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Abstract: Unmanned aerial vehicles (UAVs) are becoming more and more widely used in battlefield
reconnaissance and target strikes because of their high cost-effectiveness, but task planning for
large-scale UAV swarms is a problem that needs to be solved. To solve the high-risk problem caused
by incomplete information for the combat area and the potential coordination between targets when
a heterogeneous UAV swarm performs reconnaissance and strike missions, this paper proposes
a distributed task-allocation algorithm. The method prioritizes tasks by evaluating the swarm’s
capability superiority to tasks to reduce the search space, uses the time coordination mechanism and
deterrent maneuver strategy to reduce the risk of reconnaissance missions, and uses the distributed
negotiation mechanism to allocate reconnaissance tasks and coordinated strike tasks. The simulation
results under the distributed framework verify the effectiveness of the distributed negotiation mecha-
nism, and the comparative experiments under different strategies show that the time coordination
mechanism and the deterrent maneuver strategy can effectively reduce the mission risk when the
target is unknown. The comparison with the centralized global optimization algorithm verifies the
efficiency and effectiveness of the proposed method when applied to large-scale UAV swarms. Since
the distributed negotiation task-allocation architecture avoids dependence on the highly reliable
network and the central node, it can further improve the reliability and scalability of the swarm, and
make it applicable to more complex combat environments.

Keywords: heterogeneous UAV swarm; reconnaissance and strike; distributed negotiate; time
coordination; deterrent maneuver

1. Introduction

The popularity of UAVs in civil aerial photography, agriculture, surveillance, and
mapping [1] has made people see its application prospects in more fields. As a low-cost,
low-risk, and cost-effective weapon or carrier, UAVs have frequently appeared on the
battlefield. It has become the focus of researchers to endow decentralized, heterogeneous,
and low-cost UAV swarms with autonomous coordination capabilities to complete more
complex tasks, because this is an important way to improve the flexibility and reliability of
small UAV swarms to perform combat tasks [2,3].

Since the battlefield is a highly confrontational environment, distributed collaboration
architecture is an important way to achieve large-scale swarm collaboration [4]. The cen-
tralized architecture that has been widely researched and applied has the advantage of a
simpler algorithm design, but it also has the problem of high requirements on the network
and central computing nodes. In contrast, each UAV node in a distributed architecture
communicates and cooperates with other UAVs as an independent entity. Since there are
no critical nodes in the network, the architecture is highly scalable and reliable.

According to the analysis of relevant researchers, the commonly used methods of
distributed task collaborative assignment can be divided into heuristic optimization al-
gorithms [5,6], market-based methods [7–10] and alliance-based methods [2,11] and so
on [12].
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Heuristic optimization algorithms are widely used because they do not require gradi-
ent information and do not rely on problem models with good mathematical properties.
For example, in the literature [13], an improved pigeon-inspired optimization algorithm is
proposed to solve the optimization problem of cooperative target searches, while it adopts
a centralized control architecture. For multi-UAV cooperative execution of reconnaissance
missions, ref. [5] proposed an intelligent self-organized algorithm (ISOA) mission-planning
method. UAVs exchange status and planning information with each other, and locally opti-
mize route planning using the improved distributed ant colony algorithm to update route
planning, and repeat the process until the task is completed. However, the article assumes
that all UAVs are homogeneous and that the targets are find-and-destroy elements.Another
paper [14] implements a distributed task assignment method for UAV swarm reconnais-
sance missions based on the wolf pack algorithm, including a cooperative search algorithm
based on wolf reconnaissance behavior and a cooperative attack task assignment method
after the target is discovered. The algorithm has good scalability, but it does not consider
the risk of searching the unknown environment when optimizing the scheme.

The market-based method is one in which the bidders estimate the benefits of com-
pleting different tasks, broadcast the bids to each other, and win with the best one, and the
bidders re-evaluate after the environment or allocation plan is updated until there is no
conflict. Aiming at the task assignment problem of heterogeneous cooperative UAV, a
paper [7] proposed a task assignment algorithm based on improved CBGA (improved
consensus-based grouping algorithm, derived from CBBA [15]). The algorithm has a simple
structure, but less consideration is given to factors such as the cooperative relationship
between UAVs. To deal with real-time task allocation in resource-constrained wireless-
sensor networks, the authors of [16] proposed a reverse auction-based scheme using an
adaptive algorithm for each node (bidder) to locally calculate its best bid response with a
non-smooth and concave payoff function.

The formation of the alliance divides the large-scale UAV swarm into several small
UAV alliances through strategies such as cooperative games [11]. This architecture first
distributes tasks among the alliances, and then redistributes the received tasks within the
alliance to effectively reduce the dimension of the problem. Authors [2] use a layered
extended contract network protocol to realize the collaborative control of UAV swarms,
which has the advantage of solving speed when the swarm scale is large. However, this
literature ignores the influence of the division method of UAV subsets on the effect of
swarm behavior. For example, two UAVs that should have cooperated are divided into
different alliances, resulting in a decrease in the quality of the solution.

Researchers have also tried to combine the advantages of different architectures.
When the problem has complex constraints, it is difficult to converge to a good result
by directly applying CBBA and other methods, and repeated negotiations will cause
high communication costs. Therefore, some researches combine heuristic algorithms with
market-based methods. For example, the paper [17] considers task-time constraints and
obstacle constraints, uses intelligent optimization algorithms locally to optimize the scheme,
and then negotiates with other UAVs. Similarly, ref. [18] regards the minimum distance
sum and the minimum maximum completion time as the optimization goals, and first uses
the genetic algorithm (GA) to locally optimize, and then uses the CBAA-derived algorithm
to reach a consensus among nodes.

In terms of the factors concerned in the research of UAV swarm mission collabo-
ration, the factors considered mainly include UAV maneuvering distance [8,19], area
coverage [5,15], route planning [5,20], avoidance of no-fly zones [2], etc., while the threat of
cooperation between enemy platforms is rarely considered.

Aiming at the scenario where there may be a potential cooperative relationship be-
tween enemy targets, this paper proposes a distributed collaborative optimization method
for heterogeneous UAVs based on a negotiation mechanism and GA.

The main contributions of this paper include the following aspects:
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• The priority of tasks is evaluated by the swarm’s capability superiority over the tasks
to reduce the search space. The capability superiority is represented by the spatial
density and the capability availability of the tasks, and the attention mechanism is
combined to suppress the distant tasks to evaluate the task priority;

• The time coordination mechanism and deterrent maneuver strategy is used to reduce
the risk of reconnaissance missions. Due to the incomplete information of the task,
multiple UAVs are used to reconnaissance the dense tasks synchronously, and the
UAVs with strike capabilities are deployed with deterrent maneuver strategy to reduce
the risk of reconnaissance missions;

• A distributed task-assignment negotiation mechanism is designed so that UAVs
can run in a completely distributed manner. Compared with the centralized GA,
the proposed method can reduce the problem search space, improve the optimization
speed and the quality of the solution, and the distributed framework can also improve
the scalability and reliability of the swarm.

The remainder of this paper is organized as follows: the problem is defined and
described in Section 2. The distributed collaborative allocation method for heterogeneous
UAVs is described in Section 3. In Section 4, a distributed simulation environment is built,
and the proposed method is verified in this environment. Finally, we conclude the paper in
Section 5.

2. Problem Description

Assuming that there are several suspicious areas on the battlefield, a heterogeneous
UAV swarm with different reconnaissance and strike capabilities needs to be dispatched to
perform the reconnaissance and strike mission, and the UAV nodes communicate with each
other through a multi-hop ad hoc network. UAVs autonomously negotiate task-allocation
schemes for reconnaissance and strike targets. Since there may be a synergistic relationship
between enemy targets, the mission risk and mission completion time should be minimized
during mission execution.

The problem can be formalized as the problem of NU UAVs U = {ui|i = 1, 2, · · · , NU}
completing NT tasks T =

{
tj|j = 1, 2, · · · , NT

}
.

The state of UAV ui is denoted as ui =
〈

pi, υi, ai, Tp
i , Tb

i , T̄b
i , Ui

〉
where pi is the current

position; υi is the maximum flight speed; ai is the load capacity matrix of ui, as shown in
Table 1, the capacity between loads can be added but a single load cannot be split; Tp

i is
the task set that is perceived but has not decided the assignment; Tb

i and T̄b
i are the task

queue that ui will participate in and the task set that will not participate; Ui is the UAV
swarm status perceived by the ui, which can be updated through communication with
other UAVs.

