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Abstract: A heterogeneous computing environment has been widely used with UAVs, edge servers,
and cloud servers operating in tandem. Various applications can be allocated and linked to the
computing nodes that constitute this heterogeneous computing environment. Efficiently offload-
ing and allocating computational tasks is essential, especially in these heterogeneous computing
environments with differentials in processing power, network bandwidth, and latency. In particular,
UAVs, such as drones, operate using minimal battery power. Therefore, energy consumption must
be considered when offloading and allocating computational tasks. This study proposed an energy
consumption fairness-aware computational offloading scheme based on a genetic algorithm (GA).
The proposed method minimized the differences in energy consumption by allocating and offloading
tasks evenly among drones. Based on performance evaluations, our scheme improved the efficiency
of energy consumption fairness, as compared to previous approaches, such as Liu et al.’s scheme. We
showed that energy consumption fairness was improved by up to 120%.

Keywords: computational offloading; genetic algorithm; energy consumption fairness; drones;
unmanned aerial vehicle

1. Introduction

Many services that operate based on UAVs (Unmanned Aerial Vehicles) have been
developed and used. Drones are representative examples of UAVs. UAV devices can be
combined and operated with high-performance embedded devices, such as NVIDIA Jetson
AGX Orin and Xavier NX. Then, the UAV can perform the operations required for AI-based
services by itself [1]. Another advantage of UAVs is that they are relatively free to move
due to less influence from obstacles. Therefore, UAVs are suitable for the remote sensing
and monitoring of large rivers, oceans, mountains, and urban areas [2]. However, most
UAVs are operated with limited battery power, making energy efficiency important in
drone-based applications and services.

Computational offloading schemes can be applied to reduce the energy consumption
of UAVs and increase the energy efficiency for UAV-based applications and services. Com-
putational offloading reduces energy consumption and improves the drone’s processing
power by delegating the drone’s high-overhead tasks to the cloud. As shown in our previ-
ous study [2], tasks that included image- and artificial intelligence (AI)-related processing
operations met their deadline with a computational offloading scheme. However, existing
offloading schemes only consider direct communication between drones and cloud servers.
Liu et al. [3] proposed an online computational offloading scheme that considered the
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communication and routing-overhead of UAVs. However, this new approach did not
consider the energy fairness and consumption issues that extend the operation duration
of drone-based networks and guarantee the completion of a UAV’s mission. During task
allocation, tasks were not evenly allocated while taking into consideration the energy
consumption of each drone. Therefore, the energy consumption of certain drones may
be increased. As a result, the drone is unable to operate due to insufficient energy, and
problems may occur, such as the drone-based network becoming partitioned.

Genetic algorithms (GA) are a method of optimization that can be applied to a wide
range of problems, including those that are difficult or impossible to solve using traditional
methods. GA can handle a large number of variables and constraints, and GA can find
near-optimal solutions quickly. Previously, we had proposed a new concept in a prelim-
inary study [4], in which a GA-based scheme considered energy consumption fairness.
In this study, we proposed a computational offloading and workflow allocation scheme
that considered energy consumption fairness based on our preliminary study. The com-
puting environment of the proposed scheme involved a three-tier structure consisting of a
UAV-based computing area, edge computing area, and cloud computing area, as shown
in Figure 1. This three-tier structure was referred to as the UAV–edge–cloud computing
environment. This environment was very similar to the modern mobile computing envi-
ronment [3]. An application scenario in this three-tier environment could be used on a
battlefield. Multiple drones could monitor the target field to detect various types of sensors.
Simple location data could be locally processed in a drone while the image and video
streaming data-processing could be offloaded to neighbor drones or edge servers. The
entire target field analysis and the strategic movements of the drones could be processed in
the cloud.

Internets
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Cloud Server
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Access
PointUAV Swarms

Cloud 
Computing Area

Edge 
Computing Area

UAV-based 
Computing Area

…

GPU 
Computing 

Server

GPU 
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GPU 
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Device to Device Links

Figure 1. System model.

The proposed energy consumption fairness-aware computational offloading scheme
allocated a workflow of multiple tasks to each node, constituting the UAV–edge–cloud
computing environment, while considering the energy consumption in terms of fairness.
A node could be one of the UAVs, edge servers, or cloud servers. If the tasks that needed
to be allocated were not evenly distributed to each node, the energy consumption of each
node to which the tasks were allocated would be unbalanced. In the case of a node that
consumed a lot of energy, it could no longer operate due to energy depletion, shortening
the lifetime of the entire network.

The proposed scheme was compared with Liu et al.’s Markov approximation-based
scheme [3,5]. We evaluated the performance through simulations. The simulation results
showed that the proposed scheme evenly consumed a drone’s energy, as compared to
Liu et al.’s scheme. It was shown that the energy consumption fairness was improved by
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up to about 120.93%. Therefore, drone-based applications could be operated longer with
better stability.The main contributions of this paper are the following:

• Our system model had three layers: UAV-based computing area, edge computing area,
and cloud computing area. We considered the routing costs among the drones for each
offloading task in the UAV-based computing area. We also considered the scheduling
costs of requests of multiple users in the edge and the cloud computing areas.

• The energy efficiency is an important issue in drone-based systems, but the energy
consumption fairness is also an important issue in order to sustain the network con-
nection among the UAVs. The originality of our GA-based computational offloading
and workflow allocation scheme considered the residual energy balance among the
UAVs to extend the lifetime of the UAV-based computing area.

