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Abstract: Global awareness of environmental issues has boosted interest in renewable energy re-
sources, among which solar energy is one of the most attractive renewable sources. The massive
growth of PV plants, both in number and size, has motivated the development of new approaches for
their inspection and monitoring. In this paper, a rigorous drone photogrammetry approach using
optical Red, Green and Blue (RGB) and Infrared Thermography (IRT) images is applied to detect one
of the most common faults (hot spots) in photovoltaic (PV) plants. The latest advances in photogram-
metry and computer vision (i.e., Structure from Motion (SfM) and multiview stereo (MVS)), together
with advanced and robust analysis of IRT images, are the main elements of the proposed method-
ology. We developed an in-house software application, SunMap, that allows automatic, accurate,
and reliable detection of hot spots on PV panels. Along with the identification and geolocation of
malfunctioning PV panels, SunMap provides high-quality cartographic products by means of 3D
models and true orthophotos that provide additional support for maintenance operations. Validation
of SunMap was performed in two different PV plants located in Spain, generating positive results in
the detection and geolocation of anomalies with an error incidence lower than 15% as validated by
the manufacturer’s standard electrical tests.

Keywords: photovoltaic plants; unattended maintenance; photogrammetry; thermography; drones;
hot spots; software development

1. Introduction
1.1. Motivation

Conventional electricity grids are based on management principles and technologies
developed for a centralized generation system. This involves the large-scale generation of
electricity at centralized facilities using a distribution network optimized for supply relia-
bility. These classical network solutions, however, fail to meet growing demand, end users’
expectations, and the need for data security and reliability, among other requirements.
Due to the requirements of the Kyoto Protocol and subsequent international agreements
(Paris COP21, Glasgow COP26), which focused on reducing greenhouse gas emissions, the
transition to renewable energies based on decentralized energy systems and the implemen-
tation of energy efficiency are mandatory [1]. To this end, management tools at all levels
must change towards more intelligent systems that incorporate automatic exploitation of
increasingly abundant information and new operation and maintenance models based on
renewable energies and are adapted to new technological elements that are available at
lower cost.

With the proliferation of drones [2] and artificial intelligence [3], as well as with the
development of sensors combined with image processing capabilities [4], the range of
possibilities for driving this transformation towards the intelligent inspection and man-
agement of renewable energy generation plants (e.g., solar, wind, hydroelectric, etc.) is
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broad. These critical infrastructures require periodic inspection to ensure their effective and
efficient operation, but these facilities are sometimes difficult to access, and thus inspection
can be dangerous for the operator. Therefore, unattended maintenance through the use of
robotic techniques (i.e., drones) and non-invasive sensors (e.g., cameras, LiDAR, etc.) is
most cost-effective [5]. To this end, recent years have seen the development of an official
standard (IEC TS 62446-3) for the testing, documentation, and maintenance of PV modules
and plants using drones and infrared thermography [6]. In the case of photovoltaic (PV)
plants, adequate inspection of PV installations requires the acquisition of different types of
data, from geometric data that allow a dimensional analysis of the facility and its assets
(e.g., the distance between PV panels and vegetation, the height of vegetation, etc.), to
radiometric data (i.e., multispectral imagery) that allow advanced analysis of the images for
the automatic identification of faults in PV panels. This inspection is enhanced by the use
of multiple spectral bands, mainly near, medium and thermal infrared, since they allow the
identification of faults that are not perceived visually, such as defects in non-operative cells,
discoloration, oxidation/corrosion, etc. [7]. Nevertheless, integrated interpretation of all
the data acquired during the inspection requires the precise detection of each fault, as well
as the identification and quantification of the type and severity of the fault. Therefore, it is
clear that the development of tools that allow monitoring, diagnosing, and even forecasting
these faults in PV plants is necessary in order to improve efficiency during their complete
lifecycle, and these tools will provide important economic and ecological benefits [8].

Advancing the automation of faults in PV plants entails a series of difficulties [9]:
(i) the automatic extraction and semantic recognition of the PV panels and their elements
based on imagery (i.e., arrays, panels, modules and cells); (ii) the incidence of false positives
due to detection of the same fault in different images; (iii) the incidence of false positives
outside the PV panels; (iv) problems associated with reflections at the edges of PV panels;
and (v) the precise geolocation of faults in the PV panels.

