttered command was “avoid obstacle 1, obstacle 2, obstacle 3,
obstacle 4”. Based on the RNN-based tagging method, the command was tagged as
“avoid (VE) obstacle (CL) 1(NO), obstacle (CL) 2(NO), obstacle (CL) 3(NO), obstacle
(CL) 4(NO)”. The semantic combination result was “(avoid/Action) (obstacle
1/Location), (none/Action) (obstacle 2/Location), (none/Action) (obstacle 3/Location),
(none/Action) (obstacle 4/Location)”. Then, the result was checked, and the final anno-
tated sequence was “(avoid/Action) (obstacle 1/Location), (avoid/Action) (obstacle
2/Location), (avoid/Action) (obstacle 3/Location), (avoid/Action) (obstacle 4/Location)”.

In the given map, Algorithm 1 was used to plan the waypoints as shown in Figure
8. The whole path was segmented into several parts. For example, the path for avoiding
obstacle 1 was {(7,8), (7,3), (12,3)}, and the path for avoiding obstacle 4 was {(19,−2),
(19,−4), (16,−7), (13,−7)}. We note that the UAV was allowed to keep close to the obstacles
while flying around them, and both RRT and Dubins curves were used for path plan-
ning. The actual flying 3D and 2D trajectories are shown in Figure 9.

3

1

2

4

(0,8)
(7,8)

(7,3) (12,3)

(16,7) (19,7)

(19,−4)

(16,−7)(4,−7)

End

Start

x

y

(19,−2)

(19,1)

(13,−7)

Figure 8. Path-planning result of simulation 1.

2

4

3

Figure 7. An example of task environment with four obstacles.

In simulation 1, the uttered command was “avoid obstacle 1, obstacle 2, obstacle 3, obsta-
cle 4”. Based on the RNN-based tagging method, the command was tagged as “avoid (VE)
obstacle (CL) 1(NO), obstacle (CL) 2(NO), obstacle (CL) 3(NO), obstacle (CL) 4(NO)”. The
semantic combination result was “(avoid/Action) (obstacle 1/Location), (none/Action) (obsta-
cle 2/Location), (none/Action) (obstacle 3/Location), (none/Action) (obstacle 4/Location)”.
Then, the result was checked, and the final annotated sequence was “(avoid/Action) (obstacle
1/Location), (avoid/Action) (obstacle 2/Location), (avoid/Action) (obstacle 3/Location),
(avoid/Action) (obstacle 4/Location)”.

In the given map, Algorithm 1 was used to plan the waypoints as shown in Figure 8.
The whole path was segmented into several parts. For example, the path for avoiding
obstacle 1 was {(7,8), (7,3), (12,3)}, and the path for avoiding obstacle 4 was {(19,−2), (19,−4),
(16,−7), (13,−7)}. We note that the UAV was allowed to keep close to the obstacles while
flying around them, and both RRT and Dubins curves were used for path planning. The
actual flying 3D and 2D trajectories are shown in Figure 9.

Drones 2023, 7, x FOR PEER REVIEW 9 of 14

Figure 7. An example of task environment with four obstacles.

In simulation 1, the uttered command was “avoid obstacle 1, obstacle 2, obstacle 3,

obstacle 4”. Based on the RNN-based tagging method, the command was tagged as

“avoid (VE) obstacle (CL) 1(NO), obstacle (CL) 2(NO), obstacle (CL) 3(NO), obstacle

(CL) 4(NO)”. The semantic combination result was “(avoid/Action) (obstacle

1/Location), (none/Action) (obstacle 2/Location), (none/Action) (obstacle 3/Location),

(none/Action) (obstacle 4/Location)”. Then, the result was checked, and the final anno-

tated sequence was “(avoid/Action) (obstacle 1/Location), (avoid/Action) (obstacle

2/Location), (avoid/Action) (obstacle 3/Location), (avoid/Action) (obstacle 4/Location)”.