• We use a GA-based computational offloading decision scheme to determine a better
solution by considering the energy consumption, the energy consumption fairness,
and the resource constraints, such as processing power and network bandwidth.
Our approach outperformed the previously reported Markov approximation-based
schemes in terms of the energy consumption fairness.

The rest of this paper is organized as follows. In Section 2, we explain the existing
offloading architectures and computational offloading schemes. Section 3 describes our
computational offloading scheme while taking into consideration the energy consumption
fairness. The performance evaluation results are presented and discussed in Section 4. In
Section 5, we conclude this paper.

2. Related Works

Much research has been conducted on computational offloading architectures and
computational offloading algorithms for UAVs. This section reviews and describes the
related work on offloading architectures and algorithms.

2.1. Offloading Architectures

King explained a general architecture range from IoT devices to the cloud, as shown
in Figure 2 [6]. In the edge tier, constrained devices handled sensing, actuation, and
passing collected messages. The gateway devices focused on processing, interpreting, and
integrating edge data and interacting with the cloud. In the cloud tier, end users used cloud
services by connecting to the Internet, and the cloud stored collected data in data storage
and provided various cloud services and analytical results to end users.

Sensor Actuator

Constrained Device

Gateway Device

Edge Tier

Internet

Cloud Tier

Cloud

Services/Analytics
Data Store

End Users

Figure 2. Cloud service architecture in IoT environments.

Serpanos et al. described the organization of an IoT system and the publish/subscribe
model to support the heterogeneous and long lives of IoT systems [7]. The authors also
described a typical architecture of the industrial Internet of things (IIoT). In the IIoT
reference architecture model, there were six layers: management, security, device, network,
service and application support, and application.
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Cheng et al. proposed a UAV-assisted computational offloading architecture for
the Internet-of-things (IoT) services [8]. The proposed architecture was based on virtual
machines (VMs), and each VM operated offloading tasks from a low-powered ground
device. UAVs had a gateway and edge-server role for the support of the Internet connection
of ground devices and the execution of high-overhead tasks.

A UAV-enhanced intelligent edge-offloading network was also proposed [9]. A UAV
passed an area with a low density of IoT mobile devices (IMDs) on the ground. However, a
short time later, when the UAV flew over an area with a high density of IMDs, the IMDs
had the option to offload their computationally intensive tasks or be execute them locally
to minimize delays for critical tasks.

Yu et al. proposed a UAV-enabled mobile edge-computing system involving the inter-
actions among IoT devices, a UAV, and edge clouds [10]. A set of ground mobile devices
could not establish wireless communication due to shadowing and signal blockage. A UAV
connected mobile devices to edge clouds by using ground-to-air up-link communication
from mobile devices to the UAV and air-to-ground down-link communication from the
UAV to the edge clouds.

An energy-efficient computational-offloading architecture was proposed [11]. Ground
users uploaded data, including environment monitoring data, images, videos, and so on,
to the UAV. After the UAV received the data from the ground users, the UAV processed the
collected data and sent the results to the ground users. To improve the energy efficiency,
transmitted bits of both the up- and down-links were allocated to time slots, and the
trajectory of the UAV was jointly optimized.

Liu et al. designed a cooperative UAV-enabled edge-computing network with
three layers: system, UAV, and ground device [12]. A base station provided the connection
between an edge server and the UAVs, comprising the system layer. Each UAV was
equipped with a processing unit and a communication module, and they hovered over
assigned areas to provide communication and offloading services for ground devices,
which comprised the UAV layer. Each ground device offloaded high-overhead tasks to a
UAV, which defined the device layer.

In vehicle-assisted computational-offloading architecture for UAVs, an offloading task
from a UAV was sent to a vehicle, and the result from the vehicle was then uploaded to UAV
through air-to-ground links [13]. UAVs equipped with various sensors collected sensing
data and performed lightweight tasks. Due to their limited onboard batteries, UAVs have
limited computing power and operating time. UAVs conserved energy by offloading their
heavy tasks to other, more powerful vehicles.

Alhelayly et al. proposed a mobile edge-cloud-computing system where UAVs played
the role of mobile edge server to provide offloading services for multiple users [14]. The
authors defined a communication model and a computational model to compare the energy
consumption of local execution (operating a task on a mobile device) and a remote execution
(offloading a task to the UAV or the cloud). A task assignment algorithm was also proposed
to minimize the energy consumption of the mobile devices and the UAVs. This approach
was similar to ours, as they also considered the energy consumption of the entire system.
However, we based task offloading of UAVs according to the sequence of the workflow
and the energy fairness among all the UAVS.

Huang et al. proposed a multi-UAV-based mobile edge-computing environment for
offloaded tasks from ground users [15]. UAVs made a group and determined their roles as
relay or computing nodes for each group. The relay node communicated with ground users
and with the relay nodes of other groups. The commuting nodes executed offloaded tasks.
This clustering was an efficient method of managing multiple UAVs, but in contrast, our
approach considered the dynamic topology changes among the UAVs and their cooperation
with edge and cloud servers.
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2.2. Offloading Strategies

Kim et al. proposed a computational offloading scheme that supported remote sensing
in real time using on AI-powered drones [2]. It consisted of a single drone and an edge-
computing node. The proposed offloading scheme dynamically offloaded a deep-learning-
based recognition and inference task efficiently while minimizing the energy consumption
of the drone and meeting a given deadline constraint. However, the proposed scheme
was not suitable for a swarm-based computing environment consisting of a large number
of drones.

A computational offloading algorithm based on game theory was devised based on
a non-cooperative theoretical game with N players according to three strategies: local
computing, offloading to an edge server, and offloading to a more powerful cloud server
rather than a local node and edge server [16].