1.2. Literature Review

Although there are several approaches in the scientific community to dealing with
PV faults based on imagery [10,11], most of them are semi-automatic or time-consuming,
so their monitoring and management still require manual user interaction. According
to [10,11] and their reviews, although there are many algorithms and hardware tools
available, the remote and online monitoring of PV plants is still at a low technology-
readiness level (i.e., prototyping stage). This suggests the need for development of cutting-
edge intelligent systems that can overcome the current challenges. The key seems to
be related to the exploitation of multi-modal imagery (e.g., optical RGB, IRT, ultraviolet
fluorescence (UVF) imaging, etc.) and aerial drones that can enhance the detection and
classification of faults in PV panels. Of course, intelligent and automatic approaches for
interpreting these images remain crucial. In [12], the authors test and use different types of
aerial platforms combined with visible and IRT cameras for detecting faults in PV panels,
but they do not provide any automatic approach for its detection. In [13], the authors
perform an exhaustive thermographic analysis of three different types of faults in PV
panels, but all the tests are carried out in the laboratory. In [14], the authors advance an
automatic solution for detecting some faults in PV panels, but the thermographic analysis
of images is not rigorous, and they do not provide automatic extraction of geometries. In an
attempt to advance the vectorization of PV faults, [15] presents advances in an automatic
solution for detecting some faults in PV panels through image processing and Canny edge
detection. However, the thermographic analysis of images is performed in the laboratory.
More recently, [16] develops a method to recognize hot spots in photovoltaic modules using
IRT images and an image processing technique based on the Otsu thresholding method.
The average accuracy in hot spot detection is very high, but they provide only the initial
experiments of an ongoing research project. Although other authors [17] deal with image
analysis for detection PV panels and their structure, they do not generate cartographic
products to provide a 3D analysis of the PV plants. In [18], the authors analyse IRT images
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using the Laplace operator, but again all the analyses are performed in an experimental
setup. More recent approaches have been centered around the structure and management
of the information of PV plants using Geographical Information Systems (GIS). In [19],
the authors provide structured and rigorous information for a PV plant, and in particular,
define a conceptual model based on a relational database for the intelligent management of
PV plants; however, automatic routines for the extraction of elements and the detection
of faults are not included in this approach. Using the same GIS background applied to
the management and computation of PV potential, [20] develops a WebGIS tool for the
automatic computation of PV potential on rooftops. While these are important advances in
the field, automated analysis of images for tasks such as the extraction of roof intersections
is still to be developed.

Other recent approaches deal with artificial intelligence [21,22], but require data prepa-
ration and augmentation together with model training. In [22], the authors propose a new
intelligent PV panel monitoring and fault diagnosis technique using a neural network and
a classifier in combination. Unfortunately, they do not adapt a method for use with drones.
It is clear that the use of aerial drones based on optical RGB and IRT images constitutes the
most efficient way to detect faults, and thus minimize operation and maintenance costs
in PV plants [8]. These approaches require rigorous photogrammetric image analysis and
thermographic procedures in order to guarantee accurate and timely responses during the
detection of faults in PV plants.

To this end, SunMap is presented in this paper based on a series of developments with
a similar thread, “from imagery to smart 3D models”, that have been applied successfully
in other fields (e.g., industry 4.0 and remote sensing) [23,24]. SunMap provides rigorous
photogrammetric and thermographic treatment of images acquired from aerial drones
based on the generation of high-quality cartographic products and expert reports containing
the precise geolocation of hot spots. The automatic and reliable detection of hot spots in
PV panels is based on two conditions: (i) the presence of a hot spot in at least three
thermographic images; and (ii) the existence of a thermographic gradient above 10 ◦C with
respect to the hot spot’s neighbours.

SunMap presents the following advantages compared to the similar approaches de-
scribed above: (i) a rigorous and automatic photogrammetric processing exploiting mul-
tiview geometry; (ii) the generation of high-quality cartographic products that integrate
visible and thermographic information; (iii) the automatic detection of PV arrays and PV
panels based on advanced imagery analysis; (iv) rigorous correction and analysis of thermo-
graphic images; (v) robust statistical detection of hot spots integrated with the generation
of expert reports based on the official standard IEC TS 62446-3 [6].

This manuscript is structured as follows: Section 2 describes the methodology devel-
oped and encoded within the SunMap software; Section 3 validates the software using two
different PV plants as pilot cases; and a final section is devoted to outlining conclusions
and future research.

2. Methodology

Figure 1 outlines the process codified in the SunMap tool for the detection of hot spots
in PV plants using drone photogrammetry. A hot spot fault is a heating effect that exists
when at least one PV cell presents a short-circuited current that is much lower than the rest
of the cells in the module. This pathology happens when the PV cell is totally or partially
fractured or electrically mismatched, resulting in power loss of 2–20% [25]. In Figure 1,
the pipeline starts with data acquisition from aerial drones using RGB and IRT images. A
photogrammetric and computer vision approach is then applied to perform self-calibration
and orientation of the images with the Structure from Motion (SfM) technique and to
generate a dense point cloud based on the multiview stereo (MVS) technique. Different
cartographic products in 2D (true orthophoto) and 3D (digital terrain and surface models,
DTM/DSM) are then obtained to support the detection of hot spots. In particular, a robust
analysis of the IRT images is performed to detect hot spots. As a result, the end user can
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assess the current state of the PV plant regarding hot spots and obtain an expert report
with the geolocation of these pathologies on the true orthoimage. Auxiliary PV plant
data (e.g., plans, technical specifications of PV panels, etc.) can be added to complete the
expert report.

