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Abstract: In this article, we consider a single unmanned aerial vehicle (UAV)-assisted heterogeneous
network in a disaster area, which includes a UAV, ground cellular users, and ground sensor users.
The cellular data and sensing data are transmitted to UAVs by cellular users and sensor users, due
to the outage of the ground wireless network caused by the disaster. In this scenario, we aim to
minimize the energy consumption of all the users, to extend their communication time and facilitate
rescue. At the same time, cellular users and sensor users have different rate requirements, hence the
quality of service (QoS) of the users should be guaranteed. To solve these challenges, we propose
an energy-effective relay selection and resource-allocation algorithm. First, to solve the problem of
insufficient coverage of the single UAV network, we propose to perform multi-hop transmission
for the users outside the UAV’s coverage by selecting suitable relays in an energy-effective manner.
Second, for the cellular users and sensor users inside the coverage of the UAV but with different QoS
requirements, we design a non-orthogonal multiple access (NOMA)-based transmission scheme to
improve spectrum efficiency. Deep reinforcement learning is exploited to dynamically adjust the
power level and allocated sub-bands for inside users to reduce energy consumption and improve QoS
satisfaction. The simulation results show that the proposed NOMA transmission scheme can achieve
9–17% and 15–32% performance gain on the reduction of transmit power and the improvement
of QoS satisfaction, respectively, compared with state-of-the-art NOMA transmission schemes and
orthogonal multiple access scheme.

Keywords: UAV communication; Internet of Things; relay selection; resource allocation; deep
reinforcement learning

1. Introduction

One of the important application scenarios of the fifth-generation mobile communi-
cation network is massive machine-type communication [1]. Worldwide, massive sensor
devices are widely deployed to perform the tasks of environment monitoring, surveillance,
and data collection to help build intelligent homes and intelligent cities, which greatly
facilitate human life and improve manufacturing efficiency [2,3]. The IoT and traditional
cellular networks form a terrestrial heterogeneous network, which can provide users with
stable communication services.

UAV-assisted air–ground heterogeneous networks will be an important network archi-
tecture and deployment scenario in 5G and beyond [4,5]. When natural disasters occur and
ground networks are destroyed due to the damage of communication infrastructure, UAV
communication provides a promising solution to restore the communication of ground
users by quickly setting up an air base station (BS) and establishing UAV-assisted air-
ground heterogeneous networks [6]. Compared with ground BS, UAV communication has
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the advantages of flexible deployment, high mobility, and strong line-of-sight (LoS) paths,
and has been widely used in military, public and civilian fields [7].

However, there are still many challenges in the air–ground heterogeneous network.
On the one hand, although the deployment of the UAV can restore the communication
of the target area, there are still areas that are not illuminated.The ground cellular users
(CUs) and IoT users (or sensor users (SUs)) located in the coverage hole cannot build direct
communication with the UAV due to poor channel conditions. In this case, device-to-device
(D2D) technology [8] can be employed to establish multi-hop communication for users
outside the coverage area, then the data is transmitted through relays in a decode and
forward (DAF) manner. To save energy, relay selection should be performed in an energy-
effective way. In other words, the users outside the coverage area should comprehensively
consider their own energy cost and rate requirements, and select the relay that can provide
the required rate and consume as little energy as possible.

On the other hand, NOMA transmission provides an effective solution to satisfy the
transmission requirement for different users using limited system bandwidth. Compared
with orthogonal multiple access (OMA), NOMA can increase the spectrum efficiency by
allowing multiple users sharing the same channel resource. Reducing energy consumption
and guaranteeing the QoS of users are the key problems in NOMA-enabled networks.
Since ground CUs and IoT devices are energy-constrained, power control is a crucial issue
to be handled. In addition, to facilitate rescue, the rate requirement of users should be
guaranteed. Therefore, the trade-off between reducing energy consumption and ensuring
the QoS of users in the air–ground heterogeneous network should be achieved, which
pose a huge challenge to the traditional orthogonal resource allocation scheme. However,
in the literature, there is little research focusing on reducing energy consumption while
guaranteeing the different QoS requirements of users in NOMA-enabled heterogeneous
networks. Hence, the optimization of relay selection and resource allocation in NOMA
transmission is needed.

Motivated by the aforementioned analysis, we propose an energy-effective relay selection
and NOMA-based resource allocation for a UAV-assisted heterogeneous network. First, to
tackle the problem of limited coverage of a single UAV network, we propose to associate
inside users and outside users by formulating a many-to-one matching game [9,10], which
considers the power consumption and the QoS requirements of outside users. Hence, the
serving area of the UAV can be effectively extended and the relay selection is performed at
the minimum energy cost. To relay the data for outside users, different QoS requirements are
needed for the relays, hence the QoS requirements for users are diversified.

Second, to serve multiple users using limited resources, we adopt NOMA transmission
scheme to increase spectrum efficiency. The interference in the network is incurred due
to the non-orthogonal resource allocation in NOMA transmission. Thus, the sub-band
allocation scheme should be carefully designed and uplink transmit power should be
fine-tuned to alleviate the interference and guarantee the QoS of users. To this end, we
propose a deep reinforcement learning (DRL)-based resource allocation algorithm to select
appropriate power level and sub-band for ground users, which can achieve the trade-off
between reducing energy consumption and guaranteeing user’s QoS.

The main contributions of this paper can be summarized as follows: (1) we model the
problem of relay selection and resource allocation for NOMA transmission in UAV-assisted
heterogeneous networks and propose an energy-effective relay selection and NOMA-based
resource allocation algorithm. (2) We perform the relay selection for outside users and
inside users by designing a low-complexity many-to-one matching algorithm, which can
save energy and guarantee the QoS of the users. (3) To satisfy the diverse QoS requirements
of inside users, we propose an DRL-based power and sub-band allocation algorithm, which
can achieve the balance of saving energy and guaranteeing QoS. (4) The performance
of the proposed algorithm is validated under different network parameters. Simulation
results demonstrate that the proposed algorithm can achieve better performance than
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state-of-the-art NOMA schemes and OMA schemes in terms of energy consumption and
QoS satisfaction.