Tang et al. proposed POSMU (Partial Offloading Strategy Maximizing the User task
number) to obtain the optimal offloading ratio, transmission power, and local computing
frequency [17]. The authors converted the optimization problem into multiple nonlinear
programming problems and designed an efficient algorithm to solve the problem by
applying block coordinate descents and convex optimization techniques. The authors also
applied POSMU to UAV-enabled systems by analyzing a 3D communication model.

A hybrid offloading scheme was proposed by combining two offloading strategies:
air-offloading and ground-offloading [18]. In the hybrid offloading scheme, each UAV
could offload its tasks to nearby UAVs that had sufficient computational power and energy
to perform the tasks. UAVs could also offload their tasks to edge cloud servers using the
ground network maintained by ground stations.

Bai et al. proposed an algorithm to solve an energy-efficient computational offloading
problem in the presence of both active and passive eavesdroppers [19]. The authors sug-
gested the optimal solutions to the problems and then formulated and analyzed the condi-
tions of the three offloading options: local execution, partial offloading, and full offloading.
The solution also considered a computational overload event from a physical perspective.

An intelligent task offloading algorithm named iTOA for a UAV–edge-computing
network was proposed [20]. iTOA could perceive a network’s environment to determine the
offloading process based on a deep Monte Carlo tree search, which was the core algorithm
of Alpha Go. This approach estimated the trajectory of each UAV and identified the optimal
server that could achieve the lowest power consumption and latency, as compared to
other servers.

Zhao et al. proposed a software-defined networking (SDN)-based UAV-assisted ve-
hicular computational offloading optimization algorithm to minimize the cost of vehicle
computing tasks [21]. This system worked on behalf of vehicle users to execute computa-
tionally intensive and delay-sensitive tasks. The proposed game-theory-based offloading
cost minimization algorithm used offloading parameters provided by an SDN controller.

These schemes assumed that UAVs directly access and communicate with a ground-
based edge or cloud server. However, this assumption is not available in all applications,
especially when monitoring large areas with UAVs.

Li et al. proposed a deep-learning-based offloading method between a single UAV,
acting as an edge server, and users [22]. In this system, the UAV was able to serve all users
as the mobile edge server and hovered over a user to receive offloaded tasks and to send
back the results. This approach considered the energy consumption of the UAV, but in
contrast, our approach considered multiple UAVs and the lifetime of the UAV network.

MADDPG (multi-agent deep deterministic policy gradient), based on reinforcement
learning, was proposed to deploy edge servers near UAVs [23]. The proposed MADDPG
attempted to balance the delay and energy consumption of a UAV and maximize the overall
system utility. In the MADDPG system, UAVs directly communicated with edge servers,
but in contrast, our approach had UAVs compose their own network, and an offload task
was executed by the UAV’s network or routed to the edge and cloud servers.
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Liu et al. proposed a joint computational offloading and routing optimization algo-
rithm for UAV–edge–cloud computing environments [3,5]. The proposed algorithms did
not consider the energy consumption and energy fairness of each node when offloading
and routing the task, however.

2.3. Genetic Algorithm-Based Offloading Schemes

Simon explained the various GA-related issues including concept, history, models,
parameters, and examples [24]. GAs are useful tools to efficiently solve optimization
problems. In terms of optimization problems, to implement mutation with a reasonable
mutation probability is important because the mutation probability directly affects the
quality of the derived solution. Wirsansky introduced key characteristics of GAs and
distributed evolutionary algorithms in a Python (DEAP) framework [25]. The DEAP
framework supported the rapid development of solutions using GAs as well as other
evolutionary computation techniques. The author also explained the implementation of
reinforcement learning with GAs.

Genetic-algorithm-based adaptive offloading (GA-OA) was proposed for effective
traffic handling in an IoT–infrastructure–cloud environment [26]. In this system, the traffic
handling was carried out by two methods: from IoT devices to the infrastructure and
from the infrastructure to the cloud. The fitness function was designed by considering the
capabilities of the two layers. This dual-layer-based approach was similar to our system
model. However, we considered the routing costs among the drones in the first layer and
extended the lifetime of the drone networks.

Liao et al. proposed an adaptive offloading scheme based on GA for mobile edge
computing in ultra-dense cellular networks [27]. The authors proposed two phases for
selecting a server and deciding to offload tasks. In the first phase, the mobile devices and
servers form groups by preference, considering distance and workload. In the second
phase, a binary-coded genetic algorithm was used to solve the 0–1 selection problems
for identifying a near-optimal offloading decision when matching multiple mobile users
to an edge server. This scheme focused on reducing the offloading latency and energy
consumption of mobile devices in ultra-dense cellular networks. In our approach, however,
we assumed that a drone could not directly communicate with an edge server because direct
communication consumes more energy than multi-hop communications and a drone with
a short communication range cannot always reach an edge server in sparse environments.

Wang proposed a drone-assisted offloading scheme using an improved GA for mobile
edge computing [28]. Drones that received an offloading task from a mobile device and
transmitted the offloading task to the base station acted as intermediaries in order to extend
the base station’s coverage for offloading. An improved GA was used to minimize the
delay and energy consumption in this collaborative task-offloading model. Similarly, we
also used a GA to minimize the entire system’s delay and energy in our proposed scheme.
However, our method more effectively distributed and offloaded the tasks the drones were
required to handle. In addition, we considered the balanced energy consumption of the
drones in our offloading system.

