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Abstract: Power line inspection is an important part of the smart grid. Efficient real-time detection of
power devices on the power line is a challenging problem for power line inspection. In recent years,
deep learning methods have achieved remarkable results in image classification and object detection.
However, in the power line inspection based on computer vision, datasets have a significant impact
on deep learning. The lack of public high-quality power scene data hinders the application of
deep learning. To address this problem, we built a dataset for power line inspection scenes, named
RSIn-Dataset. RSIn-Dataset contains 4 categories and 1887 images, with abundant backgrounds.
Then, we used mainstream object detection methods to build a benchmark, providing reference for
insulator detection. In addition, to address the problem of detection inefficiency caused by large
model parameters, an improved YoloV4 is proposed, named YoloV4++. It uses a lightweight network,
i.e., MobileNetv1, as the backbone, and employs the depthwise separable convolution to replace the
standard convolution. Meanwhile, the focal loss is implemented in the loss function to solve the
impact of sample imbalance. The experimental results show the effectiveness of YoloV4++. The mAP
and FPS can reach 94.24% and 53.82 FPS, respectively.

Keywords: power line inspection; insulator detection; deep learning; convolutional neural network

1. Introduction

With the continuous construction of power lines and the innovative development of
power grid technology, intelligent power line inspection technology based on robots and
unmanned aerial vehicles (UAVs) has been widely used. As an important infrastructure
of the power grid system, insulators usually play the role of electrical insulation and line
support. However, problems such as fouling and chipping easily occur due to the long-term
exposure outside, threatening the security and stability of power grid operation. Therefore,
regular line patrol inspection is necessary for line safety [1].

Generally, there are mainly two types of power line inspection methods, i.e., manual
inspection and robot inspection. The traditional manual inspection is gradually declining
because of low efficiency, low precision, and high labor consumption [2]. Additionally,
when facing complex terrain, such as the power lines built in valleys, as shown in Figure 1a,
manual inspection is risky and costly. In recent years, the rapid developments of UAV
technology and computer vision technology have brought new opportunities for power
line inspection [3,4]. Insulator detection based on UAV aerial images is of great significance
for intelligent power inspection. It can greatly save manpower resources and improve
the monitoring efficiency. In some areas that are difficult to reach or in poor natural
environments, UAVs are used for the insulator detection task, as shown in Figure 1b.
Nowadays, the most common method of UAV patrols of power lines is taking insulator
images during flight before importing data to ground terminals for detection. Although
the patrol efficiency has been improved compared with manual patrol, there is still space
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for progress. In order to further raise the inspection efficiency of UAVs, it is necessary to
enable UAVs to conduct real-time insulator detection tasks during flight tasks [5].
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Figure 1. Some power line inspection scenes: (a) manual inspection in a valley; (b) UAV inspection in
severe weather.

At present, most object detection studies rely on large-scale and high-quality training
datasets [6]. Although a variety of public datasets, e.g., Pascal VOC [7], ImageNet [8],
COCO [9], ViViD++ [10], and KAIST [11], are available, there are not many line patrol
inspection datasets. Generally, the insulator inspection images are obviously different
from the images of the traditional datasets. The main differences are as follows: (1) the
acquisition method of insulator inspection images is more difficult in real electric scenes
because the power line device images can only be collected by professionals under the
authorization of the power grid company. (2) The insulator inspection images have different
backgrounds. Insulator datasets are specially used for power line inspection, containing
more rivers, farmland, towers, houses, and other backgrounds. (3) The characteristics of the
targets are diverse. Insulators show relatively different scale changes in the images taken
by UAVs, and they are usually narrow and long, while the targets in traditional datasets
have various shapes.

Considering the disadvantages of these public datasets and application status of deep
learning methods in the insulator detection field, we summarized the existing problems
into two major points [12].

• The object detection models based on pre-training on the traditional datasets are
not ideal when directly applied to the insulator detection. Therefore, the insulator
detection task requires new high-quality datasets for model training and testing.

• Although the existing object detection methods can be transferred to insulator de-
tection, there is still a lack of efficient models, evaluation statistics, and benchmarks
specifically for insulator object detection.

To address the above problems, we construct an insulator dataset (RSIn-Dataset)
containing 1887 images and four types of insulator objects, i.e., composite insulator I,
composite insulator II, glass insulator, and porcelain insulator. In addition, we make a
qualitative and quantitative comparison with other datasets in terms of the number of
object samples, the number of images, the number of categories, image resolution, etc.
Then, we propose an insulator detection method based on YoloV4 and conduct experiments
with Single Shot MultiBox Detector (SSD) [13], Faster R-CNN [14], region-based fully
convolutional networks YoloV3 [15], YoloV4 [16], Yolo X [17], etc. Furthermore, an insulator
detection benchmark is constructed for RSIn-Dataset.