Table 1. Example of payload capacity of ui.

Payload Type Scout Speed Penetration
Ability Damage Ability Reusable

Scout payload 50 0 0 Y
Strike payload 1 0 40 60 N
Strike payload 2 0 80 40 N

The state of the task can be expressed as tj =
〈

pj, sj, aj
〉
, where pj is the position of

the task, sj is the area of the suspicious area where the task is located, and aj is the strike
capability required by the task. In the process of reconnaissance of suspicious areas by
UAVs with reconnaissance capabilities, existing targets can be found and aj can be obtained;
but when there is no target in the area, this conclusion can only be drawn after the UAV
has scouted the entire area, in this case aj = 0.

The connection relationship between UAVs is expressed as an adjacency matrix
L = [lim]i,m∈[1,NU ], and there is lim = 1 when distance dim ≤ dδ, otherwise lim = 0, and dδ



Drones 2023, 7, 138 4 of 22

is the maximum distance for single-hop communication. When the reconnaissance node
completes the reconnaissance task, it broadcasts the reconnaissance result (that is, whether
there is a target in the area and the required strike capability) to the swarm by using
the ad hoc network. Each UAV utilizes the perceived task status and the status of other
UAVs to optimize the distribution of reconnaissance and strike tasks by negotiating with
neighboring UAVs.

3. The Proposed Method

To solve the above problems, this paper proposes a distributed collaborative allocation
method of reconnaissance and strike tasks for heterogeneous UAVs, and its framework is
shown in Figure 1.

Negotiation MSG

Heterogeneous UAVs in swarm

Scout sensor

Task risk 
analysis

Scout task alloc-
ation optimize

Scout plan 
negotiation

Strike task 
optimize

Are plans 
consistent?

N

Y

Task State

State sync

 Scout as 
planned

Plan 
confirm

UAV 
State

Perceived envs state

Cached 
plan

Accept the plan?

Plan 
confirm

Y

 Strike as 
planned

Scout task assignment

Strike invita-
tion MSG

Negotiation MSGScout confirm MSG

N

Strike task assignment

Refuse MSG

Refuse MSG

Movement  of 
deterrence

Am I idle?

Deterrence 
decision-making

Strike invita-
tion MSG

Deterrent action 
optimize

Y

Data transfer bus

Discover target

Data transfer bus

Algorithm deployed on each UAV

Wireless network communication

State sync

Scout confirm MSG

Figure 1. The framework of the collaborative allocation algorithm for reconnaissance and strike tasks.

This method consists of three main modules: negotiate for scout task assignment,
strike task assignment, and deterrence decision-making. When negotiating scout tasks,
this method first evaluates the tasks risk according to the degree of superiority of the
UAVs over the enemy, and assigns tasks with the goal of minimizing the degree of task
risk and the task completion time. Based on the perceived environmental information
and the historical status information obtained by communicating with neighbor nodes,
each UAV uses the GA to generate a local task-allocation and time-coordination plan after
analyzing the priority of each task, and negotiates with neighbors to resolve conflicts. After
the reconnaissance node discovers the enemy target, it will optimize the strike plan locally
and request the relevant nodes to coordinate execution. If the request is rejected, it will
re-optimize the strike plan until the strike mission is successfully assigned. When the nodes
with strike capability are idle, they will fly to the reconnaissance nodes with weak strike
capability to enhance their deterrence against the enemy and shorten the time from target
discovery to striking.

3.1. Negotiate for Scout Task Assignment

When a large number of reconnaissance tasks need to be allocated, this paper first
selects the reconnaissance tasks that should be completed first based on heuristic rules,
and then uses the local optimization and distributed negotiation mechanism to allocate
the tasks.



Drones 2023, 7, 138 5 of 22

3.1.1. Heuristic Rules

To reduce the risk of UAVs executing reconnaissance missions, task allocation shall be
based on the following rules:

• Give priority to the tasks that are isolated and in weak areas of the enemy;
• Give priority to the tasks where our strike capability is dominant;
• Give priority to nearby tasks.

Based on these rules, the priority evaluation method of tasks is defined as follows:

Definition 1. S-Sig function. To make each UAV pay more attention to the local environment,
referring to the sigmoid function, function fssig(x) is defined as:

fssig(x) =
1

1 + exp(4x− 4)
(1)

When 0 < x < 0.5, fssig(x) decays slowly. The decay speed increases with the increase of x
and reaches the maximum at x = 1. When x > 1, its decay speed decreases and lim

x→+∝
fssig(x) = 0.

In task-priority evaluation, this function can be used to smoothly suppress the priority of tasks that
are far away, while the priority of nodes that are close to the reference node is almost unaffected by
distance.

Definition 2. Spatial density of tasks. For the convenience of analysis, the typical influence radius
of a single UAV is set to ϕ according to the cruising speed and combat radius of the UAV. Referring
to the concept of kernel density estimation (KDE) in literature [21], we make the mutual influence
between targets attenuate with the increase of distance, and assume that the probability of mutual
cooperation between two targets within radius ϕ is large. Therefore, Equation (1) is used as the
kernel function to calculate the task space density, and for any task tj ∈ T, its space density ρj is
defined as:

ρj = ∑
tn∈T,j 6=k

fssig
(
djn/ϕ

)
(2)

where djn is the Euclidean distance between task tj and tn. It can be inferred that ρj focuses on the
radius within 2ϕ, because when djn > 2ϕ, fssig

(
djn/ϕ

)
< 0.017.

Definition 3. Capability availability estimation of UAV. UAV ui estimates the capability availabil-
ity fCim(τ) of neighboring UAV um according to its internal perception state at time τ, which can be
expressed as:

fCim(τ) = ∏
c∈C

fimc(τ)
1/|C| (3)

fimc(τ) = ∑
uk∈Ui

fssig(dmk/ϕ)λτ−τik ςkc (4)

where C is the set of capability types involved in the problem; fimc(τ) is the availability of capabilities
of type c; Ui is the collection of UAVs perceived by ui; dmk is the distance between um and uk; τik is
the timestamp when ui receives the status of uk; λ is the coefficient that the weight of the information
from the neighboring UAV decays with time, that is, the longer the status of a UAV is updated,
the lower the weight. ςkc is the capability value of type c possessed by uk.

Definition 4. Capability availability estimation of task. Similar to Definition 3, UAV ui estimates
the capability availability fCij (τ) of task tj according to its internal perception state at time τ, which
can be expressed as:
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fCij (τ) = ∏
c∈C

fijc(τ)
1/|C| (5)

fijc(τ) = ∑
uk∈Ui

fssig

(
djk/ϕ

)
λτ−τik ςkc (6)

Definition 5. Task prioritization assessment. Define ηimj(τ) as the priority of task tj to um that is
evaluated by ui, and then ηimj(τ) can be expressed by the capability coverage of um at tj, namely:

ηimj(τ) =
1
ρj

fCim(τ) · fssig

(
dmj + α1 ·max

(
0, dij − ϕ

)
ϕ

)
(7)

the function max(·) means to take the maximum value, and α1 is the weighting coefficient of the
extra distance. dmj + α1 ·max

(
0, dij − ϕ

)
indicates that the distance between ui and tj should also

be considered when evaluating the capability coverage of um at tj, and the farther the distance is,
the greater the priority of task tj is suppressed.

It can be inferred from the definition of Equation (7) that the closer the task tj is to
ui and um, the lower its spatial density, and the more sufficient the UAV capability that
can cover it, the higher priority ui thinks um will gives to tj. This formula can be used for
ui to measure the superiority of our UAVs to different tasks, which is consistent with the
heuristic rules.