In the given map, Algorithm 1 was used to plan the waypoints as shown in Figure

8. The whole path was segmented into several parts. For example, the path for avoiding

obstacle 1 was {(7,8), (7,3), (12,3)}, and the path for avoiding obstacle 4 was {(19,−2),

(19,−4), (16,−7), (13,−7)}. We note that the UAV was allowed to keep close to the obstacles

while flying around them, and both RRT and Dubins curves were used for path plan-

ning. The actual flying 3D and 2D trajectories are shown in Figure 9.

3

1

2

4

(0,8)

(7,8)

(7,3) (12,3)

(16,7) (19,7)

(19, 4)

(16, 7)(4, 7)

End

Start

x

y

(19, 2)

(19,1)

(13, 7)

Figure 8. Path-planning result of simulation 1.

Quadrotor UAV
1

2
3

4

2

4

3

Figure 8. Path-planning result of simulation 1.

Drones 2023, 7, 147 10 of 14
Drones 2023, 7, x FOR PEER REVIEW 10 of 14

Figure 9. UAV Trajectories in the 3D space (left) and the 2D projection plane (right).

4.2.2. Simulation 2: Reconnaissance and Surveillance

The task environment with four modeled entities is shown in Figure 10. As intro-

duced in Section 3.2, a cuboid was used for obstacle 1, a hemisphere was used for radar

2, a rectangle was used for area 3, and a circle was used for target 4.

Figure 10. An example of task environment with four types of risky task zones (entity 1 denotes an

obstacle, entity 2 denotes a radar, entity 3 denotes a reconnaissance area, and entity denotes a

surveillance area).

The uttered command was “avoid obstacle 1, avoid radar 2, thorough search area 3,

hover track target 4”. Based on the RNN-based tagging method, the command was

tagged as “avoid (VE) obstacle (CL) 1 (NO), avoid (VE) radar (CL) 2 (NO), thorough

(AD) search (VE) area (CL) 3 (NO), hover (AD) track (VE) target (CL) 4 (NO)”. The se-

mantic combination result was “(avoid/Action) (obstacle 1/Location), (avoid/Action)

(radar 2/Location), (thorough search/Action) (area 3/Location), (hover track/Action)

(target 4/Location)”.

In the given map, Algorithm 1 was used to plan the waypoints as shown in Figure

11. The actual flying 3D and 2D trajectories are shown in Figure 12. We note that Dubins

curves were used for area 2, 3, and 4, while RRT was used for area 1 and other connec-

tions between the waypoints.

Start 1 2

3 4

End

Figure 9. UAV Trajectories in the 3D space (left) and the 2D projection plane (right).

4.2.2. Simulation 2: Reconnaissance and Surveillance

The task environment with four modeled entities is shown in Figure 10. As introduced
in Section 3.2, a cuboid was used for obstacle 1, a hemisphere was used for radar 2, a
rectangle was used for area 3, and a circle was used for target 4.

Drones 2023, 7, x FOR PEER REVIEW 10 of 14

Figure 9. UAV Trajectories in the 3D space (left) and the 2D projection plane (right).

4.2.2. Simulation 2: Reconnaissance and Surveillance
The task environment with four modeled entities is shown in Figure 10. As intro-

duced in Section 3.2, a cuboid was used for obstacle 1, a hemisphere was used for radar
2, a rectangle was used for area 3, and a circle was used for target 4.

Figure 10. An example of task environment with four types of risky task zones (entity 1 denotes an
obstacle, entity 2 denotes a radar, entity 3 denotes a reconnaissance area, and entity denotes a
surveillance area).

The uttered command was “avoid obstacle 1, avoid radar 2, thorough search area 3,
hover track target 4”. Based on the RNN-based tagging method, the command was
tagged as “avoid (VE) obstacle (CL) 1 (NO), avoid (VE) radar (CL) 2 (NO), thorough
(AD) search (VE) area (CL) 3 (NO), hover (AD) track (VE) target (CL) 4 (NO)”. The se-
mantic combination result was “(avoid/Action) (obstacle 1/Location), (avoid/Action)
(radar 2/Location), (thorough search/Action) (area 3/Location), (hover track/Action)
(target 4/Location)”.