In summary, the main contributions of this paper are as follows:

• We construct a novel dataset (RSIn-Dataset) for insulator detection in the electric power
patrol scene. Compared with other datasets, RSIn-Dataset has more special power
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scenarios and diversity of objectives, which can provide an important foundation for
the intelligence of UAV electric power patrol based on deep learning.

• We propose the YoloV4++ network by improving YoloV4 for insulator detection. The
experimental results show that YoloV4++ achieves better performance compared to
other advanced networks on RSIn-Dataset.

• With the analysis of several baseline methods for object detection, the benchmark of
RSIn-Dataset is constructed, which provides an important reference for future work.

2. Related Work

This section mainly discusses public datasets of object detection and networks for
insulator detection in power line inspection. We summarized the related works from these
two aspects.

2.1. Existing Datasets for Object Detection

The most common datasets for object detection are as follows:

• Pascal VOC Dataset: This dataset “http://host.robots.ox.ac.uk/pascal/VOC/ (ac-
cessed on 10 November 2022)” is used as a standard dataset for image detection
and classification. There are two versions, i.e., voc2007 and voc2012. Voc2007 has
9963 images, while voc2012 has 17,125 images. The dataset contains 20 categories
which are common in life, such as a person, bicycle, cat, bottle, etc. It has horizon-
tal images with a size of about 500 × 375 pixels and a vertical image size of about
375 × 500 pixels. This dataset is widely used in the evaluation criteria for various
object detection methods.

• Microsoft Common Objects in Context (COCO): This dataset “http://mscoco.org/
(accessed on 10 November 2022)” is a large-scale dataset available for image detection,
semantic segmentation, material recognition, and image description. It has more than
330,000 images, of which 220,000 have annotated labels, containing 1.5 million targets,
80 object categories, and 91 material categories. Due to its abundance of images, deep
learning methods usually carry out pre-training based on it.

• ImageNet Dataset: This dataset “https://image-net.org/ (accessed on 10 November
2022)” has more than 14 million images, covering more than 20,000 categories, of
which more than 1 million images have clear categories and boundary box annotation.
Deep learning methods usually choose a subset from the whole dataset for training
and testing.

• Dataset for Object Detection in Aerial Images (DOTA Dataset): This dataset “https:
//captain-whu.github.io/DOTA/dataset.html (accessed on 10 November 2022)” is a
common dataset for aerial remote sensing image object detection. There are 2806 aerial
images with image resolution ranging from 800 × 800 to 4000 × 4000, containing
15 categories for a total of 188,282 instances. The images mainly contain large objects
such as an airplane, ship, port, basketball court, etc. It is characterized by large
changes in image spatial resolution and contains a large number of densely arranged
small objects.

• Git Dataset: This dataset “https://github.com/InsulatorData/InsulatorDataSet (ac-
cessed on 10 November 2022)” is publicly available, with 848 images, divided into
normal insulators (600 images) and insulators with defects (248 images). Among
them, the defect insulators are synthetic images. The dataset contains only one type of
insulator and insufficient kinds of power line inspection scene backgrounds. Therefore,
the application scope of this dataset is limited in the insulator detection.

However, public datasets specific for insulator detection are still unavailable for the
development of deep learning in the insulator detection field. Therefore, it is necessary to
make a new insulator detection dataset.

http://host.robots.ox.ac.uk/pascal/VOC/
http://mscoco.org/
https://image-net.org/
https://captain-whu.github.io/DOTA/dataset.html
https://captain-whu.github.io/DOTA/dataset.html
https://github.com/InsulatorData/InsulatorDataSet
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2.2. Insulator Detection Methods

The previous power line inspection task relies on manpower. The patrol inspectors
wear protective clothing and climb the insulator power tower with special equipment
to diagnose the insulator. This is quite labor-consuming and inefficient [18]. With the
development of the UAV, intelligent power line inspection has been rapidly promoted.
UAVs are always employed to take images of power line devices. Then, the patrol inspectors
diagnose the insulator through these images and raise the efficiency [19]. So, how to realize
autonomous inspection of UAVs becomes the challenging problem.