3.1.2. Collaborative Optimization of Reconnaissance Tasks Assignment

When assigning the given reconnaissance and strike tasks, the algorithm should strive
to maximize the proportion of task completion, minimize the total task completion time,
and minimize the degree of task risk. Therefore, the objective function of reconnaissance
task-allocation is defined as:

max
βsc

J(βsc) (8)

where

J(βsc) = ∑(
ui ,tj ,τs

j ,gj

)
∈βsc

gj(βsc) (9)

gj(βsc) = rj(βsc) · e−αr

(
τs

j −τ
)

(10)

rj(βsc) = rmax − αt · ∑
(um ,tn ,τs

n ,gn)∈βsc

[[
τs

j < τs
n

]]
· fssig

(
djn/ϕ

)
(11)

where the quaternion
(

ui, tj, τs
j , gj

)
indicates that ui will start reconnaissance tasks tj at time

τs
j , and the expected benefit is gj; αr is the coefficient of time for the discount of rewards;

reconnaissance task plan βsc is a collection of task assignment quaternions; τs
j and τs

n are
the start execution times of tasks tj and tn, respectively; rj(βsc) is the expected reward for
βsc to complete tj, which is composed of the maximum reward rmax and the estimated risk

for completing the task, and αt is the weight of risk; [[P]] =
{

1 If P is true
0 Otherwise

is an Iverson

bracket, and if the start time τs
n is later than τs

j in the scheme, tn will pose a threat to tj.
It can be inferred from Equation (9) that if adjacent tasks can be scouted at the same

time, the threat to each other can be reduced and the reward can be increased. However,
starting reconnaissance at the same time also means that some tasks need to be deliberately
postponed, leading to a decline in overall reward. Therefore, it is necessary to optimize the
time synergy of each plan.
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(1) Time-collaborative optimization of plan

The time-collaborative optimization of a plan is to optimize the specific start time of each
assigned reconnaissance task. For any two assignments

(
ui, tj, τs

j , gj

)
and (um, tn, τs

n, gn) in
plan βsc, if τs

j < τs
n, ui can postpone its task start time to the same as um to improve its task

reward rj(βsc). Express the updated plan as βsc′, then there is τs′
j = τs

n. Let ∆τs
jn = τs

n − τs
j ,

then the gain of reward for time collaboration is:

∆gjn = gj
(

βsc′)− gj(βsc) = rj
(

βsc′) · e−αr(τs
n−τ) − rj(βsc) · e−αr

(
τs

j −τ
)

= e−αr

(
τs

j −τ
)[

rj
(

βsc′)e−αr ·∆τs
jn − rj(βsc)

]
= e−αr

(
τs

j −τ
)[(

rj(βsc) + αt · fssig
(
djn/ϕ

))
e−αr ·∆τs

jn − rj(βsc)
]

= e−αr

(
τs

j −τ
)[

rj(βsc)
(

e−αr ·∆τs
jn − 1

)
+ αt · fssig

(
djn/ϕ

)
e−αr ·∆τs

jn
]

(12)

Since the time collaboration between any two assignments in a plan will depend on
the recalculation of Equation (8), and the time collaborative optimization is an underlying
algorithm that will be called repeatedly, we define Algorithm 1 based on Equation (12) to
quickly optimize the time collaboration of the given plan.

Algorithm 1 Fast time-collaborative optimization

Input: The plan βsc that needs to optimize its time collaboration
Output: The updated plan βsc′.
1: while True do
2: ∆gj∗n∗ ← max(

ui ,tj ,τs
j ,gj

)
∈βsc

(um ,tn ,τs
n ,gn)∈βsc

τs
j <τs

n

(
∆gjn

)
. Find the best time collaboration pair using Equation (12)

3: if ∆gj∗n∗ > εg then
4: τs

j∗ ← τs
n∗ . Time collaboration when the gain of reward meets the threshold

5: else
6: return the updated βsc

7: end if
8: end while

(2) Optimization of task-assignment plan

The negotiation algorithm for reconnaissance tasks assignment consists of two parts:
(i) optimizing the assignment scheme under specified conditions; (ii) negotiating with other
nodes for conflict resolution.

The algorithm for optimizing the allocation plan under specified conditions is shown

as Algorithm 2. The optional input
↔

βsc =

{(
↔ui,

↔
t i

)
|i = 1, 2, · · · ,

↔
Nsc
}

is the specified

partial of the task-allocation plan, where
(
↔ui,

↔
t i

)
indicates that task

↔
t i is assigned to ↔ui,

and
↔

Nsc is the number of assigned pairs. The optional input 〈Usc, Tsc〉 is the set of scout
UAVs Usc and the set of tasks Tsc that need to be optimized for allocation.

If 〈Usc, Tsc〉 is not given, the algorithm will automatically select the set of scout UAVs
within nc hops to ui as Usc, and select tasks according to the priority ηimj(τ) of each task
tj. This strategy meets the heuristic rules described in Section 3.1.1, and can reduce the
optimization search space while preserving the high-quality solution space.
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Algorithm 2 Scout plan optimization within UAV ui

Input:
↔

βsc : Part of the task-assignment scheme that has been specified
〈Usc, Tsc〉: The set of scout UAVs and tasks that need to be optimized

Output: The optimized plan βsc.
1: if 〈Usc, Tsc〉 is not given then . Automatically select scout UAVs and tasks
2: Usc ← the set of scout UAVs within nc hops to ui
3: Init T0 as an empty list
4: while |Tsc| < Nsc max do . Iteratively add tasks according to the evaluated priority
5: for um in Usc do
6: if the latest task added to T0 for um is duplicated with existing tasks then
7: T0 ← add the next preferred task of um according to ηimj(τ) to T0
8: end if
9: end for

10: Tsc ←
{

tj|tj ∈ T0,
(
tj, ·
)

/∈
↔

βsc
}

. Remove duplicate tasks and tasks in
↔

βsc

11: if no task is added to T0 then
12: Break
13: end if
14: end while
15: end if

16: function fβ(βsc)

17: βsc ← βsc ∪
↔

βsc . Merge the specified and generated plans
18: Calculate τs

j of each assignment
(

ui, tj, τs
j , gj

)
∈ βsc with the predicted previous

task finish time and the travel time between ui and tj
19: Optimize the time collaborate of βsc with Algorithm 1
20: return J(βsc) . Calculate the fitness of βsc with Equation (9)
21: end function

22: βsc∗ ← Using GA to optimize the assignment of tasks in Tsc to Usc with the goal to
maximize fβ(βsc)

23: return the best plan βsc∗

After determining 〈Usc, Tsc〉, the algorithm optimizes the assignment of the tasks
based on GA, and its optimization goal is to maximize its fitness function fβ(βsc). In

fβ(βsc), it first merges plan βsc with the specified part of plan
↔

βsc; Then the start time of
the task is estimated according to the predicted finish time of the preceding task of the
UAV in each assignment and the travel time from the UAV to the corresponding task. Then,
Algorithm 1 is used to quickly optimize the time collaboration between the assignments.
Finally, the fitness is calculated according to the objective function defined by Equation (9).

When Algorithm 2 is used for conflict resolution optimization of multiple plans,

the non conflict part of the plan can be regarded as
↔

βsc and the conflict part as 〈Usc, Tsc〉,
which can reduce the search space of the optimization problem and improve the optimiza-
tion speed.

(3) Negotiation-based conflict resolution

After each UAV has generated or updated the best plan βsc∗ for scout task allocation,
it will send the plan to UAVs within nc hops. Let Bsc

i = {βsc
m|hop(ui, um) 6 nc} be the set of

scout task-allocation plans received by ui from other UAVs, then the scout task negotiation
and conflict resolution algorithm can be expressed as Algorithm 3. The received UAV uses
Algorithm 3 to resolve the conflict between its own plan and the received plan to update its
plan until there is no conflict between the plans of neighboring nodes.
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Algorithm 3 Scout plan conflict-resolving within UAV ui

Input: βsc
i : The latest local scout plan

Bsc
i : The set of received scout plans

Output: The updated local plan βsc
i .