Zhu et al. used a joint optimization method based on a GA to minimize user task
completion time [29]. The authors designed individual genes that considered the user’s
offloading proportion, bandwidth, and computing resources. This system model assumed
that mobile devices could directly access the base station, but in contrast, our system
consisted of three layers: UAV-based computing area, edge computing area, and cloud
computing area. In our scheme, we considered the routing costs and the balance of residual
energy among the drones as well as the factors mentioned in Zhu’s scheme.

A particle swarm optimization genetic algorithm with a greedy algorithm (PSO-GA-G)
was proposed to reduce the response time of offloading tasks [30]. In this system, randomly
distributed mobile devices and a UAV were combined as a group, and the mobile devices
offloaded tasks to the UAV. The GA was used to optimize the UAV deployment, and
the greedy algorithm was used to minimize the offloading cost among mobile devices
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in the group. In comparison, we focused on maximizing the lifetime of the networks in
our approach.

Chakraborty et al. proposed a GA-based optimization technique for offloading deci-
sions that considered task dependencies in a multi-user, multi-channel environment [31].
This technique reduced the energy consumption of mobile devices and the computational
delay, despite handling multiple task dependencies. This is an important issue in the
offloading decision process because the dependencies of the sub-tasks required by a user’s
job and the tasks among users affect the task completion time. In our scheme, we also con-
sidered the task dependency and fairness in terms of energy consumption for each drone.

Huda et al. investigated a GA-based optimization algorithm for a UAV-assisted
offloading system [32]. In this system, UAVs provided a link between ground users
and cloud servers. The authors devised a GA-based algorithm to minimize the energy
consumption of ground users and UAVs. We also used UAVs as links to edge and cloud
servers, but we considered more complex network topologies that affect the energy fairness
of UAVs.

3. Computational Offloading Scheme That Considered Energy Consumption Fairness
3.1. Assumptions and Our System Model

Figure 1 shows an example of our system model. Table 1 shows the notations and
their descriptions used in this paper to describe our energy consumption fairness-aware
computational offloading scheme. As shown in Figure 1, we assumed a UAV–edge–cloud
computing environment in our energy consumption fairness-aware computational offload-
ing scheme. The UAV–edge–cloud computing environment comprised a UAV swarm and
multiple edge and cloud servers that were designated as the UAV-based computing area,
edge computing area, and cloud computing area, respectively. In such an environment,
tasks that challenge the available computing capabilities or energy consumption, such as in
UAVs, could be offloaded to edge or cloud servers for processing.

Table 1. Notations and their descriptions.

Notations Descriptions

V Set of all nodes that could be UAVs, edge servers, and cloud servers
E Set of all topological network links between nodes
W Set of all workflows to be allocated
wi The i-th workflow that needed to be allocated
Twi Set of all tasks in a workflow wi ∈W

RBv,v′ Remaining network bandwidth of link from v to v′

RCv Remaining computational processing rate of the node v
NBt,t′ The amount of network bandwidth required between task t and t′

NCt The amount of computational processing rate required for task t
ev The summation of energy consumption of node v

eproc
v The amount of energy consumption of node v to process the computation

of given tasks
erecv

v The amount of energy consumed to receive data required to perform
tasks performed in node v

etrans
v The amount of energy consumed to transfer the results of given tasks in

node v to the next node
etotal Total energy consumption of all nodes in the system

allocatility(wi) The result of the allocability check for the wi workflow
F Energy consumption fairness value

Fthreshold A threshold value of energy consumption fairness
Allocwi Task allocation information of the workflow i on network topology

Our UAV–edge–cloud computing environment had powerful edge and cloud servers,
as compared to the UAV swarm. We assumed that an edge server was equipped with
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multiple GPUs. Therefore, an edge server would have a more powerful computational
ability when compared with a UAV. It was assumed that a cloud server would have better
computing performance than an edge server. For example, the Amazon ECS p4d.24xlarge
instance supports 8 GPUs with 320 GiB of memory, 96 CPU cores, and 1152 GiB of main
memory. Such a cloud server can provide powerful computing performance. In contrast,
edge and cloud servers have more network delays than UAVs, but they provide more pow-
erful computing capabilities, as compared to a single UAV. Each UAV connected through a
wireless network connection, such as Wi-Fi, 4G, and 5G network technologies. Furthermore,
modern UAVs support Wi-Fi and 5G mobile network technologies to communicate [33,34].
In addition, we assumed that our computing environment had a stable topological network
structure, in which no additional UAVs would be joining or leaving. UAV devices, such as
drones, that are used in UAV–edge–cloud computing environments typically operate on
batteries. Hence, energy efficiency is a critical factor. Therefore, it was necessary to consider
the computing capability, network delays, and energy efficiency of the UAVs, the edge
server, and the cloud server, as assumed previously, and allocate each task accordingly.

We defined an application or service that could operate in a UAV–edge–cloud com-
puting environment as a workflow. It was assumed that multiple workflows would be
allocated and performed in the UAV–edge–cloud computing environment. W notates the
set of all workflows to be allocated. We assumed that a workflow consisted of multiple
tasks. We assumed that streaming data were continuously being transferred and processed
between tasks. Each task had logical precedence, and each task could be allocated to one
of the UAVs, edge servers, or cloud servers according to their logical precedence and the
existing network topology. We modeled and abstracted our UAV–edge–cloud computing
environment as a graph-based topological structure G = (V, E). In our graph-based topo-
logical structural model, V denotes the set of all nodes that could be UAVs, edge servers,
or cloud servers in our UAV–edge–cloud computing environment. E denotes the set of all
topological network links between two nodes.