In recent years, many scholars have applied the related object detection methods to
the power line inspection. Wang et al. [20] designed an insulator fault detection network
based on the convolutional neural network for railway insulators. The insulator detection
network uses low-resolution images for position detection. The classification network uses
high-resolution insulator images for fault classification. This network design improves
the accuracy of insulator detection. Huang et al. [21] proposed a deep learning model
based on multi-feature fusion to identify aerial insulator faults. The network integrates
the manually extracted color and local binary pattern (LBP) texture features to more fully
extract the effective features of the image. Sampedro et al. [22] divided the insulator
string based on the fully convolutional network at first, then located and identified the
insulator target. Kang et al. [23] proposed an insulator detection network based on the
Faster R-CNN and multi-task neural network. This network can simultaneously perform
insulator segmentation and defect detection tasks. Li et al. [24] designed a helmet detection
network based on YoloV3. The k-means++ clustering algorithm is used to optimize the
selection method and focal loss is introduced to reduce the weight of simple backgrounds.
To reduce parameters of object detection models, Han et al. [25] improved a lightweight
detection method based on YoloV4. The network uses only two feature extraction layers
of the backbone for feature fusion, which improves the detection speed. Lin et al. [26]
combined the Faster R-CNN module and the U-net module [27] for insulator detection.
The Faster R-CNN module is used for object detection. The U-net module is used for pixel
classification to achieve the localization of damaged insulators in aerial images. Considering
the balance between detection speed and accuracy, Luo et al. [28] improved a method
based on YoloV3, which adopts multi-scale prediction network architecture. Lin et al. [29]
proposed a detection method based on the lightweight network MobileNetV1 [30] for
product quality inspection.

However, most of the above proposed or improved networks improve the accuracy
of the network through feature fusion or deepening the network depth, which leads to
more model parameters and slow detection speed. Thus, they are not suitable for the
deployment of edge devices. Some studies improve the model detection speed through the
lightweight network model. However, that causes a decrease in accuracy, which cannot
achieve real-time intelligent power line inspection. A few studies have aimed to achieve a
balance between model speed and accuracy, but the experimental performance needs to be
further improved [31].

Considering the shortcomings of the above research methods, it is challenging to
propose a lightweight insulator detection method that can efficiently detect targets in real
time during power line inspection.

3. Dataset Construction
3.1. Insulator Image Acquisition

RSIn-Dataset consists of three parts, i.e., Part-1, Part-2, and Part-3. For Part-1, the
images are taken by the DJI M300RTK UAV work platform, with a total of 1000 images. The
image size is 5472 × 3078. In the insulator image acquisition period, we use DJI M300RTK
UAV to take aerial images of insulators at different places and at different times. DJI
M300RTK UAV is 810 × 670 × 430 mm in size and empty weight is up to 3.6 kg. It has
a maximum load of 2.7 kg and 55 min long endurance. According to the specific task, it
can carry different pan, tilt, and zoom (PTZ) movements to work, as shown in Figure 2a.
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Here, we choose a Zenmuse P1 camera. The Zenmuse P1 camera is 152 × 110 × 169 mm in
size and weighs about 930 g. The maximum resolution is up to 5472 × 3648. After loading
the Zenmuse P1 camera, we controlled a UAV to patrol power lines to take the insulator
images, as shown in Figure 2b. For Part-2, the images are from the Git dataset, with a total
of 848 images. The image size is 1152 × 864. For Part-3, the images are 39 insulator images
from the Internet, whose maximum size is up to 7360 × 4912. We mark the insulators in
each image of our dataset.
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In total, RSIn-Dataset contains 1887 images and 3286 insulator targets, with image
resolution ranging from 1152 × 864 to 7360 × 4912. RSIn-Dataset contains insulators of
different sizes in the power line. We divide them into four types of insulators of different
colors and shapes, i.e., composite insulator I, composite insulator II, glass insulator, and
porcelain insulator, as shown in Figure 3. In addition, the backgrounds are complex and
diverse, covering rivers, farmland, towers, and houses, which are very representative.
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3.2. Dataset Labeling

Here, we use LabelImg “https://github.com/tzutalin/labelImg (accessed on 5 July
2022)”to label the datasets. During making labels, we use rectangular bounding boxes
to completely cover the object, labeled: “insulator1”, “insulator2”, “insulator3”, and “in-
sulator4”. The four labels represent composite insulator I, composite insulator II, glass
insulator, and porcelain insulator, respectively, as shown in Figure 4. Moreover, since the
insulator strings in the dataset are two columns, we label them in the same rectangular
box. In addition, insulator strings with a degree of being covered greater than 1/3 are
not marked.
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To ensure the quality of the insulator dataset, we employ 3 object detection practi-
tioners for the data labeling and strictly perform the correct labeling procedure. In the
first round of labeling, each image is manually labeled by 3 researchers, including the
object category labels and the coordinates of the rectangular box. In the second round of
inspection, the researchers check the data label and vote whether the image is qualified.
Finally, we label a total of 3,286 object bounding boxes with four categories.