In the given map, Algorithm 1 was used to plan the waypoints as shown in Figure
11. The actual flying 3D and 2D trajectories are shown in Figure 12. We note that Dubins
curves were used for area 2, 3, and 4, while RRT was used for area 1 and other connec-
tions between the waypoints.

z y

Figure 10. An example of task environment with four types of risky task zones (entity 1 denotes
an obstacle, entity 2 denotes a radar, entity 3 denotes a reconnaissance area, and entity denotes a
surveillance area).

The uttered command was “avoid obstacle 1, avoid radar 2, thorough search area
3, hover track target 4”. Based on the RNN-based tagging method, the command was
tagged as “avoid (VE) obstacle (CL) 1 (NO), avoid (VE) radar (CL) 2 (NO), thorough (AD)
search (VE) area (CL) 3 (NO), hover (AD) track (VE) target (CL) 4 (NO)”. The semantic
combination result was “(avoid/Action) (obstacle 1/Location), (avoid/Action) (radar
2/Location), (thorough search/Action) (area 3/Location), (hover track/Action) (target
4/Location)”.

In the given map, Algorithm 1 was used to plan the waypoints as shown in Figure 11.
The actual flying 3D and 2D trajectories are shown in Figure 12. We note that Dubins
curves were used for area 2, 3, and 4, while RRT was used for area 1 and other connections
between the waypoints.

Drones 2023, 7, 147 11 of 14
Drones 2023, 7, x FOR PEER REVIEW 11 of 14

Figure 11. Path planning result of simulation 2.

Figure 12. UAV Trajectories in the 3D space (left) and the 2D projection plane (right).

4.2.3. Operational Time

We compared the operational time of the proposed method with manual selection of

the waypoints. We assumed that the operational time period of the manual approach

started from mouse clicking on the given map for waypoints selection, and it ended

when a path was generated. The path generation method was simplified as connecting

the waypoints with straight lines, which obviously cost much less time than any path

planning algorithms. In contrast, the operational time period of our approach started

from a human uttering the command, followed by speech recognition and understand-

ing, and it also ended when a path was generated using Algorithm 1. One author of this

paper ran the two simulations using the two methods ten times, and the averaged results

are given in Table 2.

Table 2. Comparison of operational time.

 Method Average Time (In Seconds)

Simulation 1 Manual waypoints selection 9.39

 Ours 4.62

Simulation 2 Manual waypoints selection 17.66

 Ours 6.91

As can be seen, the manual approach took a few more seconds than ours. The time

was almost spent on reading the map, checking the task zones, and clicking the mouse.

This process involved cognitive workload for the human operator, and the workload

would increase with task complexity. In contrast, much less cognitive workload was

needed for our approach. Most time was spent on uttering the command, i.e., about 4 s

for simulation 1 and 6 s for simulation 2. In other words, the cost time increased with the

1

3

2

4

Start

End

Figure 11. Path planning result of simulation 2.

Drones 2023, 7, x FOR PEER REVIEW 11 of 14

Figure 11. Path planning result of simulation 2.

Figure 12. UAV Trajectories in the 3D space (left) and the 2D projection plane (right).

4.2.3. Operational Time

We compared the operational time of the proposed method with manual selection of

the waypoints. We assumed that the operational time period of the manual approach

started from mouse clicking on the given map for waypoints selection, and it ended

when a path was generated. The path generation method was simplified as connecting

the waypoints with straight lines, which obviously cost much less time than any path

planning algorithms. In contrast, the operational time period of our approach started

from a human uttering the command, followed by speech recognition and understand-

ing, and it also ended when a path was generated using Algorithm 1. One author of this

paper ran the two simulations using the two methods ten times, and the averaged results

are given in Table 2.