3.2. Proposed Computational Offloading Algorithm

Workloads could be allocated and executed on each node in the UAV–edge–cloud
computing environment. Each node consumed a different amount of energy according
to the given tasks in a workflow. As more tasks were allocated to a specific node, the
energy consumption of that node increased, as compared to the other nodes. Therefore,
it was necessary to evenly allocate the tasks to each node in order to balance the energy
consumption. By allocating and offloading tasks to evenly balance the energy consumed
by each node, we were able to increase the lifetime of the entire network.

The energy consumption of a certain node v was calculated by Equation (1). eproc
v

denotes the amount of energy consumed by the node v to process the computation of its
given tasks. erecv

v denotes the amount of energy consumed to receive the data required to
perform tasks by node v. etrans

v denotes the amount of energy consumed to transfer the
results of the given tasks in node v to the next node. For the energy consumption model
of each network communication technique, the energy consumption model proposed by
Huang et al. [35] and Dusza et al. [13] were used. The total summation of each node’s
energy consumption were calculated by Equation (2), where n is the total number of nodes
used for the task allocation. The energy consumption fairness (F ) was calculated using
Equation (3). We modified the fairness index proposed by Gian et al. [36]. If the energy
consumption of each node was equal, the network lifetime of the entire network could be
extended by reducing problems, such as network partitioning. If the energy consumption
of all nodes was the same, the energy consumption fairness value was 1. A value closer 1
for the energy consumption fairness indicated better performance. The goal of the proposed
computational offloading scheme was to increase the fairness of the energy consumption.
By increasing the energy consumption fairness, each node’s energy consumption could be
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increased, as well. As a result, the drone-based service could operate for a longer period of
time with better stability.

ev = erecv
v + eproc

v + etrans
v (1)

etotal =
n

∑
i=0

ei (2)

F =
(e1 + e2 + . . . + en)2

n× (e2
1 + e2

2 + . . . + e2
n)

=
etotal

2

n× (e2
1 + e2

2 + . . . + e2
n)

(3)

Algorithm 1 shows our proposed computational offloading and workflow allocation
algorithm based on a GA (genetic algorithm). The first line of the algorithm summarizes the
initial population generation process. The initial population generation process is described
in more detail, as follows. When generating the initial population, each workflow checked
the allocability in a random manner. The allocability of wi was calculated by Equation (4).
As shown in Equation (4), if all task t ∈ Twi satisfied the conditions ∃ NCt ≤ RCv and
∃ NBt,t′ ≤ RBv,v′ , where v and v′ ∈ V, then wi was allocated to the network topology.
Therefore, in this case, the value of allocatility(wi) was set to 1, as otherwise, it was set to 0.
This review of allocability was repeated for all given workflows. A workflow that did not
satisfy the conditions was not allocated to the network topology. Then, we acquired the
Allocwi information for all workflows in W. Depending on the remaining processing rate
of each node and the remaining bandwidth between nodes, which constituted the network
topology, all workflows were not necessarily able to be allocated to the network topology.

allocatility(wi) =

{1 If all task t ∈ Twi , ∃NCt ≤ RCv and ∃NBt,t′ ≤ RBv,v′

where vs. and v′ ∈ V
0 Otherwise

(4)

Each workflow allocation information was combined to create a chromosome. Each
chromosome was considered as one of the candidates that could allocate given workflows
onto the network topology. Figure 3 shows an example of three chromosomes for a given
network topology and two workflows. In Figure 3, w1 consists of three tasks, t1, t2, and
t3. w2 consists of two tasks, t4 and t5. Allocw1 and Allocw2 represent the allocated nodes
of the tasks in w1 and w2, respectively. Furthermore, a chromosome was a concatenation
of Allocw1 and Allocw2 . For example, a chromosome is represented as ((3, 7, 5), (1, 2))
in Figure 3a.

3 4 5 6

1

7

2

8

t1

t4

w1: t1→ t2 → t3

(a) Allocation case 1 (b) Allocation case 2

3 4 5 6

1

7

2

8

t2 t3

t2

t3

t5

w2: t4 → t5

t1

t4

t5

(c) Allocation case 3

3 4 5 6

1

7

2

8

t2 t3t1

t4

Allocw : (3, 7, 5)
1

Allocw : (1, 2)

Allocw : (4, 5, 6)
1

Allocw : (3, 7)
2
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Algorithm 1: Proposed computational offloading and workflow allocation algo-
rithm while considering energy consumption fairness

Result: Best allocation result for given workflows while considering energy
consumption fairness

1 Generate initial population ;
2 n = 0 ;
/* Itermax is the maximum iteration number */

3 while i ≤ Itermax do
4 Select two chromosomes from current population ;
5 Do crossover operation by using the two selected chromosomes ;
6 Calculate Fnew of the generated new chromosome ;
7 if Fnew ≥ Fparent1 or Fnew ≥ Fparent2 then
8 Remove the one chromosome which has minimum F from the current

population ;
9 Add the generated chromosome to the population ;

10 if Fnew ≥ Fthreshold then
11 break ;
12 end
13 end
14 Select a chromosome from the current population ;
15 Do mutation operation to the selected chromosome ;
16 i = i + 1 ;
17 end
18 return Best chromosome which has maximum F ;

As shown in Algorithm 1, the crossover operation was repeated to create a new
chromosome after generating the initial population. Fparent1 and Fparent2 denote the energy
consumption fairness values of two selected chromosomes to form a new chromosome.
Figure 4 shows the concept of the crossover operation in the proposed algorithm. Figure 4
assumes that the total number of given workflows is n. As shown in Figure 4, two different
chromosomes were selected from the current population. Then, a new chromosome was
generated by using two parent chromosomes. As shown in Figure 4, the proposed method
used the one-point crossover method. The crossover point was selected in a random manner.
Our algorithm calculated Fnew, which denotes the energy consumption fairness value of
the generated new chromosome. If Fnew ≥ Fparent1 or Fnew ≥ Fparent2, then it removed the
one chromosome that had the minimum F value from the current population and added
the newly generated chromosome to the population. If Fnew ≥ Fthreshold, then the proposed
algorithm terminated immediately and returned the best chromosome information that
had the maximum F value. Finally, the acquired chromosomal information was used to
allocate and perform a given workflow in the network topology.