The rest of this paper is organized as follows: the related works are concluded in
Section 2. In Section 3, single UAV-assisted heterogeneous network models and problem
formulation are presented in detail. In Section 4, we illustrate our proposed energy-effective
relay selection and DRL-based NOMA transmission scheme. The simulation results are
presented and discussed in Section 5. Finally, we draw the conclusions in Section 6.

2. Related Works

In the literature, UAV-assisted air–ground heterogeneous networks have been exten-
sively studied. To further increase the spectrum efficiency, the combination of NOMA and
UAV communication has been studied. In [11], the authors studied the NOMA transmission
model in UAV-assisted IoT systems. First, the authors used matching game to optimize the
resource block (RB) allocation in the system, and then successive convex approximation was
used to optimize the transmission power and UAV’s height. In [12], the authors considered
a terrestrial heterogeneous IoT where multiple ground SUs and CUs coexist, and proposed
an effective successive interference cancellation (SIC)-free NOMA transmission scheme
to optimize RB allocation and power allocation. In [13], the authors proposed a game
theory-based NOMA scheme to maximize energy efficiency (EE) in NOMA-based fog UAV
wireless networks. In [14], a channel gain-based NOMA scheme was proposed and network
EE was optimized using alternating optimization. In [15], the authors proposed jointly
optimizing UAV trajectory planning and sub-slot allocation to maximize the sum-rate of IoT
devices in UAV-assisted IoT. The authors of [16] studied the multi-NOMA-UAV assisted
IoT system to increase the number of served IoT nodes and improve the system EE. In [17],
the power allocation was optimized in NOMA clustering-enabled UAV-IoT. In [18], the
joint optimization of UAV deployment and power allocation was proposed to maximize
the sum-rate of ground users.

Due to the scarcity of spectrum resources and energy constraints, resource allocation
and power optimization have also become the focus of research [19–24]. The authors
in [19–23] studied the ground data collection assisted by UAV and minimized the energy
consumption of IoT devices in an UAV-assisted ground IoT by optimizing the UAV trajecto-
ries [19,20] and 3D deployment [23]. The authors in [21] also considered the UAV-assisted
IoT, aiming to minimize the total time of data collection for the UAV to save energy. By
applying alternation optimization and successive convex approximation, the UAV’s trajec-
tory and transmit power have been optimized, thereby saving energy while ensuring the
users’ QoS. The authors in [22] optimized the UAV’s trajectory in terms of flight speed and
acceleration, and obtained the optimal solution of UAV trajectory and uplink transmission
power under two modeling problems of maximizing the minimum average rate and maxi-
mizing EE. The authors in [24] comprehensively considered the power optimization, RB
allocation and UAV location optimization under the SAG-IoT architecture to achieve the
optimization of energy efficiency.

The research on relay-based transmission has also been carried out. The network
performance exploiting UAVs [25–27] and mobile devices as relays [28–30] are studied
respectively. The authors in [28] exploited ground devices to dispatch the files transmitted
by UAV by establishing ground D2D links and adopted graph theory to optimize the
resource allocation in NOMA-enabled transmission. The authors in [29,30] designed a multi-
hop communication algorithm for the ground IoT, and obtained the outage probability for
relay links.

In addition, the security problem in UAV-assisted network was widely studied [31,32]. The
control schemes based on blockchain and artificial intelligence were proposed to secure drone
networking [33,34]. In [35], an enhanced authentication protocol for drone communications,
and the authors proved that their algorithm could better fight drone capture attacks. In [36],
a lightweight mutual authentication scheme based on physical unclonable functions for UAV-
ground BS authentication was proposed. In [37], the authors studied the physical layer security
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issue in UAV-assisted cognitive relay system, and proposed alternate optimization-based algo-
rithm to maximize average worst-case secrecy rate.

The research comparison of energy saving for users and coverage expand for UAVs
in the existing literature has been listed in Table 1. It can be seen that these studies either
did not reduce the energy consumption of ground users while guaranteeing the user
QoS, or did not adopt the NOMA transmission scheme to increase spectrum efficiency.
Therefore, the research in the existing literature cannot guarantee the users’ QoS and save
energy under insufficient coverage and limited resources of UAV. In addition, energy
saving in relay selection is not considered enough, and few studies focus on user QoS
and energy consumption in NOMA-enabled air-ground networks. The existing research
is performed on the premise that the system bandwidth is sufficient and the users’ QoS
can be guaranteed. However, for the scenario with limited system bandwidth and massive
users, it is difficult to ensure the QoS requirements of all the users. Motivated by this, we
propose our energy-effective relay selection and resource allocation algorithm in NOMA
UAV-assisted heterogeneous networks.

Table 1. Comparison of related works in the existing literature.

Article Method Advantage Limitation

[11] Matching game and alternative
optimization Maximized uplink capacity Not energy saving and user’s QoS

is not guaranteed

[12] Message-passing algorithm Successive interference
cancellation-free Relay selection is not optimized

[13] Matching game Maximized EE User’s QoS is not guaranteed

[14] Alternating optimization Maximized EE The coverage extension of UAV is
not considered

[15] Alternating optimization Maximized EE Not energy saving

[16] Alternating optimization Maximized EE The number of served users is
limited

[17] Deep reinforcement learning Maximized sum-rate Not energy saving

[18] Particle swarm optimization and
dynamic power allocation Maximized sum-rate Not energy saving

[19] Optimal transport theory Optimal trajectories and
minimized energy consumption

NOMA and multi-hop
transmission is not considered

[20–22] Alternating optimization Optimal trajectories and
minimized energy consumption

NOMA and multi-hop
transmission is not considered

[23,24] Matching theory and alternating
optimization

Optimal 3D deployment and
transmit power of UAVs

NOMA and multi-hop
transmission is not considered

[25–27] Joint transmit power and
trajectory optimization Optimized trajectory for UAVs The number of served users is

limited

[28] Graph theory Minimized flying time and
maximized system capacity Not energy saving