1: βsc′
i ← βsc

i
2: Usc

i ←
{

um|(um, tn, τs
n, gn) ∈ βsc

i
}

3: for βsc
m in Bsc

i do

4:
↔

βsc
i ← consistent assignments between βsc

m and βsc′
i . . Lock the consistent part

5: β
con f lict
i ←

(
βsc′

i ∪ βsc
m

)
−

↔
βsc

i . The part of conflict assignments

6: Ucon f lict
i ←

{
um|(um, tn, τs

n, gn) ∈ β
con f lict
i

}
. Extract the UAVs in conflict part

7: Tcon f lict
i ←

{
tn|(um, tn, τs

n, gn) ∈ β
con f lict
i

}
. Extract the tasks in conflict part

8: βsc∗
i ← Re-optimize using Algorithm 2 with input

(
↔

βsc
i ,
〈

Ucon f lict
i , Tcon f lict

i

〉)
9: βsc′

i ←
{
(um, tn, τs

n, gn)|(um, tn, τs
n, gn) ∈ βsc∗

i , um ∈ Usc
i
}

. Only the task assignments of the UAVs belonging to Usc
i are retained

10: end for
11: if βsc

i inconsistent with βsc′
i then . If the task assignment changes

12: Broadcast βsc′
i . Broadcast the updated plan to neighbors within nc hops

13: end if
14: βsc

i ← βsc′
i . Replace the local plan with the new plan

15: Bsc
i ← ∅ . Clear the sets of received scout plan

16: return the updated βsc
i

In Algorithm 3, the received plans are conflict resolved with the local plan one by one.
For each task βsc

m, the consistent part between it and βsc′
i is locked, the UAVs and tasks

involved in the inconsistent part are extracted, and Algorithm 2 is used for re-optimization.
The reason for not merging all the plans at the same time is that the more plans received,

the lower the probability of obtaining assignments containing consistent parts, which makes
each iteration almost equal a full re-assignment, leading to low convergence efficiency.

3.2. Optimization of Strike Task Allocation

Let Tst
i represent the set of targets to strike in ui, and the capability requirements aj of

each discovered target tj is known; Tsc
i is the set of assigned reconnaissance tasks perceived

by ui; Ust
i is the idle UAVs with strike capability within nc hops to ui.

Since the targets that need to be struck are discovered dynamically, the scheduling of
UAVs with strike capability is not only related to the currently discovered tasks, but also
related to the tasks that may be discovered in the future. When optimizing strike capability
scheduling, it is necessary to take the nearby reconnaissance tasks into consideration, that
is, on the basis of ensuring that the capability requirements of discovered targets can be met,
the capability of deterrent reconnaissance tasks should be enhanced as much as possible.

Therefore, the optimization objective of strike task allocation is defined as:

min
βst

J
(

βst) (13)

where

J
(

βst) = ∑(
Uj ,tj ,τs

j

)
∈βst

[[[
tj ∈ Tst

i

]]
·
(

f us
(

tj, Uj

)
· Ξ + αc · ∆ς

(
tj, Uj

)
+ ατ · τmax

(
tj, Uj

))]

− αth · min(
Uj ,tj ,τs

j

)
∈βst

tj∈Tsc
i

 ∑
um∈Uj

ςm

/ 1∣∣∣Uj

∣∣∣ ∑
um∈Uj

dmj

νm

 (14)
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f us(tj, Uj
)
=

 0, aj 6 ∑
um∈Uj

ςm

1, else
(15)

∆ς
(
tj, Uj

)
= ∑

c∈C

−ajc + ∑
um∈Uj

ςmc

 (16)

τmax
(
tj, Uj

)
= max

um∈Uj

(
dmj/νm

)
(17)

βst is the strike plan that composed of the strike capability assignment triplet
(

Uj, tj, τst
j

)
,

and the triplet indicates that the set of UAVs Uj need to arrive and strike tj at time τst
j .

f us(tj, Uj
)

is used to judge whether the capability requirements of task tj can be met by
the strike plan, and if not, a large constant Ξ will be added to the objective function
to make the algorithm give priority to met the capability requirements of tj. ∆ς

(
tj, Uj

)
represent the redundancy value of the strike capability assigned to tj, and τmax

(
tj, Uj

)
is

the latest arrival time of the strike capability assigned to tj, and these two are minimized
by the algorithm on the basis of meeting the capability requirements. αc and ατ are weight
coefficients. The part weighted by αth is expected to maximize the minimum deterrent
degree of reconnaissance tasks.

When a UAV discovers the target during reconnaissance, it triggers Algorithm 4 for
strike task allocation, which uses GA to minimize the objective function Equation (13).
After optimization, the number of strike loads required for each UAV is calculated in
detail, and the invitations are send to the UAVs participating in the strike of the target that
discovered by ui in the plan.

Algorithm 4 Strike plan Optimization within UAV ui

Input: nst: Strike UAV invitation hops
U¬st: The exclude set of strike UAVs
tui: The target that discovered by ui
Tst

i : The set of strike targets discovered by other nodes and to be assigned
Tsc

i : The set of assigned scout tasks perceived by ui
Output: Strike plan or the result that failed
1: Uth

i ← Idle strike UAVs within nst to ui, and not in U¬st

2: Tunion
i ← Tst

i ∪ Tsc
i ∪ {tui} . Taking strike and scout tasks into consideration

3: βst∗ ← Using GA to optimize the assignment of Uth
i to Tunion

i with the goal of Equation (13)
4:
(
Uui, tui, τst

ui
)
←
(
Uui, tui, τst

ui
)
∈ βst∗ . Extract the assignment for tui in βst∗

5: if meets the capacity requirements of tui then
6: Uui ← Sort Uui in ascending according to the distances between UAVs and tui
7: for um in Uui do . Calculate the loads that each UAV will contribute in detail
8: Occupy strike load of um one by one until tui is satisfied or all loads are occupied
9: end for

10: Recalculate the strike time τst
ui as the latest arrival time of the occupied UAVs

11: Send invitation to um ∈ Uui with the occupied loads and the strike time τst
ui

12: return
(
Uui, tui, τst

ui
)

13: else if nst < nst max then . Expand the request range for strike UAVs until nst max
14: nst ← nst + 1
15: Recursive optimize strike plan using Algorithm 4
16: else
17: return Failed . There is not enough strike UAVs to execute this task
18: end if

However, if any UAV rejects the invitation, it will be excluded and the scheme will be
optimized again until the strike task is successfully assigned.
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3.3. Deterrence Maneuver Optimization

To enhance the capability deterrence against potential enemy targets in the reconnais-
sance area and shorten the time from target detection to strike execution, each idle UAV
with strike capability tends to accompany other UAVs on reconnaissance tasks to provide
potential capability deterrence.

In the deterrence maneuver optimization, each UAV ui only considers the UAVs within
nc hops and the corresponding reconnaissance tasks of these UAVs. As there is no specific
requirement on arrival time and capability for deterrence, each UAV takes maximizing the
minimum task capability coverage as the optimization goal, and decides the destination
according to the perceived situation without negotiating with other UAVs. Consistent with
the part weighted by αth in Equation (14), the objective function of deterrence maneuver
optimization is as Equation (18) shows, and it periodically calls Algorithm 5 to update its
deterrence maneuvers.

max
βth

J
(

βth
)

(18)

where

J
(

βth
)
= min

(Uj ,tj)∈βth

 ∑
um∈Uj

ςm

/ 1∣∣Uj
∣∣ ∑

um∈Uj

dmj

νm

 (19)

Algorithm 5 Deterrence maneuver optimization within UAV ui

1: Uth
i ← Idle strike UAVs within nc hops to ui

2: Usc
i ← Scouting UAVs within nc hop to ui

3: Tsc
i ← The tasks being scouted by Usc

i
4: βth∗ ←Using GA to optimize the assignment of Uth

i to Tsc
i with the goal of Equation (18).

5: Extract the deterrence tasks of ui from βth∗ and maneuver to it.

4. Experiment and Result Analysis
4.1. Experiment Settings

In order to verify the distributed collaborative allocation method of reconnaissance
and strike tasks for heterogeneous UAVs proposed in this paper, a simulation environment
for heterogeneous UAV reconnaissance and strike tasks is built in Python 3.6 in this section,
and its framework is shown in Figure 2. The simulation environment control module
runs as an independent thread to support graphical user interface (GUI), scene generation,
simulation progress control, UAV model scheduling, message exchange between UAVs,
and interactive result determination between UAVs and tasks. The GUI is developed based
on PyQt5 (5.15.4), and pyqtgraph (0.11.1) is used for real-time graphing of the status of
UAVs and tasks. The GA used in Algorithms 2, 4 and 5 and the global optimization in
Section 4.5 are from the package sko (0.6.6).