Figure 1. Workflow scheme of the method developed and encoded in SunMap. SfM refers to Structure
from Motion for providing self-calibration and orientation of images. MVS refers to the multiview
stereo technique for generating dense point clouds. DTM and DSM refer to digital terrain and surface
models, respectively.

2.1. Photogrammetric Processing of Visible and Thermographic Images

An automatic photogrammetric pipeline was implemented considering the following
input data: (i) images acquired from an aerial drone with an optical Red, Green and Blue
(RGB) camera and an infrared thermographic (IRT) camera, capable of acquiring RGB
and IRT images simultaneously or acquiring RGB and IRT images in separate flights; and
(ii) the positions and orientations of images coming from the global navigation satellite
system (GNSS) and the inertial navigation unit (IMU), in a CVS or TXT file. Note that
GNSS positions should be provided with real-time kinematic (RTK) or Post Processed
Kinematics (PPK) methods [26] so that direct orientation of the RGB and IRT images can be
obtained. In this case, the fieldwork of measuring ground control points with GNSS or other
topographic methods is not needed, greatly reducing data acquisition and processing costs.

The photogrammetric pipeline is integrated with a routine developed by the au-
thors [4] based on the Structure from Motion (SfM) technique, providing a means of
determining the orientation and relative positions of the cameras, and in turn performing
self-calibration of the cameras (RGB and IRT). The photogrammetric approach allows for
the generation of a dense point cloud using the multiview stereo (MVS) technique [27].
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The first photogrammetric step comprises extraction and matching of points of interest.
For the extraction, the SIFT (Scale-Invariant Feature Transform) [28] detector/descriptor
algorithm is used, more specifically the SiftGPU library, which is an implementation
of the SIFT algorithm for CUDA-compatible systems [29]. For matching, the FLANN
technique (Fast Library for Approximate Nearest Neighbors) is used with a robust matching
strategy [30]. This robust correspondence strategy consists of performing a series of tests to
filter out erroneous correspondences. Specifically, the ratio test, the crossed matching, and
the geometric tests are used together with determination of the fundamental, homography,
and essential matrices by means of an adjustment with a Random Sample Consensus
(RANSAC) algorithm [31].

Image-based 3D reconstruction is then performed incrementally through an iterative
process consisting of relative image orientation, triangulation, and bundle adjustment [32].

Finally, the relative photogrammetric exterior orientations are transformed into an
official coordinate reference system (CRS). In this study we use the official CRS in Spain,
integrating the following CRSs: EPSG: 25830, datum ETRS89 and coordinate system UTM
zone 30; and EPSG:5782, datum Alicante and orthometric heights.

2.2. Cartographic Products Generation

Once the photogrammetry corresponding to the two cameras (RGB and IRT) is solved,
the generation of cartographic products is performed in the form of digital terrain models
(DTM), digital surface models (DSM), and true orthoimages, which are processed using
a DSM instead of a DTM, which yields a vertical view of the PV plant, eliminating panel
tilting and allowing a view of nearly any point on the ground. The DSM is used to remove
relief displacement of the PV panels from the acquired images. These true orthoimages are
used as input for assessing the presence of possible faults (i.e., hot spots) in the PV panels.

The first step is to separate the terrain from the panels to ensure better quality in DSM
generation. For this, a terrain-extraction algorithm based on the Cloud Simulation Filter
(CSF) is applied [33]. By applying this algorithm, a point cloud with the terrain and another
point cloud with the panels are obtained. Using the inverse distance interpolation method
based on nearest-neighbour search [34], DTMs are generated for both the terrain and the
panels and later merged to generate the DSM. The reason for separating the DTMs and then
merging in a DSM is that the different classes corresponding with PV panels and terrain
can have different Z coordinates for the same X,Y coordinates, allowing orthorectification
of the terrain and the PV panels and generation of the true orthoimage.

The second step is the generation of the true orthoimage (Figure 2) based on the previ-
ous DSM, which contains the height of the PV panels and thus allows precise geolocation
of the hot spots. More specifically, the process of generating true orthoimages consists of
the following steps: (i) definition of the flight path; (ii) determination of hidden areas in
the images through the Z-buffer algorithm using the DSM [35]; (iii) correction of image
distortion using the inner camera parameters from the self-calibration; (iv) orthoimage
generation; and (v) completion of the hidden areas.