Our final goal is expressed in Equation (5). As shown in Algorithm 1, our goal had been
to find a solution that had a maximum Fmax for computational offloading and workflow
allocation that maximized energy consumption fairness F among candidate allocation
solutions, as expressed in Equation (5). Fmax represents the maximum value of the energy
consumption fairness value among candidate solutions of computational offloading and
workflow allocation. Si denotes the i-th solution that can allocate the given workflows
and their tasks. F (Si) represents the energy consumption fairness value when the given
workflows and their tasks are allocated using the solution of Si. F (Si) was calculated
using Equation (3).

Fmax = max(F (S1),F (S2), . . . ,F (Sn)), where Fmax ≥ Fthreshold (5)

We also used a mutation operation to avoid becoming trapped in a local minimum.
Figure 5 shows an example of a mutation operation that was applied in our GA-based com-
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putational offloading and workflow allocation scheme. The mutation operation described
in lines 14 and 15 of Algorithm 1 selected a random chromosome from the population. It
randomly transformed the workflow allocation information of the selected chromosome to
initiate a mutation in the chromosome. This process was carried out by randomly changing
the nodes to which a task had been allocated.

Allocw1
Allocw2

Allocw3
… Allocwn−1

Allocwn

Crossover Point (Cut Point)

Selected Chromosome 2 (Parent 2)

Selected Chromosome 1 (Parent 1)

Allocw1
Allocw2

Allocw3
… Allocwn−1

Allocwn

Allocw1
Allocw2

Allocw3

Generated New Chromosome (Offspring)

Allocwn−2

Allocwn−2

… Allocwn−1
Allocwn

Allocwn−2

Figure 4. A concept of the crossover operation in the proposed algorithm.
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Figure 5. An example of mutation operation.
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In Algorithm 1, the mutation operation selected a random chromosome from the
current population and randomly changed the task-to-node allocation information of the
chromosome. The mutation operation performed the process for each workflow w ∈W, as
described below:

For every 3-tuple of tasks ti, tj, tk ∈ w such that tj depends on ti and tk depends
on tj, and nodes vi, vj, vk ∈ V are allocated to ti, tj, tk, respectively, in the allocation
information of the chromosome, a random node vl is searched to perform tj instead of vj.
The remaining resources of vl must be enough to perform tj. In addition, vi and vk must be
in the transmission range of vl . Then, the task-to-node allocation from (ti, tj, tk) to (vi, vj,
vk) is changed from (ti, tj, tk) to (vi, vl , vk) in the allocation information of the chromosome.
If no node can replace vj because of the resource constraints (such as processing power,
network bandwidth, remaining energy) or transmission range, the allocation information
is not changed.

The mutation operation changed the overall allocation information in the selected
chromosome by repeating the process above for all workflows. Figure 5 shows an example
of the process for the workflow w ∈ W. To simplify the explanation, assume that all
the nodes v1, v2, . . . , v8 in the figure have infinite resources. Figure 5a is the allocation
information of w before a mutation operation. w contains four tasks t1, t2, t3, and t4. In w,
t2 depends on t1; t3 depends on t2, and t4 depends on t3. The tasks, t1, t2, t3, and t4, are
allocated to nodes v3, v4, v5, and v6, respectively.

First, alternative nodes are searched for (t1, t2, t3). The alternatives that can perform t2
instead of v4 are v1 and v7, in Figure 5a. Figure 5b shows the case in which v1 is selected to
replace v4 and Figure 5c shows the case in which v7 is selected. In the case of Figure 5b,
task t2 is allocated to v1, instead of v4. Then, alternative nodes are searched to perform t3,
instead of v5, for (t2, t3, t4). In this case, t3 is allocated to v2, instead of v5, because v2 is
the only alternative node. To continue, t1, t2, t3, and t4 are allocated to v3, v1, v2, and v6,
respectively, instead of v3, v4, v5, and v6. This is shown in Figure 5c. Figure 5d shows the
case where v7 is selected as the alternative of v4 from Figure 5a. In Figure 5d, t2 is allocated
to v7, instead of v4. Then, the allocation of t3 is not changed because no alternative node of
v5 is found. Figure 5e shows the final state after the mutation to w in this case. By using
this mutation operation, our GA-based computational offloading and workflow allocation
algorithm could explore more diverse allocation solutions and avoid becoming trapped in
the local minimum.

4. Performance Evaluations
4.1. Simulation Environments

We evaluated the performance of the proposed scheme by simulation. Table 2 presents
the parameters and their values in the simulation. The parameters used in the simulation
were divided into two types. The first type was the common parameters, and the other
was the scheme-dependent parameters. For the common parameters, the computing
performance and network bandwidth of the UAV, edge server, and cloud server were similar
after taking into consideration the experimental environment values used in Liu et al.’s
paper. For the scheme-dependent parameters, suitable hyperparameters were derived
by considering the overall performance and execution time of each scheme from prior
experiments, and the values were set accordingly.