Table 2. Comparison of operational time.

 Method Average Time (In Seconds)

Simulation 1 Manual waypoints selection 9.39

 Ours 4.62

Simulation 2 Manual waypoints selection 17.66

 Ours 6.91

As can be seen, the manual approach took a few more seconds than ours. The time

was almost spent on reading the map, checking the task zones, and clicking the mouse.

This process involved cognitive workload for the human operator, and the workload

would increase with task complexity. In contrast, much less cognitive workload was

needed for our approach. Most time was spent on uttering the command, i.e., about 4 s

for simulation 1 and 6 s for simulation 2. In other words, the cost time increased with the

1

3

2

4

Start

End

Figure 12. UAV Trajectories in the 3D space (left) and the 2D projection plane (right).

4.2.3. Operational Time

We compared the operational time of the proposed method with manual selection
of the waypoints. We assumed that the operational time period of the manual approach
started from mouse clicking on the given map for waypoints selection, and it ended when
a path was generated. The path generation method was simplified as connecting the
waypoints with straight lines, which obviously cost much less time than any path planning
algorithms. In contrast, the operational time period of our approach started from a human
uttering the command, followed by speech recognition and understanding, and it also
ended when a path was generated using Algorithm 1. One author of this paper ran the two
simulations using the two methods ten times, and the averaged results are given in Table 2.

Table 2. Comparison of operational time.

Method Average Time (In Seconds)

Simulation 1 Manual waypoints selection 9.39
Ours 4.62

Simulation 2 Manual waypoints selection 17.66
Ours 6.91

Drones 2023, 7, 147 12 of 14

As can be seen, the manual approach took a few more seconds than ours. The time
was almost spent on reading the map, checking the task zones, and clicking the mouse.
This process involved cognitive workload for the human operator, and the workload would
increase with task complexity. In contrast, much less cognitive workload was needed
for our approach. Most time was spent on uttering the command, i.e., about 4 s for
simulation 1 and 6 s for simulation 2. In other words, the cost time increased with the
length of the uttered command. The average time of speech recognition along with speech
understanding was 0.26 s, while the average time of path planning was 0.43 s. We note
that the comparison was not rigorous due to the biased settings and insufficient subject
experiments. However, our method demonstrated time efficiency for solving path planning
problems in multi-task scenarios.

5. Conclusions

In this paper, we have proposed a novel approach of automatic UAV path planning in
risky environments through natural language understanding (NLU). Using RNN-based
tagging and semantic combination, a compound command can be segmented into a se-
quence of paired action and location, and then the keywords of task types and risky zones
can be extracted and correlated with the entities of the given map. We have proposed an
algorithm to generate candidate waypoints for each task, as well as to select the waypoints
based on a distance criterion. We have demonstrated the effectiveness of the proposed
method in two simulations. In future work, we will consider a more complex scenario of
multi-UAV collaboration, and we will consider the kinematics of fixed-wing UAVs which
are more complicated than that of the quadrotor UAVs.

Author Contributions: Conceptualization, L.W.; methodology, C.W.; software, Z.Z.; validation, L.W.;
formal analysis, C.W.; investigation, C.W.; resources, X.X.; data curation, Z.Z.; writing—original
draft preparation, Z.Z.; writing—review and editing, C.W. and Y.Z.; visualization, Z.Z.; supervision,
C.W.; project administration, D.Y.; funding acquisition, J.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported in part by the Science and Technology Innovation 2030-Key
Project of “New Generation Artificial Intelligence” under Grant 2020AAA0108200 and in part by the
National Natural Science Foundation of China under Grant 61906203 and 6200612.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shao, Q.; Li, J.; Li, R.; Zhang, J.; Gao, X. Study of Urban Logistics Drone Path Planning Model Incorporating Service Benefit and