The final step is to generate a final true orthoimage mosaic corresponding to the
whole PV plant. The photogrammetric process of ortho-projection basically consists of
generating an orthogonal projection, thus representing three-dimensional objects (terrain
and PV panels) in two dimensions without the perspective of the original image, which is a
central projection. This process is achieved by a two-dimensional transformation between
the original image and the corrected image (orthoimage), which is already georeferenced in
the projection plane. To carry out the processing of the orthoimage, the inverse method [36]
is used. In this case, an image with known internal and external orientation is needed, as
well as the DSM of the PV plant. Subsequently, the size of the orthoimage (resolution) is
defined according to the size of the pixel in ground units.



Drones 2023, 7, 129 6 of 20

Figure 2. True orthoimage scheme developed and encoded in SunMap.

2.3. Extraction and Detection of the 3D Geometry of PV Panels

It should be noted that the inputs of this image analysis approach are the DSM and
the true orthoimage generated from the photogrammetric process, since they enclose the
metric properties and the adequate geometric resolution to apply the process with quality,
and thus provide a better geolocation of the hot spots.

Prior to extraction and detection of the 3D geometry of the PV panels, a conceptual
model based on the geometry and semantics of the PV plant needs to be defined (Figure 3).
To this end, a coarse-to-fine approach is used for the extraction and detection of the 3D
geometry of PV panels, so that starting from the extraction of PV arrays, the detection of
PV panels, PV modules, and even PV cells can be obtained. The term “array” is used to
refer to a set of PV panels arranged in rows and columns. In turn, each of these PV panels
is made up of modules, which are each made up of an array of PV cells, also distributed in
rows and columns.

The definition of the geometry and semantics of the PV plant, as well as the area of
interest, is specified in a set of files in shapefile format that are created automatically through
the development of algorithms supported by image analysis techniques (i.e., filtering) and
feature extraction (i.e., contours and lines). This procedure is performed as follows: (i) first,
filtering of the orthoimage is performed to remove noise, followed by a search for contours
applying different thresholding of the images [37]; (ii) second, the contours obtained are
simplified using the Douglas–Peucker line simplification algorithm [38]; and (iii) very small
contours are eliminated, and contours with four vertices and whose angles are close to 90◦

are retained. For all contours, the median of their area is calculated and the panels that
are not within the tolerance sought are eliminated. Finally, to determine the contours of
the rows of panels, (iv) the modules are clustered using a density-based spatial clustering
algorithm (DBSCAN) [39].
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Figure 3. Schema of the different levels of discretization of the PV panels under study.

2.4. Correction of Thermographic Images

Good analysis of IRT images entails understanding the physics behind the IRT images
and correcting the IRT images obtained. Information about the weather, the atmosphere,
the object analysed (i.e., PV panels) and its environment is essential.

Before proceeding to calculate temperature statistics and to detect hot spots, it is
necessary to apply a series of corrections to the thermographic images. This process is
fully automatic and is based on the application of the following corrections: (i) distance
correction, which contains the distance for each visible pixel from the center of projection
of the camera to the point over the panel; (ii) incidence angle correction for obtaining
emissivity, computed using the angle formed by the line of observation with the normal to
the 3D surface of the PV panel for each visible pixel; (iii) reflection correction, which is based
on isolating the areas of the PV arrays that may have problems caused by reflections from
other panel arrays (Figure 4); and (iv) atmospheric correction, which includes correction
for temperature and relative humidity of the study area.

Figure 4. Reflection correction in thermal imagery: (a) 3D ray reflection computation and its possible
intersection with other PV panels; (b) detected and isolated areas affected by reflections in IRT images.
In green colour a reflected 3D ray without intersection with a PV panel. In red colour a reflected 3D
ray with intersection with a PV panel.
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A reflected 3D ray without intersection with a PV panel is shown in green. A reflected
3D ray with intersection with a PV panel is shown in red.

To carry out the atmospheric correction, it is necessary to know the values of tem-
perature (◦C) and relative humidity (%) at the time of acquisition [40]. Two options are
contemplated in SunMap: (i) only an estimation of an average value is available for the
entire drone flight, or (ii) these values can be provided from a meteorological station close
to the facilities of the PV plant.

The final atmospheric correction of the thermographic images is synthesized using the
following equation (Equation (1)) [6]:

Tobj =
4

√
Wtot − (1 − ε)·τ·σ·T4

re f l − (1 − τ)·σ·T4
atm

ε·τ·σ (1)

where the total radiation (Wtot) received by the IRT camera comprises the emission of the
object, ε·τ·Wobj, the emission of the surroundings reflected by the object, (1 − ε)·τ·Wrefl, and
the emission of the atmosphere, (1 − τ)·Watm.

Although there are accurate methodologies for calculating the operating temperature
of photovoltaic modules [41], the proper expression depends on the specific mounting
geometry. Equation (2) allows for the estimation of the temperature of the PV module from
basic data such as ambient temperature, irradiance, and specific parameters of the module
such as the Nominal Operating Cell Temperature (NOCT) [6]:

Tc = Ta +

(
GT

GNOCT

)
(TNOCT − Ta−NOCT) (2)

where Tc is the operating temperature of PV module, GT is the irradiance, GNOCT is the
irradiance at NOCT conditions (800 W/m2), TNOCT is the operating temperature of the PV
module at NOCT conditions (45 ◦C for the analysed module), and Ta−NOCT is the ambient
temperature at NOCT conditions (20 ◦C).