3.3. Dataset Statistical Analysis

RSIn-Dataset contains a large number of labeled samples. The minimum number of
samples for each insulator category exceeds 300. Figure 5 shows the number and proportion
of samples for each type of insulator. Specifically, 1454 samples are composite insulator I,
767 samples are composite insulator II, 736 samples are glass insulator, and 329 samples
are porcelain insulator.
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To show the characteristics of RSIn-Dataset, we make a comparison with other datasets,
as shown in Table 1. The public object detection datasets Pascal VOC 2007, COCO, and
ImageNet basically contain no power inspection scenarios and insulator images. Actually,
in object detection field, the model is usually pre-trained on the above public datasets.
Compared with the DOTA dataset, although it is commonly used as a dataset for object
detection of remote sensing images, it contains few insulator images. In addition, the
insulator target is small in those images. Compared with the Git dataset, RSIn-Dataset
contains more abundant background information. Each type of sample comes from different
power line distribution scenes, including mountains, suburban fields, and river areas.
These scenes are closer to the real power line inspection scenes. Additionally, RSIn-Dataset
contains partial small targets and overlapping targets, which increases the difficulty of the
insulator detection task. Therefore, RSIn-Dataset can help to evaluate the advantages and
disadvantages of different object detection methods.

Table 1. Comparisons of RSIn-Dataset and other datasets.

Dataset Pascal VOC 2007 COCO ImageNet DOTA Git Ours

Electric Scene No No No No Yes Yes

Resolution 375 × 500 / / 800 × 800
4000 × 4000 1152 × 864 1152 × 864

7360 × 4912

Number of Categories 20 91 20,000+ 15 1 4

Number of Images 9963 330,000+ 14,000,000+ 2806 848 1887

Number of Samples 24,640 1,500,000+ 1,000,000+ 188,282 1262 3286

Number of Insulators Few Few Few Few 1262 3286

4. Baseline Methods and The Proposed YoloV4++
4.1. Baseline Methods

To better evaluate the effect of different object detection methods and provide a
reference for power device target detection community, we introduce the baseline methods,
i.e., SSD, Faster R-CNN, YoloV3, YoloV4, and Yolo X, to construct the benchmark.

The SSD algorithm mainly has three steps [13]. The SSD algorithm sends an image to
the backbone network to first extract effective feature maps. Then, six appropriate feature
maps from the backbone are selected. Different scale bounding boxes are set on the six
selected feature maps. The SSD algorithm performs category prediction and position regres-
sion tasks on the bounding boxes respectively. Finally, the detection boxes are generated
after using non-maximum suppression (NMS) strategy to screen the bounding boxes.

The Faster R-CNN algorithm is mainly divided into four steps [14]. The image is sent
to the backbone network to first extract an effective feature map. Then, the proposals are
extracted by the region proposal network (RPN) module from the feature map. Next, the
feature map from the backbone network and proposal information from the RPN module
are fused in the region of interest (ROI) pooling layer. Different scales of proposal feature
maps are generated. Finally, Faster R-CNN obtains the detection boxes after calculating the
feature vector from the ROI pooling.

YoloV3, YoloV4, and Yolo X have three main steps [15–17]. In the first two steps,
these algorithms first obtain effective feature maps from the backbone network. Then,
three feature maps are selected to build the feature pyramid [32]. The three selected feature
maps are respectively located in the shallow, middle, and deep layers of the backbone
network, which can help to realize the feature fusion. The feature pyramid outputs three
different scale feature maps, which undertake predicting objects of different scales. In the
third step, YoloV3 and YoloV4 realize both category prediction and position regression
tasks simultaneously with a convolutional branch [33,34]. However, category prediction
and position regression are implemented with two separate convolutional branches in Yolo
X [35,36].



Drones 2023, 7, 125 8 of 22

For the above detectors, we use stochastic gradient descent (SGD) as a backpropagation
algorithm and progressively reduce the learning rate. Considering the network depth and
other factors of each detector, we appropriately set iterative steps and initial learning rates
to ensure the convergence of the network. For relatively deep networks, a small initial
learning rate is set to avoid gradient bursting. Each detection algorithm is trained for
100 epochs, with the initial learning rate set to 1 × 10−3 and 1 × 10−4, respectively. Then,
the learning rate drops to a tenth from the 51st epoch. The hyperparameters of the 5
detectors are shown in Table 2.

Table 2. Hyperparameters in the training.