A screenshot of the GUI is shown in Figure 3, and the meanings of different elements
are shown in the legend on the right. The display of elements such as text labels and
topological connections can be controlled in this interface to better observe the experimen-
tal effect.
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Simulation control module

UAV

UAV 2

UAV 1

Message exchange & model 

scheduling & interaction result

Task management & 

interaction judgment

Message-based state sync

Mirror management of tasks and 

other UAV states

Scout task distributed negotiation

Deterrence maneuver optimize

Message send and receive

Task 

Task 2

Task 1

Task state update

Interactive result 

feedback
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Figure 2. Distributed simulation environment for heterogeneous UAV reconnaissance and strike tasks.
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UAV wireless network
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22
#
 UAV has 1 strike 

load 

T12 12
#
 task

Figure 3. The generated initial scenario contains 30 UAVs and 30 tasks.

To verify the effectiveness of the method in the heterogeneous UAV swarm scenario,
four kinds of UAVs are set in the simulation scene, including a mini scouter, mini striker,
mini scout and strike UAV, and medium scout and strike UAV. The UAVs are different
in flight velocity, scout speed, number of strike loads, and the capability of strike load.
The UAV types and their parameter settings are shown as Table 2.
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Table 2. UAV type and its parameter setting.

UAV Type Velocity (m/s) Scout Speed
(m2/s)

Number of
Strike Loads

Capability Vector
of Strike Loads

Mini scouter 40 10,000 0 —
Mini striker 50 — 1 [40, 40]
Mini SC&ST 50 6000 1 [80, 80]
Medium SC&ST 80 15,000 6 [100, 100]

To simulate the war fog and the dynamic characteristics of the mission, five types of
tasks are set up in the experiment, each of which has a differently sized suspicious area
and required capability vector, as shown in Table 3. The fake target indicates that there is
no actual target in the region, and before the completion of reconnaissance, the specific
information of any target is unknown. Therefore, UAV reconnaissance and strike forces
need to cooperate more flexibly to reduce mission risk and the time interval from discovery
to strike.

Table 3. Task type and its parameter setting.

Task Type Area Size (m2) Required Capability Vector

Fake target 1× 106 —
Target type1 5× 105 [25, 30]
Target type2 2× 106 [100, 80]
Target type3 2× 106 [40, 150]
Target type4 4× 106 [200, 200]

The optimization result of GA is greatly affected by the population size πn, iteration
number πi and mutation probability πp. The larger the problem space, the larger πn and πi
should be, so as to carry out a broader search. For the GA used in Algorithms 2 and 4, we let
the number of permutations for assigning tasks to UAVs as nperm, and the parameters of the
GA are adaptively adjusted according to nperm before each task assignment optimization.

4.2. Scene Generation

The experiments were set up in a rectangular area of 10× 10 Km, without considering
the height. In order to better present the cooperative effect of the UAVs and observe the
operation effect, we set the total number of UAVs and tasks to 30, respectively. The pro-
portions of four types of UAVs are 6:20:6:2, respectively, and the specific number is the
total number of UAVs multiplied by the ratio and then rounded down, and the excess
number is added to the mini scouter. Therefore, when the total number of UAVs is set to 30,
the specific number of each UAV type is: 7, 17, 5, 1. Similarly, the ratio between the five
types of tasks is set to 15:7:4:2:1, and when the total number of tasks is 30, the number of
corresponding tasks is 16, 7, 4, 2, 1, respectively.

When generating a scene, the tasks are first randomly assigned to the experimental
area with a uniform distribution, each task is randomly assigned a task type, and the
quantity requirements of each task type is met. Similarly, initial positions and UAV types
are randomly assigned to each UAV. Then, the generated UAVs and tasks are registered into
the simulation control module of the experimental environment, and the information of all
UAVs and tasks is broadcast to each UAV as the initial information for decision-making.

The maximum single-hop communication distance of radio between UAVs is set
as dδ = 3 Km, and multi-hop transmission is supported. The synchronization of state
information and the negotiation of task assignments can only take place between two UAVs
when there is a communication link. Under the above constraints, the generated initial
scenario contains 30 UAVs and 30 tasks, as Figure 3 shows, and the corresponding task
types are shown in Table 4.
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Table 4. Task IDs and corresponding task types in the scenario.

Task Type Tasks

Fake target T1, T5, T6, T7, T8, T12, T13, T18, T19, T20, T21, T22, T23, T24, T27, T28
Target type1 T9, T10, T11, T14, T16, T17, T29
Target type2 T3, T4, T15, T25
Target type3 T0, T26
Target type4 T2

4.3. Reconnaissance Task Priority Assessment Results

Before optimizing the reconnaissance task assignment, each evaluator, i.e.,
reconnaissance-capable UAV, evaluates the prior order of each task to each UAV using
the evaluation method defined in Section 3.1.1. We set the number of negotiation hops to
nc = 2, and the UAVs will take other reconnaissance UAVs within 2 hops into consideration.
For the scenario in Figure 3, the prior order of tasks to each UAV evaluated by different
UAVs are shown in Table 5, and the tasks marked in bold are selected by each evaluator
using Algorithm 2 to participate in this round of assignment.

Table 5. The prior order of tasks to each UAV evaluated by different UAVs at time=1.0. The bold
numbers are the tasks selected to participate in this round of assignment.

Evaluator Task Prior Order to Each UAV Evaluator Task Prior Order to Each UAV

U0

U0: (5, 23, 6, 20, 12, 10, 25, . . . )
U6: (5, 23, 6, 20, 12, 10, 25, . . . )
U13: (23, 5, 6, 12, 10, 25, 20, . . . )
U21: (5, 6, 23, 20, 12, 27, 10, . . . )

U14

U14: (15, 28, 3, 1, 14, 4, 7, . . . )
U5: (28, 15, 14, 3, 1, 4, 11, . . . )
U7: (15, 28, 3, 4, 14, 1, 11, . . . )
U9: (28, 15, 14, 3, 4, 1, 11, . . . )
U15: (1, 7, 15, 28, 9, 4, 3, . . . )
U19: (28, 15, 3, 14, 4, 1, 11, . . . )

U4
U4: (24, 21, 29, 11, 4, 0, 13, . . . )
U7: (4, 11, 29, 24, 21, 22, 13, . . . )
U24: (24, 21, 29, 11, 4, 0, 13, . . . )

U15

U15: (9, 19, 7, 16, 1, 18, 22, . . . )
U7: (7, 9, 16, 19, 1, 18, 15, . . . )
U14: (7, 9, 1, 19, 16, 18, 15, . . . )
U29: (19, 9, 7, 1, 16, 18, 22, . . . )

U5

U5: (28, 14, 15, 3, 1, 26, 4, . . . )
U7: (15, 28, 14, 3, 1, 4, 26, . . . )
U9: (14, 28, 15, 3, 26, 1, 2, . . . )
U14: (28, 15, 14, 3, 1, 26, 4, . . . )
U19: (28, 14, 15, 3, 1, 26, 4, . . . )

U19

U19: (14, 28, 15, 3, 2, 26, 4, . . . )
U5: (28, 14, 15, 3, 26, 2, 4, . . . )
U7: (15, 3, 28, 14, 4, 11, 2, . . . )
U9: (14, 28, 3, 15, 26, 2, 4, . . . )
U14: (15, 28, 3, 14, 4, 2, 11, . . . )

U6

U6: (6, 20, 5, 23, 27, 8, 12, . . . )
U0: (5, 23, 6, 20 , 27, 12, 10, . . . )
U13: (6, 23, 5, 20, 12, 27, 10, . . . )
U21: (6, 20, 5, 27, 23, 8, 12, . . . )

U21

U21: (6, 20, 27, 8, 5, 23, 2, . . . )
U0: (5, 23, 6, 20, 27, 8, 12, . . . )
U6: (6, 20, 5, 27, 23, 8, 12, . . . )
U9: (8, 27, 2, 20, 6, 3, 5, . . . )
U13: (6, 5, 23, 20, 27, 8, 12, . . . )

U7

U7: (15, 28, 3, 4, 11, 29, 24, . . . )
U4: (4, 11, 29, 24, 3, 15, 28, . . . )
U5: (28, 15, 3, 14, 4, 11, 1, . . . )
U9: (28, 3, 15, 14, 4, 11, 2, . . . )
U14: (15, 28, 3, 4, 11, 29, 14, . . . )
U15: (7, 15, 28, 16, 4, 29, 9, . . . )
U19: (15, 28, 3, 4, 14, 11, 2, . . . )
U24: (4, 11, 24, 29, 3, 15, 28, . . . )