2.5. Statistical Analysis of Temperatures

Reliable hot spot detection requires an exhaustive statistical analysis. Therefore,
despite applying calibrations to the acquired images and taking into account the corre-
sponding corrections in the previous section, the detection of hot spots is applied based on
the estimation of temperature gradients, not their absolute values. To do this, robust statis-
tics (i.e., median and biweight midvariance (BWMV)) [42] are applied (Equations (3)–(5)),
supported by statistical samples at two different levels: (i) the array level, assessing all the
thermographic images that correspond to the PV array; and (ii) the panel level, analysing all
the thermographic images that correspond to a given PV panel. Note that the photogram-
metric process has been fully solved with both visible and thermographic images, making
it possible to unambiguously identify the PV panels and PV arrays in the thermographic
images. Again, this process is completely automatic, and the results are outlined in the
expert report.

BWMV =
n ∑n

i=1 ai(xi − m)2(1 − U2
i
)4(

∑n
i=1 ai

(
1 − U2

i
)(

1 − 5U2
i
))2 (3)

Ui =
µi − m
9MAD

(4)

where m is the median, n is the number of points, U is a parameter from Equation (4), µ is
the mean and MAD is the median absolute deviation, being

MAD = median
(∣∣∣Di fi − mDi f

∣∣∣) (5)
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where Dif denotes the temperature gradients and mDif is the median of the gradients in
temperatures. Finally, the value of the parameter a (Equation (3)) can be 0 or 1 depending
on the U value. If −1 ≤ U ≤ 1, a = 1, otherwise a = 0.

2.6. Hot Spot Detection and Expert Report Generation

Finally, hot spot detection requires an automatic iterative process based on the analysis
of panels extracted as described in Section 2.3 and the footprint of the IRT flight (Figure 5).
Starting with the PV panel contour coordinates, a search is performed for those thermo-
graphic images with less perspective or that are more vertical in relation to the PV panel.
As a result, more than one thermographic image can be used for hot spot detection, and
thus robust detection can be provided through the calculation of the different temperature
gradients (Section 2.5). A hot spot is considered valid if it fulfils at least two conditions:
(i) it appears in three thermographic images; and (ii) it exists at a gradient with respect to
its neighbours above a threshold, for example, 10 ◦C [43].

Figure 5. Automatic and iterative hot spot detection process developed in SunMap.

The geolocation of the hot spot in an official CRS is obtained through the photogram-
metric resolution of the process detailed in Section 2.1, together with the generation of the
expert report.

3. Case Studies

Validation of the SunMap tool was carried out in two PV plants located in the west
and east of Spain, in Caceres and Albacete, respectively (Figure 6). Both locations have
many hours of sunshine per year (>3000 h), making them ideal locations for this type
of renewable energy infrastructure. The PV plant in Caceres (Figure 7a) has a surface of
12.5 ha and contains 156 PV arrays, with power generation of 2.9 MW. The PV plant located
in Albacete (Figure 7c) has a surface of 9 ha and contains 77 PV arrays, with power genera-
tion of 3 MW. These two cases were selected based on the interest of
two different companies in checking and validating the possibilities of the tool for the
automatic inspection of PV plants.
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Figure 6. Location of the PV plants included in the present research.

Figure 7. Aerial images acquired from drones of the PV plants used as pilot cases for the validation
of the SunMap tool. (a) PV plant in Caceres, with an extension of 12.5 ha, 156 PV arrays and
power generation of 2.9 MW. (b) Aerial drone platform and sensors used in the PV plant at Caceres.
(c) PV plant located in Albacete with a surface of 9 ha, 77 PV arrays and power generation of 3 MW.
(d) Aerial drone platform and sensors used in the PV plant at Albacete.
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Another important aspect for the validation of the SunMap tool is the use of different
types of drones and sensors in each case study (Figure 7b,d). The following table (Table 1)
outlines the technical details of the different drone platforms and sensors used.

Table 1. Technical features of the drones and sensors used in the pilot cases.