[29,30] Shortest-path routing algorithm Shortest path for multi-hop D2D
links

NOMA transmission is not
considered

3. System Model

In this paper, we consider a single UAV-assisted heterogeneous network, as shown
in Figure 1. After the disaster, the ground BS in the disastrous area is out of service. To
deliver the emergency calls and messages of ground CUs and the monitoring data of IoT
users (sensor users), a rotary-wing UAV is deployed to hover above the target area and
acts as aerial BS to serve ground users. In this paper, we focus on the scenario where the
serving range of the UAV can not cover all the users in the target area. Therefore, we ignore
the impact of surrounding UAVs and consider the single UAV network. Without loss of
generality, we consider that there are some users that locate outside the coverage area and
cannot directly connect to the UAV. Therefore, the D2D-enabled multi-hop transmission is
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employed. For simplicity, we consider the number of hops is two, that is, a user outside
the UAV coverage transmits its data to the relay who is in the coverage area of the UAV,
then the data will be delivered to the UAV from the relay.In addition, we assume that the
channel resource in the network is limited. In this case, OMA transmission fails to provide
service to a large number of ground users, and we adopt NOMA scheme to transmit data
for inside users. The reason is that NOMA allows multiple users to transmit on the same
channel resource, which greatly improves the spectrum efficiency. This enables UAV to
serve a large number of users with limited resources.

In Figure 1, the coverage of UAV is partitioned into multiple rings. Clustering is per-
formed by selecting the users from different rings, e.g., inside CU #1, inside CU #2 and inside
SU #1 form a NOMA cluster. The users in the same NOMA cluster occupy a unique part of
the system bandwidth, and there is no interference among the users in different clusters.

Figure 1. Network architecture.

We denote the set of ground users as U , which is comprised of CUs and SUs denoted
as UC and UI , i.e., U = UC ∪ UI . The set of SUs are divided into two parts, U in

I and U out
I ,

which corresponds to the SUs inside and outside the UAV coverage. We consider that the
outside users only include SUs and each outside SU can only select an inside SU as its
relay. However, the proposed model and algorithm can be extended to other complicated
scenarios.We delineate the UAV coverage based on path loss. Specifically, when the path-
loss of a local user to the UAV is less than the predefined threshold [38], the user is regarded
as an inside user and can be served by the UAV. Otherwise, it is regarded as an outside
user which can only communicate with UAVs through two-hop relay links. For simplicity,
we assume the CUs and SUs have different QoS requirements, which are denoted as RC

min
and RI

min. In addition, we denote the positions of the UAV and user k ∈ U as [xu, yu, h] and
[xk, yk], where [xu, yu] is the horizontal location of the UAV and h is the height of the UAV,
which is fixed after the deployment.

Hence, the distance between the UAV and user k is calculated as:

dk,u =
√
(xu − xk)2 + (yu − yk)2 + h2 (1)

Then, the probability of the line-of-sight link between the UAV and user k is calculated as:

Pk,u
LoS =

1
1 + aexp(−b[εk,u − a])

(2)
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where a and b are the constants determined by the environment. εk,u is the elevation angle be-
tween the UAV and user k, which is calculated as: εk,u = arctan(h/

√
(xu − xk)2 + (yu − yk)2).

Hence, the path-loss between the UAV and user k is calculated as:

hk,u = 20 log2(
4π fcdk,u

c
) + Pk,u

LoSζLoS + (1− Pk,u
LoS)ζNLoS (3)

where fc denotes the carrier frequency, c is the speed of light, ζLoS and ζNLoS denote the
attenuation loss in LoS and NLoS links.

For the transmission of the air–ground uplink, we adopt NOMA to increase the
spectrum efficiency. In a NOMA-based system, a user will suffer the potential interference
from the users that occupy the same spectrum resource. In our proposed scenario, it is
assumed that the UAV is equipped with a SIC receiver that can demodulate the target
signal from the superimposed signal. At the same time, it is assumed that the demodulation
sequence is from the users with the highest received power to the users with the lowest
received power. For user k, the interference comes from the users whose received power is
lower than user k. Therefore, the uplink signal-to-interference-plus-noise ratio (SINR) of
user k at sub-band n is calculated as:

γk,u,n =
pkhk,ugk,u,n

∑k′∈Un,k
pk′hk′ ,ugk′ ,u,n + σ2 (4)

where pk is the uplink transmit power of user k, Un,k is the set of users who reuse sub-band
n and whose received power level at the UAV is lower than that of user k, gk,u,n is the small-
scale fading between the UAV and user k at sub-band n, which follows the exponential
distribution with unit mean. σ2 is the noise power.

Further, the uplink transmission rate of inside user k (CU or SU) is calculated as:

Rk,u = Ba ∑
n∈N

an,k log2(1 + γk,u,n) (5)

where an,k ∈ 0, 1 is the binary indicator to show that whether user k transmit on sub-band
n. Ba is the bandwidth of a sub-band of the uplink air-ground channel.

For the relay link, the transmission rate is calculated as:

Rk,Mk
= Br log2(1 +

pkhk,Mk

σ2 ) (6)

where Mk is the associated relay for outside user k, hk,Mk
= gk,Mk

d−α
k,Mk

is the channel gain
from outside user k to relay Mk, gk,Mk

is the small-scale fading between outside user k and
relay Mk, which follows the exponential distribution with unit mean. dk,Mk

is the distance
between user k and relay Mk, Br is the bandwidth of a resource block in the relay link.

It is worthwhile to note that the interference among the relay links is not considered as
the orthogonal frequency is employed for different links. In addition, we assume the relay
links and the air-ground links reuse the same frequency band. However, the interference from
the relay links to the UAV can be neglected due to low transmission power and long distance.

In this paper, we characterize the QoS requirement of CUs and SUs as the minimum
transmission rate. For CU-k and SU-k, the QoS requirement is represented as the minimum
transmission rate RC,k

min and RI,k
min, respectively. For each relay node k, its total QoS require-

ment is constituted by the transmission rate requirements of its own air-ground link and
all the outside users connecting to k.