U9

U9: (14, 28, 26, 3, 15, 2, 8, . . . )
U5: (14, 28, 15, 3, 26, 2, 8, . . . )
U7: (28, 15, 3, 14, 26, 2, 4, . . . )
U14: (28, 15, 14, 3, 26, 2, 4, . . . )
U19: (14, 28, 3, 15, 26, 2, 8, . . . )
U21: (3, 14, 26, 2, 28, 8, 15, . . . )

U24
U24: (21, 24, 0, 29, 11, 4, 12, . . . )
U4: (24, 21, 11, 29, 0, 4, 13, . . . )
U7: (24, 4, 11, 29, 21, 13, 22, . . . )

U29 U29: (19, 9, 1, 7, 16, 18, 15, . . . )
U15: (19, 9, 7, 1, 16, 18, 15, . . . )

U13

U13: (6, 23, 5, 12, 0, 10, 25, . . . )
U0: (23, 5, 6, 12, 10, 25, 0, . . . )
U6: (6, 5, 23, 12, 20, 10, 0, . . . )
U21: (6, 5, 23, 20, 12, 0, 10, . . . )

— —

Taking the evaluation results of U7 as an example, the reconnaissance capable UAVs
within 2 hops are U4, U5, U9, U14, U15, U19, U24, and U7 itself. The priority of task T15
ranks first for U7 since T15 is relatively close to U7, and the position of T15 can obtain more
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sufficient strike capability. Although T4 is the closest to U7, it gets a prior order of 4th for
U7 because the unknown potential synergistic relationship between T11 and T4 increases
the risk of T4, and the low coverage of UAVs at T4 further reduces its priority.

It can be found that there is a large gap between U4’s task prior order as assessed by
U7 and U4. T24 ranked after U4 because T24 has a great advantage in distance. However,
the attention mechanism of U7 makes it pay more attention to the surrounding tasks, so
the priority of T24 to U4 is suppressed in the evaluation of U7. This cognitive difference
caused by inconsistent environmental cognition or subjective preferences can be corrected
during the negotiation process with the other party.

Because each evaluator only considers several tasks with the highest priority in each
round of allocation, the search space for task-allocation optimization can be effectively reduced.

4.4. Reconnaissance Task Assignment

After the reconnaissance UAVs generate a reconnaissance plan and share it with each
other, each node uses Algorithm 3 to fuse the received plan with its own plan. The fusion
process of U7 is as Figure 4 shows, and at time=1, U7 tends to give priority to nearby
tasks due to its own attention mechanism, so its assignments include U4→T11, U14→T4,
and U24→T29. However, this attention mechanism can cause inconsistencies among the
generated plans when the distance between two UAVs is large. When merging the received
plans with its own, U7 will take out the inconsistent part and redistribute it. At this time,
its attention mechanism will be disabled, making the integrated plan more consistent with
the views of each participant.

UAV 7 4 5 9 14 15 19 24
Task 15 11 28 14 4 7 3 29
τs 32.7 45.2 32.7 22.0 72.9 53.3 21.2 68.3
g 2.1 1.5 2.1 2.3 1.3 1.4 2.3 1.2

UAV 4 7 24
Task 24 4 21
τs 23.6 31.2 37.6
g 2.1 1.7 1.9

UAV 5 7 9 14 19
Task 28 15 14 1 3
τs 32.7 32.7 22.0 55.7 21.2
g 2.1 2.1 2.3 1.6 2.3

UAV 9 5 7 14 19 21
Task 26 28 4 15 14 2
τs 32.2 37.7 31.2 37.7 19.9 65.0
g 2.1 2.0 1.7 1.9 2.3 1.4

UAV 14 5 7 9 15 19
Task 15 1 4 14 7 3
τs 37.7 56.6 31.2 22.0 53.3 21.2
g 1.7 1.6 1.7 2.3 1.4 2.3

UAV 15 7 14 29
Task 9 7 1 19
τs 29.3 68.6 55.7 17.2
g 2.0 1.3 1.6 2.5

UAV 19 5 7 9 14
Task 3 28 4 14 15
τs 21.2 37.7 31.2 22.0 37.7
g 2.3 2.0 1.7 2.3 2.0

UAV 24 4 7
Task 21 24 4
τs 37.6 23.6 31.2
g 1.9 2.1 1.7

UAV 7 4 5 9 14 15 19 24
Task 15 24 28 14 1 9 3 21
τs 33.7 24.6 33.7 23.0 56.7 30.3 22.2 38.6
g 2.1 2.1 2.1 2.3 1.6 2.0 2.3 1.9

Plan from U5 Plan from U9

Plan from U19 Plan from U14

Plan from U4 Plan from U15 Plan from U24

Received plans from negotiate neighborsConflict resolution of U7

Conflict resolution 

with Algorithm 3 

Plan of U7 at time=2

Plan of U7 at time=1

Figure 4. Negotiation process based on conflict resolution.

When the conflict is resolved, the assignment of U7 in Figure 4 is consistent with the
updated assignments of other nodes, so this assignment is finally adopted and implemented.
The allocation results of the first round of reconnaissance tasks are shown as the green
target lines of each reconnaissance node in Figure 5a, and the specific allocation information
is shown in Table 6. The topology after a period of execution is shown in Figure 5b.

From the allocation results, it can be found that the distributed allocation algorithm
generally follows the principle of minimizing the completion time, but it also reflects the
algorithm’s expectation of enhancing the superiority over enemy and reducing mission
risks. For example, U13 chose T6 instead of T12 as the first mission, because it is easier for
the UAV swarms to form a superiority over enemy at T6. In contrast, the location of T12
is too dense and risky, and it should be executed after more UAVs are concentrated. The
mission groups (T5, T23) and (T15, T28) are also relatively dense, but since the UAV swarm
has a capability advantage here, the strategy of coordinating in time is adopted to reduce the
mission risk. In the time-coordinated formation, the UAVs that could have arrived earlier
choose to reduce the flight speed so that the formation can reach the targets at the same
time, thereby avoiding the coordinated strike of the enemy due to individual exposure.
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(a) (b)

Figure 5. Topology diagram for different simulation times. (a) Each reconnaissance UAV has con-
firmed the reconnaissance task before time = 8. (b) Each reconnaissance node executes reconnaissance
task, and the strike nodes perform deterrence maneuver at time = 30. The meanings of elements are
consistent with those in Figure 3.

Table 6. Allocation information and time coordination relationship of the first round of reconnais-
sance tasks.

UAV
ID Current Pos Task

ID Task Pos τs
j (s) Planned

υi(m/s)
Maximum
υi(m/s)

Collaborate
UAVs

U0 (1029.8, 204.3) T23 (1420.5, 729.8) 23.38 35.63 50 U6
U6 (2618.0, 202.9) T5 (1904.0, 377.2) 23.38 40.00 40 U0
U5 (9722.0, 4410.0) T28 (8364.7, 4143.4) 34.66 50.00 50 U7
U7 (6776.9, 5650.7) T15 (7634.8, 4636.8) 33.66 48.01 50 U5
U4 (3223.9, 5507.1) T24 (3931.8, 6108.0) 23.57 50.00 50 —
U9 (8777.8, 2235.3) T14 (8712.1, 2910.3) 22.95 40.00 40 —
U13 (1596.7, 2313.2) T6 (3348.8, 1669.4) 51.66 40.00 40 —
U14 (8179.1, 5827.7) T1 (9846.0, 6986.1) 56.75 40.00 40 —
U15 (8543.8, 9725.0 ) T9 (7617.9, 9429.2) 30.30 40.00 40 —
U19 (8114.8, 3937.6) T3 (6881.7, 3528.7) 22.24 80.00 80 —
U21 (3826.9, 436.9) T20 (4124.1, 67.6) 15.48 50.00 50 —
U24 (2615.7, 5425.9) T21 (3144.3, 4235.8) 39.56 40.00 40 —
U29 (9578.5, 9477.7) T19 (9387.9, 9928.5) 17.24 40.00 40 —

When each UAV adopts the distributed task assignment algorithm in this paper,
the task scheduling Gantt chart is as Figure 6 shows. In it, the blue boxes represent the
reconnaissance behavior, and the red boxes represent strike behavior. From the Gantt
chart, it can be found that for UAVs with both reconnaissance and strike capabilities, such
as U0 and U5, when their own capabilities can meet the target capability requirements,
the strike can be carried out immediately. For example, U0’s strike on T10 and U5’s strike
on T11 are instant. For targets with strong defense capabilities, the coordinated strike of
multiple UAVs is required. For example, the strikes on T0 and T26 are all completed by
the cooperation of four UAVs. Since the nodes with strike capability will maneuver to the
reconnaissance nodes for deterrence when they are idle, it allows reconnaissance nodes
that do not have strike capability can also strike quickly after discovering the target. For
example, U25 can launch a strike on T9 (discovered by U15) within 8 s after confirming the
strike mission.
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Figure 6. Gantt chart for reconnaissance and strike tasks. Blue boxes represent reconnaissance and
red boxes represent strikes, and the triple elements represent mission confirmation time, duration of
maneuver and task execution, and the concatenation of task type and task ID respectively.