Risk Cost. Drones 2022, 6, 418. [CrossRef]
2. Gubán, M.; Udvaros, J. A Path Planning Model with a Genetic Algorithm for Stock Inventory Using a Swarm of Drones. Drones

2022, 6, 364. [CrossRef]
3. Lewicka, O.; Specht, M.; Specht, C. Assessment of the Steering Precision of a UAV along the Flight Profiles Using a GNSS RTK

Receiver. Remote Sens. 2022, 14, 6127. [CrossRef]
4. Acharya, B.S.; Bhandari, M. Machine Learning and Unmanned Aerial Vehicles in Water Quality Monitoring. Sustain. Horiz. 2022,

3, 100019. [CrossRef]
5. Paraforos, D.S.; Sharipov, G.M.; Heiß, A.; Griepentrog, H.W. Position Accuracy Assessment of a UAV-mounted Sequoia+

Multispectral Camera Using a Robotic Total Station. Agriculture 2022, 12, 885. [CrossRef]
6. Nemra, A.; Aouf, N. Robust INS/GPS Sensor Fusion for UAV Localization Using SDRE Nonlinear Filtering. IEEE Sens. J. 2010,

10, 789–798. [CrossRef]
7. Chu, H.; Yi, J.; Yang, F. Chaos Particle Swarm Optimization Enhancement Algorithm for UAV Safe Path Planning. Appl. Sci. 2022,

12, 8977. [CrossRef]
8. Yan, C.; Xiang, X.; Wang, C. Towards Real-Time Path Planning through Deep Reinforcement Learning for a UAV in Dynamic

Environments. J. Intell Robot. Syst. 2020, 98, 297–309. [CrossRef]

http://doi.org/10.3390/drones6120418
http://doi.org/10.3390/drones6110364
http://doi.org/10.3390/rs14236127
http://doi.org/10.1016/j.horiz.2022.100019
http://doi.org/10.3390/agriculture12060885
http://doi.org/10.1109/JSEN.2009.2034730
http://doi.org/10.3390/app12188977
http://doi.org/10.1007/s10846-019-01073-3

Drones 2023, 7, 147 13 of 14

9. Zammit, C.; van Kampen, E.-J. Comparison Between A* and RRT Algorithms for 3D UAV Path Planning. Unmanned Syst. 2022,
10, 129–146. [CrossRef]

10. Song, Y.; Steinweg, M.; Kaufmann, E.; Scaramuzza, D. Autonomous Drone Racing with Deep Reinforcement Learning. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27
September–1 October 2021; pp. 1205–1212.

11. Kaufmann, E.; Loquercio, A.; Ranftl, R.; Müller, M.; Koltun, V.; Scaramuzza, D. Deep Drone Acrobatics. Robot. Sci. Syst. 2020, 40,
12–14. [CrossRef]

12. Zhou, X.; Wen, X.; Wang, Z.; Gao, Y.; Li, H.; Wang, Q.; Tiankai, Y.; Haojian, L.; Yanjun, C.; Chao, X.; et al. Swarm of micro flying
robots in the wild. Sci. Robot. 2022, 7, 1–17. [CrossRef]

13. Wang, C.; Wu, L.; Yan, C.; Wang, Z.; Long, H.; Yu, C. Coactive design of explainable agent-based task planning and deep
reinforcement learning for human-UAVs teamwork. Chin. J. Aeronaut. 2020, 33, 2930–2945. [CrossRef]

14. Pan, S. Design of intelligent robot control system based on human–computer interaction. Int. J. Syst. Assur. Eng. Manag. 2021, 4,
1–10. [CrossRef]

15. Xiang, X.; Tan, Q.; Zhou, H.; Tang, D.; Lai, J. Multimodal Fusion of Voice and Gesture Data for UAV Control. Drones 2022, 6, 201.
[CrossRef]

16. Krings, S.C.; Yigitbas, E.; Biermeier, K.; Engels, G. Design and Evaluation of AR-Assisted End-User Robot Path Planning Strategies.
In Proceedings of the Companion of the 2022 ACM SIGCHI Symposium on Engineering Interactive Computing Systems, Sophia
Antipolis, France, 21–24 June 2022; pp. 14–18.