Hyperparameters SSD Faster R-CNN YoloV3 YoloV4 Yolo X

Epoch 100 100 100 100 100
Initial learning rate 0.001 0.0001 0.001 0.0001 0.001

Batch size 4 4 4 4 4
Momentum 0.9 0.9 0.9 0.9 0.9

IoU threshold 0.5 0.5 0.5 0.5 0.5

4.2. The Proposed Method

The flowchart of our work is shown in Figure 6. It contains two parts: dataset
construction (Figure 6a) and detection network (Figure 6b). In the dataset construction part,
UAV-based insulator images of power line inspection and images from the Git dataset and
the Internet are collected. After labeling these images, RSIn-Dataset is constructed. Then,
the detection network is trained and tested based on RSIn-Dataset. The insulator images
are sent to YoloV4++ to extract feature maps. After calculating the feature vector, the final
category and position are outputted from YoloV4++.
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4.2.1. The Structure of the Proposed YoloV4++

YoloV4++ is a lightweight network algorithm based on YoloV4. We adopt MobileNetv1
as the backbone of YoloV4++, and the depthwise separable convolution is employed in
the subsequent 3 × 3 and 5 × 5 standard convolution. Additionally, the focal loss function
is used for the network loss calculation. The improved object detection method is named
YoloV4++, whose framework is shown in Figure 6b.

YoloV4 uses the Cross Stage Partial Dark Network (CSPDarkNet) as the backbone
network. The CSPDarkNet extracts effective feature maps through the stack of residual
block modules. It is the standard convolution in these residual block modules that brings
huge model parameters. As we know, MobileNetv1 [30] is a lightweight neural network. It
is based on the depthwise separable convolution that decomposes the standard convolution
into a depthwise convolution and a pointwise convolution with a kernel of 1 × 1, as shown
in Figure 7.
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The computational cost of the depthwise separable convolution is much lower than
that of the standard convolution. One convolutional layer is parameterized by its input
channel M, output channel N, kernel size Dk × Dk, and input layer size DF × DF.

Standard convolution multiplies the corresponding values of the convolution filters
and the input image, then sums them, as shown in Figure 8a. The calculation of standard
convolution C1 is:

C1 = M × Dk × Dk × N × DF × DF. (1)
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convolution called pointwise convolution in depthwise separable convolution.

Depthwise convolution is applied to each channel of the input image, as shown in
Figure 8b. The pointwise convolution combines the channel output with a convolution
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kernel size of 1 × 1, as shown in Figure 8c. The calculation of depthwise separable
convolution C2 is:

C2 = M × Dk × Dk × DF × DF + M × N × DF × DF. (2)

Through (1) and (2), we can compare the calculated amount between depthwise
separable convolution and standard convolution:

c2

c1
=

M× DK × DK × DF × DF + M× N × DF × DF
M× Dk× Dk× N × DF× DF

=
1
N

+
1

D2
k

(3)

Generally, the output channel N is relatively large and the kernel size Dk is set to 3.
Therefore, we can know that the network constructed by depthwise separable convolution
is about 1/9 that by the standard convolution, which greatly reduces the model parameters.

4.2.2. Focal Loss for Insulator Detection

YoloV4 uses multi-scale features to detect targets of different sizes. However, most of
the detection boxes contain no target, so they are labeled as negative samples in training.
The imbalance in the number of positive and negative samples causes negative samples to
dominate the direction of the gradient update, limiting the network learning ability.

Additionally, YoloV4 calculates the category confidence loss based on the cross entropy
function. The cross entropy function is shown in Equation (4):

CE(Pt) = −logPt, (4)

where CE is the cross entropy loss and Pt is the probability of positive and negative samples.
The total loss is added with the same weight for all samples, whether it is easy or difficult
to classify. In the case of an imbalance of positive and negative samples, the training
model will be overfitting for the negative samples and the positive samples cannot be
effectively trained.

To address these two problems, we introduce the focal loss to optimize the loss function
of YoloV4. The loss function of YoloV4 is composed of a multi-part loss-weighted sum, as
shown in Equations (5)–(8). The specific calculation equations refer to [14]:

Loss = loss_loc + loss_con f + loss_cls, (5)

loss_loc = ωcoord ×
S×S
∑

i=0

B
∑

j=0
1obj

i,j

×(2− wi × hi)
[(

xi − x′i
)2

+
(
yi − y′i

)2
+
(
wi − w′i

)2
+
(
hi − h′i

)2
]
,

(6)

loss_con f =
S×S

∑
i=0

B

∑
j=0

1obj
i,j × (−logPt) + ωnoobj ×

S×S

∑
i=0

B

∑
j=0

1noobj
i,j × (−logPt), (7)

loss_cls = ωcls ×
S×S

∑
i=0

B

∑
j=0

n

∑
1

1obj
i,j × ti

(
−logt′i

)
, (8)

where Loss is the total loss of YoloV4, loss_loc is box regression loss, loss_con f is confidence
loss, and loss_cls is category loss. ωnoobj, ωcoord, and ωcls are the weight coefficients. S is
the grid size, B is the number of bounding boxes, i and j are the horizontal and vertical
coordinates of the grid. 1obj

i,j and 1noobj
i,j refer to 1 and 0 when the (i, j) grid has an object. xi,

yi, wi, hi are the prediction values of detection boxes. x′i , y′i, w′i , h′i are the true values of
detection boxes. n is the number of categories. ti is the true value of each category and t′i is
the prediction value of each category.
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The contribution of the positive and negative sample is in confidence loss of the total
loss results, we employ the focal loss [37] in this part. The focal loss function is shown in
Equation (9):

FL = −αt1− Pt
γ logPt. (9)

In Equation (9), αt is the equilibrium parameter, γ is the modulation coefficient, and
Pt is the probability of positive and negative samples. By adjusting the parameter αt, we
can control the contribution of the positive and negative samples to the confidence loss. In
addition, the contribution proportion of difficult or easy samples in the confidence loss can
be controlled by the parameter γ. When γ > 0, the loss of easily classified samples will be
reduced while the counterpart of hard to classify samples will increase. Thus, the learning
ability of the model for samples can be enhanced. We set αt to 0.25 and γ to 2 during the
experiment. Total YoloV4++ algorithm loss and Focal loss_con f are shown in Equations
(10) and (11):

Loss_new = loss_loc + Focal loss_con f + loss_cls. (10)

Focal loss_con f =
S×S
∑

i=0

B
∑

j=0
1obj

i,j × (−logPt)× αt(1− Pt)γ

+ωnoobj ×
S×S
∑

i=0

B
∑

j=0
1noobj

i,j × (−logPt)× αt(1− Pt)γ
(11)

where Loss _new is the total loss of YoloV4++, loss_loc is box regression loss, focal loss_con f
is confidence loss based on focal loss, and loss_cls is category loss.

4.2.3. Implementation and Evaluation Metrics

To test the YoloV4++ and build a benchmark for RSIn-Dataset, we train and test
mainstream algorithms (SSD, Faster R-CNN, YoloV3, YoloV4, and Yolo X) on RSIn-Dataset.
Using the 1,887 images in the dataset, the training set, validation set, and test set are
randomly divided in an 8:1:1 ratio. All detector models are pre-trained on Pascal VOC 2007.
Additionally, the training and testing images are resized to a fixed size of 300 × 300 pixels
for SSD, 600 × 600 pixels for Faster R-CNN, 416 × 416 pixels for YoloV3 and YoloV4, and
640 × 640 pixels for Yolo X.

The experimental hyperparameters of YoloV4++ are as follows. It is trained for
100 epochs on the dataset with an initial learning of 1 × 10−2. Then, the learning rate
decreases to 1% of the original from the 51st epoch. Batch size is set to 4. Momentum and in-
tersection of union (IoU) threshold are set to 0.9 and 0.5, respectively. The hyperparameters
of the other algorithms are shown in Table 2.

All evaluations are carried out on Intel Core i7-3930 k (3.80 GHz) CPU (24 GB mem-
ory). All algorithms are implemented under the Ubuntu operating system based on the
PyTorch framework.

Recently, the values of average precision (AP) and mean average precision (mAP) have
often been used to evaluate the performance of the object detection methods. Therefore,
to compare the performance of the mainstream object detection methods on RSIn-Dataset,
we use AP and mAP to evaluate the detection results for each category of the above
models separately.

The average precision (AP) is calculated through precision (P) and recall (R), as shown
in Equations (12)–(14). Mean average precision (mAP) is obtained according to the AP of
each category, as shown in Equation (15):

P =
TP

TP + FP
, (12)

R =
TP

TP + FN
, (13)

AP =
∫ 1

0
P(R)dR, (14)
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mAP =
∑ AP

N(class)
. (15)

where TP is the number of samples which are detected consistently with the real cate-
gory. FP is the number of samples which are detected inconsistently with the real cate-
gory. FN is the number of samples which are mis-detected. N (class) is the number of
sample categories.

We used two metrics in the next evaluation, i.e., mAP and COCO mAP. The mAP is
calculated at IoU of 0.5, while COCO mAP is averaged over multiple IoU values, i.e., ten
IoU thresholds from 0.5 to 0.95 with equal gap of 0.05.