As shown in Table 2, the performance in terms of the energy consumption fair-
ness, total energy consumption, and average distance were analyzed by simulation for
three network topology sizes: small, medium, and large.The proposed scheme was com-
pared with Liu et al.’s scheme [3,5]. Liu et al.’s scheme had created a computational offload-
ing policy based on Markov approximation. (Hereafter, Liu et al.’s Markov approximation-
based scheme is referred to as MA-based, and our proposed scheme is referred to as the
GA-based scheme.) In the simulation, each experiment was performed 100 times, and the
results were averaged. In order to reduce the variability of the results, we conducted the
experiment 100 times, taking into account the randomness of the small, medium, and large
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network topologies. In the simulation, the energy consumption models were based on
studies by Huang et al. [35] and Dusza et al. [37]. Because the energy consumption values
for Wi-Fi and LTE communication have been well modeled, these were suitable for the
proposed drone-based computing environment. The number of transferred bits was pro-
portional to the network bandwidth requirements in Table 2, and the energy consumption
per bit, according to transmission distances, was approximated from [35,37].

Table 2. Parameters and their values in the simulation.

Common Parameters Topology
Small Medium Large

Field size (m) 50 × 50 100 × 100 200 × 200
Drone’s transmission range (m) 10 30 50
Number of drones 10 30 100
Number of edge servers 4 4 4
Number of cloud servers 2 2 2
Processing rate of a drone 100
Processing rate of an edge server 500
Processing rate of a cloud server 10,000
Network bandwidth of a drone (Mb/s) 200
Network bandwidth of an edge server (Mb/s) 400
Network bandwidth of a cloud server (Mb/s) 1000
Number of workflows 4 20 30
Number of tasks per workflow 4 4 4–6
Processing rate required for each task 40–80 20–30 20–30
Network bandwidth required for each task (Mb/s) 20–30 20–30 20–30

Scheme-Dependent Parameters Topology
Small Medium Large

Number of chromosomes in a population (GA-based) 10,000
Number of iterations (GA-based) 100,000 1,000,000 1,000,000
Number of iterations (MA-based) 2000

When measuring the energy fairness in the performance evaluations, the energy
consumption fairness, total energy consumption, and average distance were only calculated
for drones used to allocate tasks for each workflow. This was because it had been assumed
that edge servers and cloud servers were always operated at full power. Therefore, the
energy efficiency and consumption rates were not critical for edge and cloud servers.

The proposed scheme and the MA-based scheme were implemented in Python scripts.
A prototype was initially written in C language, but it was later ported to Python due to
extensibility concerns. The final Python scripts consisted of 17 files, with a total size of 56 KB
and 1600 lines of code. The Matplotlib library was used for visualization. The simulations
were conducted on a desktop computer, and the runtime environment is detailed in Table 3.
Based on the environment shown in Table 3, the approximate runtimes for each trial of
the proposed scheme were between 30 min and 1 h, while those of the MA-based scheme
were between 3 and 5 h. The exact runtimes were not thoroughly investigated, but we
assumed that the amount of memory usage had been the primary factor affecting runtime,
rather than the processing load. Note that the execution time was not our concern. Our
implementation was single-threaded, and the runtime could be significantly reduced if
multi-threading techniques or GPU capabilities were utilized, or if the NumPy library
was used.
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Table 3. Runtime environment of the simulations.

Component Specification

CPU Intel Core i7 13,700 K
Main memory 32 GB
Interpreter Python 3.8
Library Matplotlib 3.4.2

4.2. Simulation Results and Discussion
4.2.1. Comparison Results of the Total Energy Consumption

Figure 6 shows the comparison results of the total energy consumption of the proposed
scheme and the MA-based scheme. As shown in Figure 6a, the total energy consumption
of the proposed scheme was 7.610 J, and the total energy consumption of the MA-based
scheme was 9.729 J. In the case of a small network topology, our scheme performed
better in terms of total energy consumption. As shown in Figure 6b,c, our scheme con-
sumed more energy, as compared to the MA-based scheme. However, the difference in
energy consumption was not significant. Briefly, for the proposed scheme, the energy
consumption increased by approximately 1.14% while the MA-based scheme increased by
approximately 3.06%.
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Figure 6. Simulation results of the total energy consumption.

4.2.2. Comparison Results of the Energy Consumption Fairness

Figure 7a,b show the convergence of the energy consumption fairness in the large net-
work topology using the proposed scheme and the MA-based scheme, respectively. In this
example, the initial energy consumption fairness of the proposed scheme was 0.67, which
reached 0.82 after 100,000 iterations and further increased to 0.95 after 1,000,000 iterations.
In multiple simulations, it was observed that the proposed scheme achieved 95% of the
energy consumption fairness after 400,000 iterations, as compared to 1,000,000 iterations.
The improvement in the energy consumption fairness did not occur linearly after 40,000 iter-
ations, but in every trial, several small improvements in a step-wise manner were observed
as a result of the mutation operation. As a comparison, the MA-based scheme was not
improved in terms of energy consumption fairness; instead, total energy consumption was
improved. However, the MA-based scheme often converged to a local optimum, resulting
in a sub-optimal solution for the total energy consumption.

Figure 8 shows the simulation results of the energy consumption fairness of the
proposed scheme and the MA-based scheme. If the energy consumption of all nodes was the
same, the energy consumption fairness value was 1. Therefore, as the energy consumption
fairness value neared 1, the performance improved. If the energy consumption of all nodes
was the same, the network lifetime could be increased without any problems, such as
network partitioning.