17. Tammvee, M.; Anbarjafari, G. Human activity recognition-based path planning for autonomous vehicles. Signal Image Video
Process. 2021, 15, 809–816. [CrossRef]

18. Seaborn, K.; Miyake, N.P.; Pennefather, P.; Otake-Matsuura, M. Voice in human-agent interaction: A survey. ACM Comput. Surv.
(CSUR) 2021, 54, 1–43. [CrossRef]

19. Malik, M.; Malik, M.K.; Mehmood, K.; Makhdoom, I. Automatic speech recognition: A survey. Multimed. Tools Appl. 2021, 80,
9411–9457. [CrossRef]

20. Weld, H.; Huang, X.; Long, S.; Poon, J.; Han, S.C. A survey of joint intent detection and slot filling models in natural language
understanding. ACM Comput. Surv. (CSUR) 2021, 55, 1–38. [CrossRef]

21. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473.
22. Graves, A. Sequence transduction with recurrent neural networks. arXiv 2012, arXiv:1211.3711.
23. Park, C.; Seo, J.; Lee, S.; Lee, C.; Moon, H.; Eo, S.; Lim, H.S. BTS: Back TranScription for speech-to-text post-processor using

text-to-speech-to-text. In Proceedings of the 8th Workshop on Asian Translation (WAT2021), Bangkok, Thailand, 5–6 August 2021;
pp. 106–116.

24. Korayem, M.H.; Azargoshasb, S.; Korayem, A.H.; Tabibian, S. Design and Implementation of the Voice Command Recognition
and the Sound Source Localization System for Human-Robot Interaction. Robotica 2021, 39, 1779–1790. [CrossRef]

25. Lin, Y.Y.; Zheng, W.Z.; Chu, W.C.; Han, J.Y.; Hung, Y.H.; Ho, G.M.; Chang, C.-Y.; Lai, Y.-H. A Speech Command Control-Based
Recognition System for Dysarthric Patients Based on Deep Learning Technology. Appl. Sci. 2021, 11, 2477. [CrossRef]

26. Qi, J.; Ding, X.; Li, W.; Han, Z.; Xu, K. Fusing Hand Postures and Speech Recognition for Tasks Performed by an Integrated
Leg–Arm Hexapod Robot. Appl. Sci. 2020, 10, 6995. [CrossRef]

27. Contreras, R.; Ayala, A.; Cruz, F. Unmanned aerial vehicle control through domain-based automatic speech recognition. Computers
2020, 9, 75. [CrossRef]

28. Wu, T.W.; Juang, B.H. Knowledge Augmented Bert Mutual Network in Multi-Turn Spoken Dialogues. In Proceedings of the
ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May
2022; pp. 7487–7491.

29. Taniguchi, A.; Ito, S.; Taniguchi, T. Spatial Concept-based Topometric Semantic Mapping for Hierarchical Path-planning from
Speech Instructions. arXiv 2022, arXiv:2203.10820.

30. Taniguchi, A.; Hagiwara, Y.; Taniguchi, T.; Inamura, T. Spatial concept-based navigation with human speech instructions via
probabilistic inference on Bayesian generative model. Adv. Robot. 2020, 34, 1213–1228. [CrossRef]

31. Primatesta, S.; Guglieri, G.; Rizzo, A. A risk-aware path planning strategy for UAVs in urban environments. J. Intell Robot. Syst.
2019, 95, 629–643. [CrossRef]

32. Barbeau, M.; Garcia-Alfaro, J.; Kranakis, E. Risky Zone Avoidance Strategies for Drones. In Proceedings of the 2021 IEEE Canadian
Conference on Electrical and Computer Engineering (CCECE), Virtual event, 12–17 September 2021; pp. 1–6.