RI,k
min(relay) = RI,k

min + ∑
m∈Mk

RI,m
min (7)

whereMk is the set of outside sensor users choosing k as the relay node.
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In this paper, we aim to reduce the energy consumption while guaranteeing the QoS
of the users. For the users in U in

I , the transmit power and resource allocation should be
optimized to alleviate the intra-cell interference and increase user rate. For the users in
U out

I , the relay selection should also be performed in an energy-effective manner. The
transmit power of all users is used to characterize the power consumption. In addition, the
QoS satisfaction is characterized using the indicator function to denote whether the QoS
requirement of a user is satisfied. We design the target problem as follows:

maximize
pk ,an,k

ω ∑
k∈U

η/pk + (1−ω)( ∑
k∈UC

I(Rk,u ≥ RC,k
min) + ∑

k∈U in
I

I(Rk,u ≥ RI,k
min)) (8)

s.t. C1 : pC
min ≤ pk ≤ pC

max, ∀k ∈ UC

C2 : pI
min ≤ pk ≤ pI

max, ∀k ∈ UI

C3 : ∑
n∈N

an,k = 1, ∀k ∈ U in
I

where pk is the transmit power of user k, and RC,k
min and RI,k

min are the QoS requirements for
CU-k and SU-k, respectively. I is the QoS indicator function. ω ∈ (0, 1) is the weighting
factor to characterize the importance of power consumption and users’ QoS satisfaction. η
is the tuning coefficient to adjust the transmit power and QoS indicator to the same order
of magnitude. C1 and C2 denote the power constraint for CUs and SUs, pC

min and pI
min are

the minimum transmit power for CU and SU, pC
max and pI

max are the maximum transmit
power for CU and SU. C3 indicates that each inside user can only occupy one sub-band.
The symbols used in the paper are described in Table 2.

Table 2. Symbol table.

Symbol Description Symbol Description

U The set of ground users ζLoS The attenuation loss in LoS links

UC The set of cellular users ζNLoS The attenuation loss in NLoS links

UI The set of IoT users γk,u,n

The uplink
signal-to-interference-plus-noise

ratio (SINR) of user k at
sub-band n

U in
I The set of inside IoT users pk

The uplink transmit power of
user k

U out
I The set of outside IoT users Un,k

The set of interfering users of
user k in sub-band n

RC,k
min

The QoS requirement of cellular
user k gk,u,n

The small-scale fading between
the UAV and user k at sub-band n

RI,k
min The QoS requirement of IoT user k Rk,u

The uplink transmission rate of
inside user k

dk,u
The distance between the UAV

and user k Mk
The associated relay for outside

user k

Pk,u
LoS

The probability of LoS link
between the UAV and user k Rk,Mk

The transmission rate of outside
user k when connected to

relay Mk

εk,u
The elevation angle between the

UAV and user k an,k

The binary indicator to show that
whether user k transmit on

sub-band n

hk,u
The path-loss between the UAV

and user k Ba
The bandwidth of a sub-band in
the uplink air-ground channel

4. Proposed Algorithm

As can be seen, problem (8) is computationally hard. Let us assume that the uplink
transmission power of inside users can be discretized into Np levels and the total number
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of sub-bands in the network is Nsub. For inside users, the worst case for the number of
combination of power level and sub-band is (UC +U in

I )Np∗Nsub . For outside users, the worst
case for the number of combination of power level is (U out

I )Np . Hence, the total number of
combination of power level and sub-band in the network is (U out

I )Np + (UC + U in
I )Np∗Nsub ,

which makes solving problem (8) time consuming.
Due to the huge number of combinations of power and sub-bands, we decompose

the target problem and optimize the target function for inside users and outside users,
respectively. The flowchart of our proposed algorithm is shown in Figure 2. First, the relay
selection is performed to select relay for each outside SU and determine the association
between outside SUs and inside SUs. Next, based on the association result, DRL-based
power and resource selection algorithm is performed for inside users. Finally, the optimal
power and resource selection strategy for inside users is obtained.

In this section, we first propose an energy-efficient relay selection scheme for outside
users exploiting the many-to-one matching game, and the energy consumption and QoS
requirements in the relay selection process are considered. After determining the relay for
each outside user, we perform the joint power and sub-band selection algorithm for the
inside users. The deep reinforcement learning is adopted to adjust the power and sub-band
selection dynamically in different environment.

Figure 2. The flowchart of proposed algorithm.

4.1. Energy-Efficient Relay Selection Algorithm

To restore the connection for outside users, we first associate the outside SUs and
relays (i.e., inside SUs) in an energy-effective manner. The essence of our scheme is to
determine the association scheme according to the consumed energy of outside users. We
derive the preference list for the relays and outside SUs, respectively, by calculating the
utility function related to the consumed energy and sorting them in a descending order.
After each outside user proposes their preferred relays, the relays accept the application
according to the pre-built preference list and the maximum number of accepted users for
each relay. The outside users are more inclined to select the relay that consume as little
energy as possible.

The utility for user i ∈ U out
I to connect to a candidate relay j ∈ U in

I and the utility for
relay j to accept applicant i are calculated as:

Ui(j) = Uj(i) = (pmin
i,j + pcir)−1 (9)

where pcir is the static circuit energy consumption at SU, pmin
i,j is the minimum transmit

power for user i to reach the QoS requirement when connected to relay j, which is calcu-
lated as:

pmin
i,j = 2(RI

min/Br−1)σ2/hi,j (10)

In our paper, the association between the outside users and inside users is formulated
as a many-to-one matching game. In the proposed matching game, the players are modeled
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as outside users and inside users. Each player has a preference list and the final association
result is obtained based on the preference order:

Definition 1 (preference order). For each outside user (or relay), the preference order .i is defined
as a complete, reflexive, and transitive binary relation over the entire set of relays (or outside users).

For each outside user i ∈ U out
I , the preference relation over all the possible relays is

defined as follows:
j .i j′ ⇔ Ui(j) > Ui(j′) (11)

which means that user i is more likely to select j rather than j′ as its relay.
For each relay j ∈ U in

I , the preference relation over all the outside users is defined
as follows:

i .j i′ ⇔ Uj(i) > Uj(i′) (12)

which means that relay j is preferable for acting as the relay of user i.
The detailed process of our proposed energy-effective relay-selection algorithm is

summarized in Algorithm 1. At the beginning, the outside users and relays exchange their
channel state information and other related information. Each outside user and relay builds
the preference list according to the utility, calculated as (9). Then, each outside user makes
the connection request to its preferred relay. After receiving the proposal, each relay ranks
the applicants according to the preference list. The maximum number of outside users
that can be accepted by the relay is set to Nmax. Each relay accepts its preferred applicant
and the remaining applicants will be rejected. Then, each rejected applicant proposes the
next preferable relay. The association process terminates when all the outside users are
associated with a relay.