As shown in Figure 8, the proposed scheme outperformed the MA-based scheme in
energy consumption fairness. As shown in Figure 8a, in the case of the small network
topology, the energy consumption fairness of the proposed scheme was approximately
17.09% higher than the MA-based scheme. In the case of the medium network topology, as
shown in Figure 8b, the energy consumption fairness significantly increased, from 0.415 to
0.917, with the proposed scheme. Similarly, even in the case of the large network topology,
the proposed scheme outperformed the MA-based scheme in energy consumption fairness.
As shown in Figure 8c, the energy consumption fairness significantly increased, from 0.506
to 0.809, with the proposed scheme.

Using the proposed GA-based scheme, the energy consumption fairness was reduced
when applied to a large network topology, as compared to a small network topology. This
result was due to the different values of simulation parameters that were applied according
to each network topology. For a large network topology, the number of workflows to be
allocated was larger than in a small network topology, as shown in Table 2. The average
number of tasks allocated to each drone increased, and the degree of imbalance in the energy
consumption of each drone was greater than in the small network topology. In addition,
as the size of the network topology increased, so did the number of nodes in the network
topology increased; thus, the size of the problem space explored by the proposed GA-based
scheme also increased. Therefore, more various allocation solutions were possible, and it
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was more difficult to define the global optimum for a large network topology. For these
reasons, the energy consumption fairness was slightly reduced.
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Figure 7. The convergence of the energy consumption fairness.

The proposed method also performed better than the MA-based scheme in terms of
its standard deviation. Based on the simulation results, we confirmed that the proposed
scheme could significantly increase the fairness of the energy consumption and the lifetime
of the entire network by balancing the energy usage of the nodes allocated tasks.

Overall, the proposed GA-based scheme showed better performance than the MA-
based scheme in terms of the energy consumption fairness. These results were because
the proposed GA-based scheme could explore more diverse allocation solutions in the
problem space, as compared to the MA-based scheme. Therefore, the GA-based proposed
scheme could identify an allocation solution that was closer to the optimal global solution.
For a large network, this potential was larger, and the GA-based scheme showed better
performance in balancing energy consumption.
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Figure 8. Simulation results of the energy consumption fairness.

4.2.3. Comparison Results of the Average Distance between the Nodes

Figure 9 shows the simulation results of the average distance between the nodes that
were allocated tasks. As the average distance between the nodes allocated to tasks increased,
additional time could be required for transferring data between the nodes. Therefore, it
could increase the overall latency or the energy consumption required to transmit data.
As shown in Figure 9, in the case of the small network topology, the difference in the
average distance between the nodes that had been allocated tasks was not significant. In the
case of the medium network topology, the average distance of the proposed scheme only
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increased by approximately 3.50%, as compared to the MA-based scheme. In the case of the
large network topology, the average distance of the proposed scheme increased by about
7.58%, as compared to the MA-based scheme. However, it showed that the increase in the
average distance between the nodes was not large, and the energy consumption fairness
was significantly improved with the proposed scheme. To summarize, the proposed GA-
based scheme improved the average distance between nodes allocated to tasks and the
energy consumption fairness without significantly increasing the energy consumption, as
compared to the MA-based scheme.
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Figure 9. Simulation results of the average distance between nodes.
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4.2.4. Comparison Results According to the Number of Drones

Figure 10 shows the simulation results according to the number of drones in the
medium network topology. The three sub-figures, Figure 10a–c, show the total energy
consumption, the energy consumption fairness, and the average distance between the
nodes, respectively. The results indicated that the number of drones in the fixed-sized
network did not have a significant impact on the total energy consumption and the energy
consumption fairness. However, the average distance between nodes decreased, as the
number of drones increased.
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Figure 10. Simulation results according to the number of drones.
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As the number of drones increased from 10 to 100, the average distance between the
nodes in the proposed scheme decreased from 68.19 to to 63.02, while the the average
distance between the nodes in the MA-based scheme decreased from 68.53 to 59.74. This
was because both the cost functions of the proposed scheme and the MA-based scheme
were attempting to reduce the energy consumption by reducing the transmission range
between nodes. However, the decrement in the average distance between the nodes did
not result in the decrement of the total energy consumption, as the energy consumption
models of Huang et al. [35] and Dusza et al. [37] are not linear. In the energy consumption
model, the energy consumption remained almost constant for short transmission ranges
and only increased when the transmission range had exceeded a certain threshold.

5. Conclusions and Future Works

This paper proposed a computational offloading and workflow allocation scheme that
considered the energy consumption fairness in UAV–edge–cloud computing environments.
The proposed scheme used a genetic algorithm. The performance of the proposed scheme
was verified through simulations, and it was shown that the performance of the proposed
scheme was superior to that of Liu et al.’s Markov approximation-based scheme, in terms
of energy consumption fairness. The energy consumption fairness improved by up to
approximately 120%, as compared to Liu et al.’s Markov approximation-based scheme. In
terms of the total energy consumption, the increase in energy consumption of the proposed
method was not significant, as compared to Liu et al.’s scheme. The proposed scheme
consumed up to approximately 3% more energy in total, as compared to Liu et al.’s scheme.
Similarly, the average distance of the nodes allocated to tasks could increase slightly, but
the increase was not significant. The average distance of nodes allocated to tasks in the
proposed scheme increased by approximately 8%, as compared to Liu et al.’s scheme.
In summary, the proposed scheme could significantly improve the fairness of energy
consumption without significantly increasing the energy consumption or the average
distance between nodes allocated to tasks.

In future work, we plan to improve the proposed scheme for efficiently allocating and
offloading tasks by comparing and analyzing performance, particularly in cases where a
single workflow is composed of multiple parallel tasks.
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