4.5. Comparison with Centralized Global Optimization Based on GA

In the proposed distributed framework, each UAV only focuses on the nearby UAVs
and tasks, and negotiates with the nearby UAVs to resolve the conflicts in the combat
plans. This distributed solution not only realizes decoupling between UAVs, but also
effectively reduces the search space of the task-allocation problem, and can improve the
speed of solving the problem. Based on the scenario shown in Figure 3, we compare the
proposed method with the centralized global optimization method based on GA in terms
of solving speed and quality. The experimental platform is a MSI GS65 notebook installed
with Windows system. Its CPU is i7-8750H, GPU is GTX1070 Max-Q, memory is 32 G,
and the SSD is 512 G.

We have counted the decision-making time consumption of each reconnaissance UAV
in steps 1-8 during the optimization of reconnaissance task allocation, because all UAVs
have confirmed their tasks at the end of the 8th simulation step. The results are shown in
Figure 7, and it can be found that the time consumed by each decision of each UAV is less
than 0.25 s. Without considering the communication delay, if the maximum decision time of
each step is taken as the cycle of this round of iteration, the total time of 8 simulation steps
is 1.02 s. From the time-consumption distribution, it can also be found that the first step
of decision-making only consumes a little time, while the second step of decision-making
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takes the most time, and then decreases gradually. This is because before the first decision,
there is no communication between nodes, and each node makes decisions independently.
The second decision is made after exchanging the results of the first round, and at this
time, each node is performing conflict resolution on multiple collected plans, so it takes
a lot of time. After the second step, the conflict between plans is gradually resolved, so
the decision-making time is also shortened and the final task-allocation plan is formed.
The optimization results are shown in Table 6, and from the global perspective, its fitness is
27.48 using Equation (9).
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Figure 7. Time consumption of each UAV in the proposed method.

In the same scenario, we further use the centralized GA to optimize the reconnaissance
task-allocation problem from a global perspective, and the fitness curve obtained is shown
as the two CGA curves in Figure 8. In our proposed algorithm, the population number
πn and iteration number πi of GA are automatically adjusted according to the number of
permutations of the assignment problem. When this strategy is applied to the centralized
method, the obtained parameters of GA are πn = 32, πi = 30 and πp = 0.1. However,
the search space for the global optimization problem of assigning 30 tasks to 13 UAVs
is too large, so GA is difficult to converge to a good result under these parameters. In
order to further expand the search of the global GA to obtain a better result, we adjust the
parameters to πn = 400, πi = 200, πp = 0.3. We can find that after 27 rounds of iteration,
it has obtained a result with fitness close to that of the proposed paper, which consumes
about 4.9 s.

Proposed method

F
it

n
e
s
s

CGA (p n =32,  p i =30,   p p =0.1)

4.9s

CGA (p n =400,p i =200, p p =0.3)

The number of iterations of the centralized  GA

Figure 8. The fitness and time consumption of centralized GA.

Comparing the time consumption of the two methods, it can be found that the pro-
posed method effectively reduces the computing load of each single UAV through the idea
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of divide and conquer, and can be applied to more types of small UAVs. By observing
the change of fitness, we found that it is easy for centralized global optimization to fall
into local optimal solution when the problem space is large. If the swarm size is further
increased, it will be difficult for the centralized global optimization method to obtain good
results, while distributed collaborative optimization has better scalability.

4.6. Comparison with No Time Coordination and Deterrence Maneuver

To verify the effect of the proposed method on reducing the risk of mission execution
and improving the deterrence of strike capability, the spatial density of tasks represented
by Equation (2) is taken as the scout risk; the strike capability availability of tasks repre-
sented by Equation (5) is taken as the capability coverage. In each simulation scenario,
the average risk at the beginning of each scout task and the average strike capability
coverage for scouting tasks during the whole simulation process are counted. The com-
parison results with the algorithms without time coordination or deterrence maneuver are
shown in Table 7, and each result is the statistics of the mean and standard deviation of 10
simulation scenarios.

Table 7. The scout risk and strike capability coverage compared with no time coordination or
deterrence maneuver. Each result is the mean and standard deviation of 10 simulation scenarios.

Deterrence Maneuver Type
Enable Time Collaboration Disable Time Collaboration

Scout Risk Cap. Coverage Scout Risk Cap. Coverage

Enable deterrence maneuver 0.238 ± 0.065 153.1 ± 61.3 0.311 ± 0.090 166.6 ± 63.9
Disable deterrence maneuver 0.234 ± 0.048 131.5 ± 33.7 0.311 ± 0.091 116.7 ± 31.5

The statistics of the results show that time coordination can reduce the scout risk by
about 23%, and deterrence maneuver can improve the strike capability coverage by about
30%, which verifies the effectiveness of time coordination and maneuver deterrence.

4.7. Discussion
4.7.1. Computational Complexity Analysis

In the proposed method, the optimization of scout-task assignment needs to optimize
task allocation and time coordination between UAVs, which is the part with high com-
putational complexity of our proposed method. Therefore, analyzing the computational
complexity of this part will aid further improvement.

In Algorithm 2, the most time-consuming process is to use line 24 to optimize the plan
using GA. The computational complexity of GA can be expressed as O(πp × πi), where
πp is the population size and πi is the number of iterations. For each plan generated by
the GA, its fitness will be calculated through line 17-21 of Algorithm 2. Among them,
line 20 uses Algorithm 1 for time collaborative optimization. Let the number of UAVs in
the plan be N. The worst case of the while loop of Algorithm 1 will iterate N − 1 times,
and each loop needs to calculate N × (N − 1) time alignment reward gains according to
Equation (12), so the complexity of Algorithm 1 is about O(N3). Then line 21 of Algorithm 2
uses Equation (9) to calculate the fitness of the plan, in which the start time between any
two UAVs needs to be compared to evaluate the task threat, and thus the complexity is
about O(N2).

Therefore, the overall computational complexity of Algorithm 2 is about O(πp ×
πi × (N3 + N2)) ≈ O

(
πp × πi × N3). Among them, the settings of πp and πi not only

affect the calculation cost, but also affect the quality of the optimization results. In this
paper, these two parameters are simply linearly mapped from the number of allocation
combinations, and before deployment, it is necessary to further study the setting strategy of
these parameters to compromise between the calculation cost and the optimization quality.
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4.7.2. Method Characteristics under Different Network Connectivity

When the distributed UAV swarm is running, each UAV needs to perform regular
state synchronization and event-triggered task assignment negotiation with UAVs within
nc hops, which also means that each UAV needs to process information from other UAVs
within nc hops. When the mission area is relatively scattered and the connectivity of the
UAV network is low, the use of a limited range of autonomous collaboration can reduce the
consumption of the network and reduce the computational power consumption of each
UAV. While improving the reliability of the cluster, the distributed architecture can also
enhance the scalability of the cluster.

However, when the UAVs are concentrated, such as when the network is fully con-
nected in extreme cases, adopting a distributed architecture will reduce the operating
efficiency of the system. The fully connected network requires each UAV to process the
information of the entire battlefield, which indicates that each UAV should be equipped
with high-performance computing resources. Moreover, the additional negotiation com-
munication required by the distributed architecture will also increase the consumption of
the network.

Therefore, the proposed distributed approach should be combined with centralized
control when applied, and dynamically switch between the two according to the network
connectivity status.