Algorithm 1: Energy-efficient relay selection for outside users.
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the next preferable relay. The association process terminates until all the outside users are
associated with a relay.

Algorithm 1: Energy-efficient relay selection for outside users.
Initialize the preference list for each outside user and relay according to (9), and
the set of outside users accepted by relay as: U out,rejected

I = U out
I .

while U out,rejected
I 6= ∅ do

foreach outside user i ∈ U out
I do

Request to connect to its preferred relay as indicated by (11).
end
foreach relay j ∈ U in

I do
Sorts the applicants in a descending order according to the preference list
as indicated by (12);

while the number of accepted users at relay j not exceed Nmax do
accept the preferred applicant, add it into U out,accepted

I and delete it from
the preference list of j;

end
end
Each rejected user updates the preference list by deleting the preferred relay.

end

4.2. Deep Reinforcement Learning-Based Power and Sub-Band Selection for NOMA Transmission

In this subsection, we perform power and sub-band selection for inside users in single
UAV-assisted heterogeneous network. After executing the relay selection algorithm for
outside users, the D2D links between the outside users and the inside relays are established.
Therefore, the inside users have different QoS requirements in terms of transmission rate.
In this case, the allocation of limited resource among inside users has a significant impact
on system performance.

Therefore, we adopt NOMA scheme for the transmission of inside users, which can
increase spectrum efficiency by allowing multiple users share the same channel resource.
To reduce the complexity of SIC, NOMA clustering is performed by dividing the inside
users into different clusters according to their geometry locations [40]. The users in the
same cluster perform the joint power and sub-band selection to reduce the power con-
sumption while ensuring the QoS requirements of the users can be reached. In the NOMA
clustering, each cluster occupies an orthogonal frequency band(i.e., sub-band) and there is
no interference among the users from different clusters.

However, the resource allocation and interference cancellation inside the NOMA
cluster is a crucial issue to be handled. When external environment (i.e., channel state
information, transmission power and resource occupancy status) changes, traditional
NOMA schemes need iterative calculation or to obtain the power and channel selection
scheme. In addition, the traditional NOMA schemes fail to guarantee the QoS of users with
limited resources.

To solve this problem, we resort to deep reinforcement learning (DRL) for dynamic
and adaptive resource allocation to achieve the goal of reducing energy consumption while
guaranteeing the users’ QoS. Deep reinforcement learning has the general intelligence to
solve complex problems, and can automatically obtain the optimal resource allocation
strategy from the changing external environment. DRL is built on the learning and pre-
diction function of reinforcement learning, and uses deep neural network to provide an
autonomous decision-making mechanism for learning agents by forming a powerful ap-
proximation function. Compared with traditional NOMA schemes, the proposed NOMA
scheme can adaptively obtain the optimal power and channel selection strategy for the
inside users using pre-trained strategy.

Therefore, we first give a brief introduction to DRL, then we illustrate the framework
and implementation of our proposed DRL-based power and sub-band selection.

4.2. Deep Reinforcement Learning-Based Power and Sub-Band Selection for NOMA Transmission

In this subsection, we perform power and sub-band selection for inside users in a single
UAV-assisted heterogeneous network. After executing the relay selection algorithm for
outside users, the D2D links between the outside users and the inside relays are established.
Therefore, the inside users have different QoS requirements in terms of transmission rate.
In this case, the allocation of limited resource among inside users has a significant impact
on system performance.

Therefore, we adopt NOMA scheme for the transmission of inside users, which can
increase spectrum efficiency by allowing multiple users share the same channel resource.
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To reduce the complexity of SIC, NOMA clustering is performed by dividing the inside
users into different clusters according to their geometry locations [39]. The users in the
same cluster perform the joint power and sub-band selection to reduce the power con-
sumption while ensuring the QoS requirements of the users can be reached. In the NOMA
clustering, each cluster occupies an orthogonal frequency band (i.e., sub-band) and there is
no interference among the users from different clusters.

However, the resource allocation and interference cancellation inside the NOMA cluster
is a crucial issue to be handled. When an external environment (i.e., channel state information,
transmission power, or resource occupancy status) changes, traditional NOMA schemes need
iterative calculation or to obtain the power and channel selection scheme. In addition, the
traditional NOMA schemes fail to guarantee the QoS of users with limited resources.

To solve this problem, we resort to deep reinforcement learning (DRL) for dynamic
and adaptive resource allocation to achieve the goal of reducing energy consumption while
guaranteeing the users’ QoS. Deep reinforcement learning has the general intelligence to
solve complex problems, and can automatically obtain the optimal resource allocation
strategy from the changing external environment. DRL is built on the learning and pre-
diction function of reinforcement learning, and uses deep neural networks to provide
an autonomous decision-making mechanism for learning agents by forming a powerful
approximation function. Compared with traditional NOMA schemes, the proposed NOMA
scheme can adaptively obtain the optimal power and channel selection strategy for the
inside users using a pre-trained strategy.

Therefore, we first give a brief introduction to DRL, then we illustrate the framework
and implementation of our proposed DRL-based power and sub-band selection.

4.2.1. Basis of Deep Reinforcement Learning

The target problem (8) involves competitive relation between users, which is not con-
vex and cannot be solved by traditional optimization technique. In this case, reinforcement
learning (RL) can effectively solve the problem through interacting with the unknown
environment and improve the decision-making to maximize the target value.

RL is a method or framework for learning, prediction, and decision-making, which
has the natural advantage of automatically obtaining the optimal strategy through the
interaction between agents and the environment. The basic elements of reinforcement
learning can be represented by a five-tuple (S ,A, π, p,R). The agents learn and make
decisions by sensing the state of the environment S . In the t − th time slot, the agent
executes an action following the strategy π to select a sub-band and transmission power
level according to current state st ∈ S . The transition of different states and the obtained
rewards are both stochastic, which can be modeled as a Markov decision process (MDP).
When the agent takes action at ∈ A, the state transitions from st to st+1 and the acquisition
of rt ∈ R can be characterized by the conditional transition probability p(st+1, rt|st, at).