The detection speed is also selected as an evaluation standard of the model perfor-
mance. The larger the number, the faster the detection speed. The calculation equation is as
shown in Equation (16):

FPS =
Num(image)

Time
, (16)

where Num (image) is the number of detected images and Time is the time cost of the
detection process.

5. Results and Discussion
5.1. Ablation Studies

We studied the improvement strategies in YoloV4++ to prove the effectiveness of these
strategies, as shown in Table 3. From Table 3, we can make the following conclusions.

Table 3. Ablation studies on RSIn-Dataset.

Method Focal loss MobileNetv1 COCO mAP (%) Param (MB) FPS

YoloV4 No No 50.56 245.53 17.01
YoloV4+ No Yes 48.42 48.42 54.74

YoloV4++ Yes YeS 55.64 48.81 53.82

1. YoloV4+ employs MobileNetv1 as the backbone network, which brings a reduction
in model parameter size. The model size of YoloV4+ is about 1/5 that of YoloV4.
For detection accuracy, compared with YoloV4, YoloV4+ decreased COCO mAP by
about 1.5%, while YoloV4+ achieves a huge improvement in the FPS from 17.01 to
54.74. According to the comparison of YoloV4 and YoloV4+, we can see that using
MobileNetv1 as the backbone network can greatly improve the efficiency performance.
It proves that the lightweight backbone network can effectively improve the model
processing efficiency and significantly reduce the model size with a good accuracy for
insulator detection.

2. Compared with YoloV4+, YoloV4++ introduces the focal loss to alleviate the problem
of positive and negative sample imbalance, increasing COCO mAP by 6.54% and
model size by 0.39MB. In addition, YoloV4++ has FPS only 0.92 less than YoloV4+.
Considering the efficiency, accuracy, and model size, this strategy is effective, which
has an obvious accuracy improvement and a very small reduction in efficiency for
insulator detection.

According to the APi metric, we can see the difference between the mean precisions of
each category. YoloV3, YoloV4, and YoloV4 + algorithms perform well on the composite
insulator I category, as shown in Table 4. This phenomenon benefits from the composite
insulator I group having more samples. YoloV4, YoloV4+ and YoloV4++ calculate the total
loss based on the cross entropy function, which causes the model learning more biased to
the category that has more samples.

After introducing the focal loss, the api of each category of insulator decreases. We
can see this change more intuitively in Figure 9. The mean precision of each insulator is
closer to the mAP. This variation indicates that YoloV4++ can more reasonably learn from
different insulator samples.
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Table 4. The difference between APi and mAP of insulators for different methods. The api (i = 1, 2,
3, 4) represents the difference between APi and mAP, where APi (i = 1, 2, 3, 4) refers to the average
precision of composite insulator I, composite insulator II, the glass insulator, and the porcelain
insulator, respectively.

Method mAP (%) ap1 ap2 ap3 ap4

YoloV3 75.52 +4.29 −6.93 +2.18 +0.44
YoloV4 91.93 +4.38 −2.50 +2.72 −4.21

YoloV4+ 90.24 +5.64 −1.30 +3.54 −7.89
YoloV4++ 94.24 +1.08 −3.03 −0.03 +1.98
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5.2. Results and Benchmark
5.2.1. Qualitative Evaluation

In order to carry out qualitative analysis of the performance of different detectors, we
show the object detection results of five baseline methods in four categories of insulator de-
tection scenes. From the comparison in Figure 10, we can know that complex backgrounds
will lead to decreasing performances of insulator detection. The interference of the back-
ground is mainly due to the existence of a large amount of noise, which causes network to
struggle to fully extract the effective information of the image. Thus, the detection abilities
of different methods can be compared and evaluated.

1. In ordinary scenes without complicated backgrounds, such as Figure 10a–d, SSD,
Faster R-CNN, YoloV3, and YoloV4 can identify insulator targets. However, the
category confidence of each target is generally low. This phenomenon indicates that
the identification ability of these models is not good enough, and they easily make
mistakes when working with a complex background, such as in Figure 10d,f. Yolo X
and our algorithm show a very good recognition ability in this simple scenario. They
can complete the detection task with no error detection or mis-detection situation.
Additionally, the category confidence is generally high, close to 1.

2. In the scenario with dense insulator targets, as shown in Figure 10d, some baseline
methods miss real insulator targets when detecting. In Figure 10d, the SSD algorithm
misses the insulator on the lower right side of the image. Faster R-CNN, YoloV3, and
YoloV4 performed poorly. The category confidence of some insulator targets is just
over the threshold. In this scene, Yolo X and our algorithm still perform very well.
They maintain a high category confidence in identifying the insulator target with no
mis-detection or error detection.