Drone Platform Camera Sensors GNSS/INS Sensors

RGB IRT GNSS/RTK INS

RGB–Phantom 4
Thermal–DJI Matrice 600

FC6310R,

Resolution: 5472 × 3648 pixels

Focal length:
8.8 mm

Flir Duo Pro R

Resolution:
640 × 512 pixels

Focal length:
13 mm

GPS: L1/L2;
GLONASS: L1/L2;

Vertical 2.5 cm
Horizontal 2 cm

APX-15
RMS ERROR INS:
Roll: 0.02 Deg
Pitch: 0.02 Deg
Heading: 0.15 Deg

Condor Sony ILCE-6000
Resolution: 6000 × 4000 pixels
Focal length:
16 mm

Workswell Wiris

Resolution:
640 × 512 pixels

Focal length:
13 mm

GPS: L1/L2;
GLONASS: L1/L2;
BeiDou: B1/B2;
Galileo E1/E5a

Vertical 1.5 cm
Horizontal 1 cm

RMS ERROR INS:
Roll: 0.02 Deg
Pitch: 0.02 Deg
Heading: 0.15 Deg

For the imagery acquisition, different photogrammetric flights were planned and
executed using a tool, Mflip, developed by the authors [44]. Special attention was fo-
cused on the different characteristics of the RGB and IRT cameras (i.e., resolution, field
of view, etc.) so that the PV plants could be recorded with a single flight using both
sensors simultaneously.

Regarding navigation, both flights were executed using GNSS/INS hardware and inte-
grated navigation technology, so that the exterior orientation parameters of aerial imagery
could be used as initial approximations in the photogrammetric process. This georeferenc-
ing method, which is called direct georeferencing, has gained increasing attention in the
photogrammetry community because it does not require measuring ground control points,
allowing unattended maintenance of PV plants.

4. Results

In this section, the different results obtained at two different PV plants are described
and analysed in order to validate the in-house software.

4.1. Photogrammetric Processing of Visible and Thermographic Images

At the PV plant at Caceres, a single flight was executed with a flight height of 30 m.
A total of 25 strips were made in the W-E direction and a total of 1524 visible images and
1149 thermographic images were acquired. The ground sample distance (GSD) was 1 cm
for the visible images and 5.7 cm for the thermographic images.

At the PV plant at Albacete, two separate flights were executed with a flight height of
70 m and 25 m for RGB and IRT, respectively. As a result, a total of 236 visible images and
5313 thermographic images were acquired. The GSD was 2 cm for the visible images and
3 cm for the thermographic images. These GSDs were considered valid for the detection of
hot spots according to the specifications provided by the manufacturer and the size of the
PV cells.

All the images, together with the navigation data, constituted the input data for the
photogrammetric process in SunMap following the pipeline outlined in Figure 1. As a
result, the extraction and matching of features (Figure 8a) was applied successfully in both
visible and thermographic images using SIFTGPU [29], and image-based 3D reconstruction
was performed incrementally through an iterative process consisting of relative image
orientation, triangulation, and bundle adjustment [32] (Figure 8b).



Drones 2023, 7, 129 12 of 20

Figure 8. Photogrammetric processing in SunMap: (a) extraction of features based on SIFTGPU.
The green circles represent the extracted points in the different images. The red circle represents
the selected and matched point; (b) bundle adjustment imagery orientation based on collinearity
condition and including camera self-calibration.
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Regarding the self-calibration of cameras, the Fraser model [45] was applied to estimate
two-radial-lens distortion (k1, k2) and two-decentering-lens distortion (p1, p2) parameters
together with the focal length (f ) and the principal point displacement (cx, cy). The following
table (Table 2) outlines the inner calibration parameters for the different cameras used.

Table 2. Self-calibration of RGB and IRT cameras in the different case studies.

Location of PV Plants RGB IRT

PV plant, Albacete

f : 3549.6891 f : 792.1776
cx: −13.4458 cx: 10.1731
cy: 12.6957 cy: 4.4445
k1: −0.25872317 k1: 0.31691682
k2: 0.11303087 k2: −0.03630885
p1: −0.00101272 p1: −0.00292202
p2: −0.00031058 p2: −0.00170231

PV plant, Caceres

f : 3952.0199 f : 496.8117
cx: 2944.9719 cx: 326.6674
cy: 1915.3403 cy: 261.1664
k1: 0.05358915 k1: −0.30101814
k2: 0.03855508 k2: 0.137739510
p1: 0.00617445 p1: −0.00177455
p2: 0.00389557 p2: −0.00001426

4.2. Generation of Cartographic Products

The generation of cartographic products was focused on the generation of three-
dimensional dense point clouds using the multiple view stereo strategy, followed by the
generation of digital terrain and surface models (DTM/DSM) in raster format. Finally,
the true orthoimages were generated with an average GSD of 1 cm as a final cartographic
product for the geolocation of the hot spots.

For the Albacete PV plant, the dense point cloud obtained contained a total of
410 million points, which were later optimized to a point cloud of 5.2 million points
in order to generate both the DTM and the DSM with a GSD of 3.5 cm.

For the Caceres PV plant, the dense point cloud obtained yielded a total of 45 million
points, which were later optimized in a point cloud of 18.8 million in order to generate
the DTM and the DSM with a GSD of 10 cm. Figure 9 outlines the different cartographic
products obtained. These GSDs for the DSMs can be considered valid considering the size
of a PV cell.