The main goal of reinforcement learning is to find the strategy that maximizes the
cumulative discounted reward, which not only considers immediate rewards, but also
takes into consideration the discounted future rewards:

rt =
∞

∑
k=0

γkRt+k (13)

where Rt is the instantaneous reward received by the agent at time slot t. γ is the discount
factor, when γ is close to 0, the agent is more concerned about short-term rewards; when γ
is close to 1, long-term rewards is considered more important.

In this paper, we adopt the most commonly-used reinforcement learning method,
Q-learning, to solve the MDP problem. In Q-learning, a Q-table is constructed to reflect the
strategy, which stores the Q-value of different state-action pairs. According to the Bellman



Drones 2023, 7, 141 11 of 21

equation and the temporal difference learning method [40], after the agent observes the
state st at time t and executes an action at, the corresponding Q-value is updated as:

Q(st, at) = Q(st, at) + η(rt+1 + γmaxa∈AQ(st+1, a)−Q(st, at)) (14)

where η is the learning rate. With the state transitions in the learning process, the Q-table
gradually stabilizes, and the optimal strategy function for each agent can be obtained.

However, Q-learning (QL) can only effectively solve the problems whose states and
actions are discrete and limited due to that the Q-tables can only record the Q-value of a
limited number of state–action pairs. However, in many practical problems or tasks, the
number of states and actions is large, which makes QL inefficient in solving the problem. In
this case, deep Q-learning (DQL) can be used to learn the strategy from the state transitions
in high-dimensional and continuous state space successfully using deep learning (DL),
which has been widely studied and applied in UAV networks [41,42].

The core idea of DQL is approximating a complex nonlinear Q-function Q(S ,A) using
deep Q-network (DQN):

Q(st, at; θ) ≈ Q∗(st, at) (15)

where Q(st, at; θ) is the Q-value function approximated by DQN with parameter θ, Q∗(st, at)
is the Q-value function with the best future reward.

In DQN, the input is the state vector, and the output is the value function vector
containing the Q-value of each action under the state. At time t, the agent observes the
state st, chooses the action at following the strategy, and receives the reward rt. Then, the
optimal DQN parameter can be calculated by minimizing the following loss function:

L(θ) = ([rt + γmaxat+1 Q(st+1, at+1|θ)]−Q(st, at|θ)) (16)

In addition, to overcome the problems of non-convergence and instability, experience
replay and target network [43] are introduced into DQN to stabilize the learning process.
To reduce the gap between the target Q-value obtained through experience replay and the
Q-value calculated by the primary Q-network, the parameter θ of the neural network is
updated through the back propagation using the gradient-descent method [40]. Hence, the
loss function to be minimized is defined as:

L(θ) = E(st ,at ,rt ,st+1)∈B([rt + γmaxat+1 Q(st+1, at+1|θ′)]−Q(st, at|θ)) (17)

where B is the mini-batch set selected from replay buffer. The detailed structure of DQN is
shown in Figure 3.

Figure 3. Structure of DQN.
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4.2.2. Customized DQN Design

In the proposed reinforcement learning framework, the agents are the inside users,
and the actions are all the combinations of power level and sub-band that can be selected
by each agent. The uplink transmission power of inside users is discretized into Np levels,
and each cluster is assigned Ns to sub-bands, hence the dimension of the action space of
each agent is NpNs. The observable environment state of each agent k at time slot t consists
of the following parts:

• The instantaneous channel state information of all the sub-bands at time-slot t− 1:
gt−1 = (gt−1

k,u,1, ..., gt−1
k,u,Ns

), where Ns is the number of sub-bands of each cluster, and
gt−1

k,u,n is the small-scale channel gain of sub-band n between the UAV and user k at
time-slot t− 1.

• The interference power level that user k receives in each sub-band at time-slot t− 1:
It−1 = (I1

t−1, ..., INs
t−1), where In

t−1 = ∑k′∈Un,k
pk′hk′ ,u denotes the potential interference

at sub-band n that agent k receives at time-slot t− 1.
• The ACK indicator vector of users in the same cluster with the agent: ACKt−1 =

(ACK1
t−1, ..., ACKKc

t−1), where ACKk
t−1 = 1 means that the QoS requirement of user k

is reached and Kc is the total number of users in the same cluster.

Therefore, the observed state at time t for each agent can be expressed as st =
{gt−1, It−1, ACKt−1}.According to the agent’s observed state st and the selected action at
at time-slot t, the environment will transit to a new state st+1, and the agent will receive
an immediate reward Rt. In this paper, we aim to reduce the energy consumption of
inside users while ensuring that the QoS of outside users is not degraded. In the proposed
reinforcement learning framework, the reward function is consistent with the objective
function (8), which consists of two parts, namely the power consumption and the QoS
indication summation of all the users in the same cluster. Specifically, the instantaneous
reward function for agent k (inside CU or SU) at time-slot t is designed as:

Rt = ω
(

η/pk + ∑
m∈U k

η/pm

)
+
(
1−ω

)(
∑

m∈U k
C

I(Ru,m ≥ RC
min) + ∑

m∈U k
I

I(Ru,m ≥ RI
min)

)
(18)

where U k
C and U k

I denote the CUs and SUs in the same cluster with user k, U k = U k
C ∪ U k

I .

4.2.3. Implementation of Deep Q-Learning

In deep Q-learning, there are two stages: offline training and testing. Unlike DL, there
is no concept of a training data set or test data set in DQN, and each agent learns the optimal
strategy by collecting experience from the transition of states, and then the performance
of learned policy is tested in realistic environment. In the offline training stage, the agent
traverses the states as much as possible by interacting with the environment, continuously
learns and improves its action selection strategy, and finally obtains a stable Q-function
approximation. When the offline training process is completed, the agent already has
the knowledge of which action to perform under different environment to get the best
cumulative discounted reward. In the testing phase, the agent exploits the learned policy
(approximation function) to guide the action selection in different environment state.