33. Ma, Z.; Wang, C.; Niu, Y.; Wang, X.; Shen, L. A saliency-based reinforcement learning approach for a UAV to avoid flying
obstacles. Robot. Auton. Syst. 2018, 100, 108–118. [CrossRef]

34. Jotheeswaran, J.; Koteeswaran, S. Feature selection using random forest method for sentiment analysis. Indian J. Sci. Technol. 2016,
9, 1–7. [CrossRef]

35. Chen, D.; Huang, Z.; Zou, Y. Leveraging Bilinear Attention to Improve Spoken Language Understanding. In Proceedings of the
ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 22–27 May
2022; pp. 7142–7146.

http://doi.org/10.1142/S2301385022500078
http://doi.org/10.15607/RSS.2020.XVI.040
http://doi.org/10.1126/scirobotics.abm5954
http://doi.org/10.1016/j.cja.2020.05.001
http://doi.org/10.1007/s13198-021-01267-9
http://doi.org/10.3390/drones6080201
http://doi.org/10.1007/s11760-020-01800-6
http://doi.org/10.1145/3386867
http://doi.org/10.1007/s11042-020-10073-7
http://doi.org/10.1145/3547138
http://doi.org/10.1017/S0263574720001496
http://doi.org/10.3390/app11062477
http://doi.org/10.3390/app10196995
http://doi.org/10.3390/computers9030075
http://doi.org/10.1080/01691864.2020.1817777
http://doi.org/10.1007/s10846-018-0924-3
http://doi.org/10.1016/j.robot.2017.10.009
http://doi.org/10.17485/ijst/2016/v9i3/86387

Drones 2023, 7, 147 14 of 14

36. Qin, L.; Liu, T.; Che, W.; Kang, B.; Zhao, S.; Liu, T. A co-interactive transformer for joint slot filling and intent detection. In
Proceedings of the ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Toronyo, ON, Canada, 6–11 June 2021; pp. 8193–8197.

37. Zhang, L.; Ma, D.; Zhang, X.; Yan, X.; Wang, H. Graph lstm with context-gated mechanism for spoken language understand-
ing. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34,
pp. 9539–9546.

38. Zhou, P.; Huang, Z.; Liu, F.; Zou, Y. PIN: A novel parallel interactive network for spoken language understanding. In Proceedings
of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 13–18 September 2021; pp. 2950–2957.

39. Thomas, S.; Kuo, H.K.J.; Saon, G.; Tüske, Z.; Kingsbury, B.; Kurata, G.; Kons, Z.; Hoory, R. RNN transducer models for spoken
language understanding. In Proceedings of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Toronyo, ON, Canada, 6–11 June 2021; pp. 7493–7497.

40. Shivakumar, P.G.; Georgiou, P. Confusion2vec: Towards enriching vector space word representations with representational
ambiguities. PeerJ Comput. Sci. 2019, 5, e195. [CrossRef]

41. Gupta Manyam, S.; Casbeer, D.W.; Von Moll, A.; Fuchs, Z. Shortest Dubins Paths to Intercept a Target Moving on a Circle. J. Guid.
Control. Dyn. 2022, 45, 1–14. [CrossRef]

42. Meng, X.; Song, Y. Application Research and Implementation of Voice Control System Based on Android Speech Recognition. J.
Phys. Conf. Ser. 2021, 1865, 042122. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.7717/peerj-cs.195
http://doi.org/10.2514/1.G005748
http://doi.org/10.1088/1742-6596/1865/4/042122

	Introduction
	Problem Statement
	Method
	System Framework
	Task Zone Modeling
	RNN-Based NLU for UAV Path Planning
	Path Planning with RRT and Dubins Curves

	Simulations and Results
	Environmental Settings
	Simulation Results
	Simulation 1: Obstacle Avoidance
	Simulation 2: Reconnaissance and Surveillance
	Operational Time

	Conclusions
	References