Figure 9. Cont.
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Figure 9. Cartographic products resulting from SunMap: 3D point clouds obtained in the PV plants
of Caceres (a) and Albacete (b). DSM in vector format obtained at the Caceres PV plant (c). DSM in
raster format obtained at the Albacete PV plant (d). True orthoimages from visible images generated
at the PV plants at Caceres (e) and Albacete (f).

4.3. Extraction and Detection of PV Panels

The extraction and detection of PV panels was performed following a coarse-to-fine
approach applying different advanced linear feature extraction operators and using the
true orthoimages as input data, since they have good resolution and are georeferenced in
metric coordinates. The results of the discretization process for the PV panels were carried
out at three levels (Figure 10): (i) array level (in green), including the entire linear structure
composed of a series of rows and columns of panels; (ii) panel level (in red), where the
different panels were grouped by rows or columns; and (iii) module level (in yellow), where
the different modules that compose the PV panels were discretized.
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Figure 10. (a) Extraction and detection of PV panels using SunMap and following hierarchical
discretization: detection of PV arrays in green, detection of PV panels in red, and detection of PV
modules in yellow; (b) Structured information of the PV panels in vector format corresponding to PV
arrays resulting from the automatic extraction and detection process.

As a result of this process, a geospatial database was generated in shapefile format
that contains the hierarchical structure of the arrays, panels, and modules extracted and
which is also used to precisely geolocate the hot spots in the expert report.
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4.4. Hot Spot Detection and Report Generation

Finally, the hot spot detection was computed for both PV plants in UTM coordinates,
including semantic information regarding array-panel identification and robust statistical
information related to the temperature increment (10 ◦C) and affected area (m2). One of
the main advantages of the SunMap tool is the capability to apply different corrections to
the thermographic images (i.e., distance, angle, reflection and atmospheric), together with
providing a robust statistical analysis of hot spots. As a result, a new table (Table 3) has
been created including statistical information alongside the geometry of the set of pixels
corresponding to a hot spot. All this information is included in the final expert report
following the structure outlined in Figure 11.

Table 3. Geolocation of hot spots in UTM coordinates and identification of the array and
panel affected.

Location
of PV
Plants

Hot Spot Coordinates Semantic Information ∆Tµεδιαν ∆TBΩMς ∆Tµιν ∆Tµαξ Area

(X, Y, UTM) (Array/Panel) (◦C) (◦C) (◦C) (◦C) (m2)

PV plant,
Albacete

H1: (608693.292, 4298641.314) Array_2_Panel_6 14.8 0.2 14.6 15.2 0.0006
H2: (608686.307, 4298603.146) Array_9_ Panel_1 15.7 2.4 10.1 30.3 0.1514
H3: (608593.379, 4298588.754) Array_11_ Panel_4 12.1 1.5 10 16.3 0.0343
H4: (608722.99, 4298602.731) Array_16_ Panel_6 12.9 2 10 15.4 0.0184

H5: (608816.908, 4298616.944) Array_14_ Panel_1 14 2.6 10.1 20.7 0.0963
H6: (608804.4, 4298573.71) Array_20_ Panel_2 15.2 0.6 14.2 15.9 0.0099

H7: (608762.854, 4298588.594) Array_18_ Panel_5 14.7 3.3 10.4 23.2 0.0596
H8: (608684.113, 4298520.685) Array_29_ Panel_4 14.1 2.2 10.1 20.9 0.0426
H9: (608636.663, 4298534.604) Array_27_ Panel_1 13 2 10.1 17.5 0.02

H10: (608681.254, 4298528.101) Array_28_ Panel_9 12.5 2.1 10.5 15.4 0.0092
H11: (608913.738, 4298541.88) Array_42_ Panel_1 13.4 2.6 10.1 20.9 0.0879

H12: (608665.377, 4298451.152) Array_51_ Panel_1 12.5 0.2 11.8 13.5 0.0022
H13: (608677.44, 4298434.384) Array_66_ Panel_2 11.6 0.9 10 14 0.0343

PV plant,
Caceres

H1: (271960.445, 4338451.632) Array_2_ Panel_2 14.6 0.1 14.4 15 0.0986
H2: (271961.776, 4338450.219) Array_2_ Panel_6 14.8 3.3 10.8 18.3 0.011
H3: (271987.440, 4338413.552) Array_11_ Panel_3 14.1 2.7 10 22 0.8326
H4: (271967.000, 4338424.524) Array_11_ Panel_5 14 2.2 10.3 23.1 0.0983
H5: (271965.387, 4338422.592) Array_12_ Panel_6 14.5 2.5 10.4 20.3 0.0381
H6: (271919.947, 4338350.703) Array_16_ Panel_3 12.7 0.2 12.1 13.9 0.0185
H7: (271923.550, 4338333.465) Array_18_ Panel_3 13.3 1.6 10 19.4 0.1876
H8: (272004.211, 4338386.299) Array_26_ Panel_5 13.9 2.2 10 22.3 0.0946
H9: (271956.918, 4338359.317) Array_28_ Panel_9 14.3 2.4 10.3 21.7 0.0116