Due to the independence of the agents’ execution of actions, when the actions are
performed synchronously, the agent has no knowledge of the actions selected by other
agents. In this case, the value of It−1 in the input state vector is not latest updated, and the
state observed by each agent cannot accurately represent the environment in real time. To
this end, the agents are designed to update their actions asynchronously: in each time slot,
only one agent performs the action selection. Under the asynchronous strategy, each agent
can observe the environmental change caused by the behavior of other agents through
recording It−1 and ACKt−1 in the input state vector. In this way, the wrong action selection
caused by inaccurate observation of the environment state can be mitigated.
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The detailed process of implementing DQL is presented in Algorithm 2. At the beginning
of training, the structure of two deep neural networks and other parameters are initialized.
Then, each agent interacts with the environment in an alternative manner. The agent chooses
an action according to the ε-greedy strategy, which is a commonly-used random strategy in
deep reinforcement learning. The agent randomly selects an action with probability ε, and
executes the strategy of softmax action selection with probability 1− ε [40]. Under softmax
policy, the possibility of the agent choosing action a is calculated as:

P(at = a) =
eδQ(st ,a)

∑a′∈A eδQ(st ,a′)
(19)

where δ is the environment factor, Q(st, a) is the Q-value of action a under state st.

Algorithm 2: Deep Q-learning for power and sub-band selection.

Initialize network structure θ and θ′ with random weight and initialize the
parameters: γ, ε, δ, M, MB;

each agent randomly selects an action and observes the initial state s0;
for t = 1, 2, ... do

for each agent do
1) Choose action at by ε-greedy policy;
2) Execute the action and receives reward rt and the environment transits to
the next state st+1;

3) Store (st, at, rt, st+1) into the replay buffer;
4) Randomly select the mini-batch set from the replay buffer and minimize
the loss function (17) using gradient-descent method and update the
primary network with θ;

end
Every T time slots, copy the weight of primary network to target network for
each agent;

end

5. Numerical Results

In this section, we analyze the convergence and effectiveness of the proposed algo-
rithm. We assume that the target area is a circle with radius of 500 m, where a UAV with
fixed height is deployed as UAV-BS. Fixing the height and the coverage radius of the UAV,
128 users are randomly distributed in the considered area, and 64 users are located in
the coverage of UAV served by air-ground links, while 64 users are located outside the
coverage, which can only be served by relay links. The system bandwidth is 10 MHz, which
can be shared by inside users and divided into multiple sub-bands. We set the number
of available sub-bands for each cluster to four, which means each sub-band occupies a
quarter of the bandwidth allocated to each cluster. Hence, the bandwidth of each sub-band
is related to the number of clusters. For example, the bandwidth of each sub-band under
four clusters is twice of that under eight clusters.

To characterize the performance gain of proposed NOMA, we compared the perfor-
mance of the proposed algorithm with the following algorithms:

• Game theory-based NOMA (GTB-NOMA) [13]: the channel allocation scheme in
NOMA transmission is based on game theory;

• Channel gain-based NOMA (CGB-NOMA) [14]: the channel allocation scheme in
NOMA transmission is based on the channel gain difference between users;

• Time division-based NOMA (TD-NOMA) [17]: the devices are served by UAV in a
time-division manner using deep reinforcement learning;

• Dynamic power allocation-based NOMA (DPA-NOMA) [18]: the user clustering in
NOMA is optimized and a dynamic power allocation is proposed for NOMA users;



Drones 2023, 7, 141 14 of 21

• OMA: the bandwidth is allocated to users equally and each inside user occupies a
narrow orthogonal frequency band, which means there is no interference among users.

The simulation is conducted by using MATLAB/Simulink; environment modeling in
MATLAB and simulink training with a deep reinforcement learning algorithm is adopted.
In the proposed DQN, the neural network structure is constituted by an input layer, two
fully connected layers and an output layer, and each fully connected layer has 50 neurons.
The size of replay buffer and mini-batch are set to 30,000 and 32, respectively. At the
beginning of the training stage, ε is initialized to 0.9 for extensive exploration of all the
possible actions under different states, and gradually decreases to 0.1 as the training
progresses to speed up the convergence. The discount factor γ is set to 0.9, and the target
network is updated by copying the weight from the primary network every 200 time slots.
The execution of DQN is performed in epochs, where each epoch consists of 100 time slots
and the final state of current epoch is delivered into the next epoch as the input state. The
tuning factor η is set as follows: in the objective function (8), when the user’s transmission
power is set to 25 dBm and the user’s QoS is satisfied, the power term of the inside users is
equal to the QoS satisfaction term of the users. When ω = 0.5, η = 50, and η is dynamically
adjusted according to different value of ω. The detailed system parameters are shown in
Table 3.

We first verify the convergence of the proposed NOMA algorithm by showing the
change of the average real-time reward of clusters during the DQN training process. The
number of users is fixed at 32. It can be seen from Figure 4 that the average reward
under proposed NOMA outperforms OMA under different numbers of clusters, P. At the
beginning of training, the agents tend to select random actions to traverse the environment
and evaluate the Q-value of the possible actions. With the continuous increase of experience
samples and the improvement of DQN’s approximation of the Q-function, the real-time
reward increases rapidly. As the learning progresses, the strategy gradually stabilizes, and
the real-time reward converges. After several epochs, the DQN curve tends to converge,
which means that the optimal strategy has been learned. Another observation is that in
the case of P = 4, it takes a longer time (around 135 epochs) to converge than the case of
P = 8. When P = 4, the users in the same cluster is increased to 16, the interaction process
between each agent and the environment is more complicated due to the increased number
of agents, and therefore the speed of learning the optimal strategy slows down.

Next, we explore the impact of several key factors on system performance, including
the number of power levels and clusters, the number of users in the system, and the QoS
requirement for users.

In Figures 5 and 6, we explore the power consumption and QoS satisfaction changes
with the number of clusters, P, and the number of power levels, Q. In Figure 5, we plot
the average transmit power for our proposed NOMA under different P and Q. When
the number of clusters P is fixed, the power consumption decreases as the number of
power levels Q increases. The reason for this is the agent is more declined to select a lower
power level under the motivation to increase the reward. Under this circumstance, more
power levels enable the agent to have more actions to select in the learning process, and
the agent tends to reduce its own power consumption while ensuring QoS to increase the
reward. When Q is fixed, the power consumption of P = 4 clusters is greater than that
of P = 8. As the number of users in the cluster is reduced, the number of users in each
sub-band is reduced, and the interference level among users sharing the same sub-band
is reduced. In this case, complex SIC is unnecessary. Therefore, compared with P = 8, an
upper transmission power is needed to meet the QoS requirements of users, thus increasing
the energy consumption.
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Table 3. Simulation Parameters.