4.7.3. Influence of Network Instability on the Proposed Method

The mutual communication between UAVs is the basis for task-assignment negotiation
and coordination during task execution. Due to the high-speed maneuvering of UAVs in 3D
space, the topology of the flying ad hoc network (FANET) [22] changes rapidly, which may
cause communication interruption, delay increase, and other problems. These problems
may further make the negotiation period of task assignment longer, or even cause conflicts
between the assigned plans due to the interruption of communication, and ultimately make
the overall task assignment result worse. Therefore, the next step is to evaluate the impact
of network instability on the method and study the corresponding strategies to improve
its robustness, which can also avoid making this problem a vulnerable point to attack by
the enemy.

Since the cooperation of UAVs in the proposed method mainly occurs between UAVs
within 2 hops, the route-maintenance strategy of FANET can pay more attention to the
optimization of short-distance routes to improve the QoS, which can not only improve the
speed of distributed task allocation in this paper, but also help avoid collisions between
UAVs and so on.

5. Conclusions

Due to the high risk of UAV clusters in executing reconnaissance and strike tasks
under the condition of insufficient enemy information and potential synergy between
targets, a distributed task-collaborative allocation method for heterogeneous UAV swarms
is proposed. This method establishes a distributed task-allocation framework composed of a
reconnaissance task-allocation method based on a negotiation mechanism and a strike task-
allocation method based on an invitation mechanism. The reconnaissance task-allocation
algorithm evaluates the task priority according to the superiority of the UAVs against
the tasks to reduce the complexity of the optimization problem. Reconnaissance UAVs
adopt a time-coordination strategy for reconnaissance, and UAVs with strike capabilities
perform deterrent maneuvers when they are idle to reduce mission risks during mission
execution. This method enables the UAV swarm to negotiate the allocation of tasks in a
distributed framework, and at the same time, the evaluation of the capability advantage
over the enemy, time coordination, and deterrence maneuver mechanism effectively reduce
the risk of unknown targets to UAVs. The distributed framework not only improves the
scalability of the swarm, but also enhances its reliability in the battlefield with a more
complex electromagnetic environment.
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Further research should include a more efficient algorithm that takes the negotiation
mechanism and the network state of the swarm as prior information to replace the GA
for the local optimization of UAVs, and should aim to obtain the best operating efficiency
under different network connectivity. The proposed method should be further combined
with a centralized or hierarchical task-allocation framework.

Author Contributions: Conceptualization, H.D. and J.H.; methodology and writing—original draft,
H.D.; writing—review and editing, Q.L., C.Z., T.Z. and J.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shakhatreh, H.; Sawalmeh, A.H.; Al-Fuqaha, A.; Dou, Z.; Almaita, E.; Khalil, I.; Othman, N.S.; Khreishah, A.; Guizani,

M. Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges. IEEE Access 2019, 7,
48572–48634.

2. Qin, B.; Zhang, D.; Tang, S.; Wang, M. Distributed Grouping Cooperative Dynamic Task Assignment Method of UAV Swarm.
Appl. Sci. 2022, 12, 2865.

3. Zhang, J.; Xing, J. Cooperative task assignment of multi-UAV system. Chin. J. Aeronaut. 2020, 33, 2825–2827.
4. Jiang, X.; Zeng, X.; Sun, J.; Chen, J. Research status and prospect of distributed optimization for multiple aircraft. Acta Astronaut.

2021, 42, 524551. https://doi.org/10.7527/S1000-6893.2020.24551. (In Chinese)
5. Zhen, Z.; Xing, D.; Gao, C. Cooperative search-attack mission planning for multi-UAV based on intelligent self-organized

algorithm. Aerosp. Sci. Technol. 2018, 76, 402–411.
6. Duan, H.; Zhao, J.; Deng, Y.; Shi, Y.; Ding, X. Dynamic Discrete Pigeon-Inspired Optimization for Multi-UAV Cooperative

Search-Attack Mission Planning. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 706–720.
7. Ma, Y.; Zhao, Y.; Bai, S.; Yang, J.; Zhang, Y. Collaborative task allocation of heterogeneous multi-UAV based on improved CBGA

algorithm. In Proceedings of the 16th International Conference on Control, Automation, Robotics and Vision, Shenzhen, China,
13–15 December 2020; pp. 795–800.

8. Dai, W.; Lu, H.; Xiao, J.; Zeng, Z.; Zheng, Z. Multi-Robot Dynamic Task Allocation for Exploration and Destruction. J. Intell. Robot.
Syst. 2019, 98, 455–479.

9. Sheng, W.; Yang, Q.; Tan, J.; Xi, N. Distributed multi-robot coordination in area exploration. Robot. Auton. Syst. 2006, 54, 945–955.
10. Ye, F.; Chen, J.; Sun, Q.; Tian, Y.; Jiang, T. Decentralized task allocation for heterogeneous multi-UAV system with task coupling

constraints. J. Supercomput. 2020, 77, 111–132.
11. Chen, J.; Wu, Q.; Xu, Y.; Qi, N.; Guan, X.; Zhang, Y.; Xue, Z. Joint Task Assignment and Spectrum Allocation in Heterogeneous

UAV Communication Networks: A Coalition Formation Game-Theoretic Approach. IEEE Trans. Wirel. Commun. 2021, 20,
440–452.

12. Jiang, Y. A Survey of Task Allocation and Load Balancing in Distributed Systems. IEEE Trans. Parallel Distrib. Syst. 2016, 27,
585–599.

13. Li, L.; Xu, S.; Nie, H.; Mao, Y.; Yu, S. Collaborative Target Search Algorithm for UAV Based on Chaotic Disturbance Pigeon-Inspired
Optimization. Appl. Sci. 2021, 11, 7358.

14. Hu, J.; Wu, H.; Zhan, R.; Menassel, R.; Zhou, X. Self-organized search-attack mission planning for UAV swarm based on wolf
pack hunting behavior. J. Syst. Eng. Electron. 2021, 32, 1463–1476.

15. Choi, H.; Brunet, L.; How, J.P. Consensus-Based Decentralized Auctions for Robust Task Allocation. IEEE Trans. Robot. 2009, 25,
912–926.

16. Edalat, N.; Tham, C.; Xiao, W. An auction-based strategy for distributed task allocation in wireless sensor networks. Comput.
Commun. 2012, 35, 916–928.

17. Choi, H.; Kim, Y.; Kim, H.J. Genetic algorithm based decentralized task assignment for multiple unmanned aerial vehicles in
dynamic environments. Int. J. Aeronaut. Space Sci. 2011, 163–174.

18. Patel, R.; Rudnick-Cohen, E.; Azarm, S.; Otte, M.; Xu, H.; Herrmann, J.W. Decentralized Task Allocation in Multi-Agent Systems
Using a Decentralized Genetic Algorithm. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), Paris, France, 31 May–31 August 2020; pp. 3770–3776.

19. Wu, H.; Li, H.; Xiao, R.; Liu, J. Modeling and simulation of dynamic ant colony’s labor division for task allocation of UAV swarm.
Phys. A 2018, 491, 127–141.



Drones 2023, 7, 138 22 of 22

20. Cao, Y.; Wei, W.; Bai, Y.; Qiao, H. Multi-base multi-UAV cooperative reconnaissance path planning with genetic algorithm. Clust.
Comput. 2019, 22, 5175–5184.

21. Yu, W.; Ai, T.; Shao, S. The analysis and delimitation of Central Business District using network kernel density estimation. J.
Transp. Geogr. 2015, 45, 32–47.

22. Khan, M.A.; Safi, A.; Qureshi, I.M.; Khan, I.U. Flying ad-hoc networks (FANETs): A review of communication architectures,
and routing protocols. In Proceedings of the 2017 First International Conference on Latest trends in Electrical Engineering and
Computing Technologies, Karachi, Pakistan, 15–16 November 2017; pp. 1–9.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Problem Description
	The Proposed Method
	Negotiate for Scout Task Assignment
	Heuristic Rules
	Collaborative Optimization of Reconnaissance Tasks Assignment

	Optimization of Strike Task Allocation
	Deterrence Maneuver Optimization

	Experiment and Result Analysis
	Experiment Settings
	Scene Generation
	Reconnaissance Task Priority Assessment Results
	Reconnaissance Task Assignment
	Comparison with Centralized Global Optimization Based on GA
	Comparison with No Time Coordination and Deterrence Maneuver
	Discussion
	Computational Complexity Analysis
	Method Characteristics under Different Network Connectivity
	Influence of Network Instability on the Proposed Method


	Conclusions
	References