H10: (271988.745, 4338342.373) Array_30_ Panel_6 14.2 3 10.1 21 0.1218
H11: (271941.599, 4338307.870) Array_31_ Panel_5 10.6 0.1 10.4 10.7 0.0016
H12: (271933.203, 4338305.567) Array_31_ Panel_6 13.9 2.2 10 20.9 0.0518
H13: (271922.018, 4338306.404) Array_31_ Panel_7 11.8 1.9 10 15.8 0.0216
H14: (271975.008 4338333.946) Array_34_ Panel_7 14.5 3.6 10.6 20.8 0.048
H15: (272079.122, 4338433.789) Array_38_ Panel_7 12.7 0.3 12.4 13 0.2917
H16: (271961.229, 4338315.750) Array_51_ Panel_10 12.9 0 12.8 12.9 0.002

Figure 11. Cont.
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Figure 11. Example of an expert report produced by the SunMap tool to support maintenance
operations in PV plants.

5. Discussion

In this section, we discuss the core aspects of this article: (1) drone acquisition;
(2) photogrammetric processing; and (3) hot spot detection.

Regarding drone acquisition, multirotor and multimodal imagery (i.e., RGB and
IRT) are key starting points to which particular attention should be paid. In particular, a
flight planning mission is essential for guaranteeing automation of inspection, especially
considering the different technical features of RGB and IRT cameras in terms of resolution,
field of view, etc. In those cases where a simultaneous acquisition flight is not possible, two
different flights will be required. Our flight-planning software [44] allows dealing with all
these specifications, providing successful integration of RGB and IRT cameras.

Drone photogrammetry has successfully proven its efficiency and reliability in PV
plant inspection. Drone photogrammetry supported by SfM and MVS is autonomous and
saves time and cost; however, real-time processing is not possible, requiring postprocessing
of the multimodal dataset acquired. Although different projects have implemented aerial
drones for image acquisition, the majority did not take advantage of the full benefits of
modern photogrammetry and computer vision workflow. In particular, the images acquired
in other approaches were not orthorectified based on true orthoprojection. This prevents
making accurate measurements, which simplify quantitative assessment of defective re-
gions. These true orthoimages can be also integrated into a GIS, enabling spatial analysis
operations and establishing a regular database for the inspected PV plant.

Regarding hot spot detection, although different works have tested artificial intelli-
gence approaches, they require creating a complete benchmark, which is always a signifi-
cant drawback. To this end, a hybrid and a coarse-to-fine method seems to be an efficient
method for accurately and reliably detecting hot spot faults. RGB and IRT images comple-
ment each other, so a robust analysis can be performed to extract the different elements
and detect false hot spots. Different projects have addressed the automatic extraction of
modules, cells and defects through image processing pipelines, but noise reduction in IRT
images is often a problem for applying further processing operations such as segmentation,
edge extraction, and hot spot detection. In this regard, we considered a rigorous correction
of IRT images based on distance, reflection, atmosphere and incident angle. Last but not
least, a robust statistical analysis was used for the detection of hot spots in IRT images.
Thresholds were selected based on statistical assumptions regarding the temperature distri-
bution, as well as additional assumptions related to the correction of reflection from other
PV modules.
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6. Conclusions

This study presents a rigorous method for detecting hot spots in PV plants using an
in-house software application, SunMap, which been proposed and validated. SunMap
is a novel tool based on drone photogrammetry that is able to automatically detect and
geolocate hot spot faults in PV plants. Moreover, the tool enables the generation of high-
detailed cartographic products by means of 3D models and true orthoimages, which
complement the maintenance and inspection operations required for this type of critical
infrastructure. The tool was successfully validated in two different PV plants to provide
accurate and reliable checking of hot spot faults.

In summary, the principal conclusions based on the results obtained with the SunMap
tool are:

• A rigorous photogrammetric approach able to deal with RGB and IRT images
is provided.

• 3D dense models and true orthoimages are generated automatically with high quality
and metric properties.

• Automatic extraction and database coding of the structural information regarding the
PV panels is integrated into the software, guaranteeing subpixel precision.

• Important thermographic corrections and robust statistical analysis are encoded within
the software, providing rigorous thermographic treatment of images.

• The hot spot detection is reliable and accurate, and is reinforced with an expert report
which integrates all the information required for maintenance operations.

In terms of future perspectives, the classification of pathologies according to IEC TS
62446-3, including Deep Learning techniques using geometric and radiometric information
as input data, will be considered as next steps.
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