Parameter Value

Area radius 500 m
System bandwidth 10 MHz

Memory size, M 30,000
Mini-batch size, MB 32

Discount rate, γ 0.9
Network update frequency, T 100

Pathloss exponent, α 2
Probability in ε-greedy, ε 0.9→ 0.1

Attenuation factor for NLOS links, β 0.01
Shadow fading variance, σ2

SF 6 dB
Environment constant, a 11.95
Environment constant, b 0.136

Temperature in softmax, δ 1
Tuning factor, η 50

Transmit power for CU, (pC
max ,pC

min) (27,20) dBm
Transmit power for SU, (pI

max ,pI
min) (23,18) dBm

Maximum number of accepted users, Nmax 4
Pathloss threshold, γ 97.31

Minimum rate for CU, RC
min 200 bit/s

Minimum rate for SU, RI
min 80 bit/s

Figure 6 shows how the QoS satisfaction varies with different P and Q. QoS satisfaction
is defined as the ratio of the number of users whose QoS requirement is satisfied to the
total number of users. In the case of P = 4, when Q increases from 7 to 14, the agent
has more feasible actions to select, thereby increasing the probability of increasing the
transmission rate and reward. More power levels are beneficial to SIC, thereby increasing
the QoS satisfaction. However, when the number of clusters is increased to eight, there is
only a slight difference in the QoS satisfaction under two different power levels. This is
because there are only four users in each cluster, sharing two sub-bands. Therefore, the
interference between users is trivial and the interfering signals can be readily differentiated
by SIC, which guarantees that most users can reach their QoS requirements.

In Figures 7 and 8, we evaluate the impact of the number of users on system performance.
The average transit power per user and average QoS satisfaction per user under two algorithms
are presented, respectively. It can be seen from the figures that as the number of users increases
from 16 to 64, the average transmit power per user and QoS satisfaction per user both decrease.
Compared with state-of-art NOMA schemes and OMA scheme, the proposed NOMA can
achieve better performance in terms of transmit power and QoS satisfaction, which further
validates the effectiveness of the proposed algorithm. For the proposed NOMA, as users
increase, the number of users in each cluster increase. In this case, the interference within the
cluster increases, resulting in the decrease in QoS satisfaction of the network. However, NOMA
can provide a larger sub-band bandwidth than OMA, and reduce intra-cluster interference
using SIC. Therefore, better performance can be achieved under NOMA compared with OMA.
In addition, the proposed NOMA also outperforms state-of-art NOMA schemes thanks to the
improved power and sub-band allocation strategy obtained by DRL. We also explore the effect
of ω on system performance. As can be seen, when ω is increased from 0.3 to 0.7, the average
transmit power decreases and the QoS satisfaction decreases. The reason is that the increased
ω makes the reward function put more emphasis on saving energy, hence the transmit power
decreases. On the other hand, the emphasis on QoS satisfaction is lowered, which results in
degraded QoS satisfaction.
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Figure 4. Convergence of the proposed algorithm.
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Figure 6. Impact of different number of clusters and power levels on QoS satisfaction.
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Figure 7. Impact of different number of users on average transmit power.

In Figure 9, we fix RC
min = 180 bit/s and explore the impact of different RI

min on system
performance. We fix the number of clusters P = 8 and the number of power levels Q = 7,
and investigate the power consumption of proposed NOMA. It can be seen from the figure
that as the user’s QoS requirement increases, the users’ power consumption gradually
increases. When RI

min is increased from 80 bit/s to 200 bit/s, the power consumption
increases. The reason for this is that as the required rate increases, it becomes more
difficult to reach RI

min, especially for inside users acting as relays whose rate requirements
become even larger. Hence, the users can only increase the transmit power to increase the
transmission rate, which leads to the growth of power consumption. However, as RI

min
increases from 200 bit/s to 240 bit/s, energy consumption decreases. The reason for this
is that when RI

min is too large, the QoS requirements of a large number of users cannot
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be satisfied. From the perspective of increasing instantaneous reward, the agents tend to
lower their transmit power, which leads to the reduced energy consumption.
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Figure 8. Impact of different number of users on QoS satisfaction.
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Figure 9. Impact of different QoS requirements on average transmit power.

6. Conclusions

In this paper, we consider a single-UAV heterogeneous network where sensor users
and cellular users coexist and share the same frequency band. To enlarge the coverage area
of the UAV, we propose to build relays for remote users that cannot be covered by the UAV-
BS. In such a scenario, we optimize the network performance from the perspective of saving
energy while guaranteeing the QoS. First, we propose an energy-effective relay-selection
algorithm for outside users based on matching theory. Next, we propose a NOMA-based
transmission scheme for inside users. Then, we formulate the problem of joint power and
sub-band selection for inside users and use DQN to solve the problem. The simulation
results show that our proposed NOMA transmission scheme can effectively decrease the
energy consumption and improve the QoS satisfaction compared to benchmark schemes.
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However, in this paper, we mainly focus on the scenario where relay transmission is
required due to insufficient coverage in the single UAV-assisted network. For simplicity,
we ignore the complex interference problem under multi-UAV networks. At the same
time, we assume that the UAV is stationary rather than mobile. In the future, we plan
to perform in-depth research of the following aspects: (1) the network scenario can be
extended to a multi-UAV network, and the power and resource-allocation scheme under
multiple UAV networks can be designed based on deep reinforcement learning. (2) The
optimization of the UAV’s trajectory can be designed, and the impact of UAV’s movement
on the user’s energy consumption and QoS should be explored. (3) To further extend the
coverage of UAV, we will investigate the case that the multi-hop (the number of hop > 2)
transmission in relay transmission can be considered, and the transmission delay, user
energy consumption, and QoS should be simultaneously considered.
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Abbreviations
The following abbreviations are used in this manuscript:

BS base station
CU cellular user
D2D device-to-device
DL deep learning
DQL deep Q-learning
DQN deep Q-network
DRL deep reinforcement learning
DAF decode and forward
EE energy efficiency
IoT Internet of Things
IoE Internet of Everything
LoS line-of-sight
MDP markov decision process
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SU sensor users
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