3. With dense insulator targets against a complex background, the detection effect of
SSD, Faster R-CNN, YoloV3, and YoloV4 algorithms is worse. As shown in Figure 10f,
in the case where the insulators are dense and mutually masked, the YoloV4 algorithm
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misses the insulator target. Although YoloV4 has no mis-detection in the scenario
as in Figure 10d. This reflects that dense target detection and how to correct the
background and foreground are still the goals that need to be pursued. Our algorithm
adapts well, maintaining high category confidence to detect each insulator target with
no error detection.
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Figure 10. Detection results of each type of insulator against different backgrounds: (a) single
composite insulator I; (b) multiple composite insulator I; (c) single composite insulator II; (d) multiple
composite insulator II; (e) glass insulator; (f) porcelain insulator. The text in the upper right corner
of each image represents the algorithm adopted. Red, green, cyan, and purple boxes represent
composite insulator I, composite insulator II, glass insulator, and porcelain insulator. Blue boxes
represent the ground truth of the insulators. Yellow boxes represent the missed insulators.

From the category confidence of each insulator, we can also know that small insulator
targets acquire lower category confidence. Insulator targets which occupy more space in the
image always have clearer information about color and shape than small insulator targets.
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So, insulator detection networks can extract effective features and identify them well. In
addition, in Figure 10b,d,e, we can see the phenomenon more clearly for the multiple
insulator scenes. The category confidence of small insulator targets is always lower than
close views of insulators. Although our method detects each insulator target with no
mis-detection, the category confidence of small insulators is lower. So, it is necessary to pay
attention to the detection of small objects for handling some extreme situations.

5.2.2. Quantitative Evaluation

In order to carry out qualitative analysis of the performance of different detectors, we
evaluate and compare the performance of five detectors by AP, mAP, and COCO mAP
metrics. Additionally, we list the parameter sizes of each detector model and calculate
the number of pictures detected per second of each model. Table 5 shows the specific
performance statistics of different detectors, where APi (i = 1, 2, 3, 4) refers to the average
precision of composite insulator I, composite insulator II, the glass insulator, and the
porcelain insulator, respectively.

Table 5. Performance of object detection algorithms.

Method COCO mAP (%) mAP (%) AP1 AP2 AP3 AP4 Param (MB) FPS

SSD 44.54 84.98 87.80 80.77 80.25 91.07 99.7 35.41

Faster R-CNN 54.58 92.72 90.97 88.42 95.42 96.05 522.91 4.56

YoloV3 42.52 75.52 79.81 68.59 77.70 75.96 236.32 22.04

YoloV4 50.56 91.93 96.31 89.43 94.65 87.72 245.53 17.01

YoloV4+ 49.10 90.24 95.88 88.94 93.78 82.35 48.42 54.74

Yolo X 56.51 93.33 95.37 92.34 95.22 90.40 34.21 38.46

YoloV4++ 55.64 94.24 95.32 91.21 94.21 96.22 48.81 53.82

As shown in Table 5, the mAP values of the seven networks are: SSD 84.98%, Faster
R-CNN 92.72%, YoloV3 75.52%, YoloV4 91.93%, YoloV4+ 90.24%, Yolo X 93.33%, and
YoloV4++ 94.24%. The FPS values of the seven networks are: SSD 35.41, Faster R-CNN
4.56, YoloV3 22.04, YoloV4 17.01, YoloV4+ 54.74, Yolo X 38.46, and YoloV4++ 53.82. Among
them, Yolo X has the best performances in COCO mAP and Param. YoloV4+ is the best in
FPS. However, our method remains ahead on mAP, and FPS is 53.82, ranked second. Thus,
as YoloV4++ achieves a good trade-off between mAP and FPS, our proposed network may
be more advantageous than the compared networks (SSD, Faster R-CNN, YoloV3, YoloV4,
and Yolo X).

The SSD algorithm is a one-stage network structure. It evenly assigns default boxes of
different scales on feature maps. Although it shows a balance in detection accuracy and
speed, with mAP of 84.98% and FPS of 35.41, there is still a way to go to achieve high-
precision real-time detection. Faster R-CNN is designed based on a two-stage detection
network, which helps raise the detection accuracy. However, this kind of design brings
huge parameters. More model parameters can cause the detection speed to be far slower
than that of one-stage algorithms. Here, Faster R-CNN performs the worst in detection
speed, with FPS of only 4.56. The Yolo series algorithms output the object category and
location at the same time, gaining advantages in speed. For example, YoloV3 is improved
by about five times compared to Faster R-CNN in FPS. YoloV4 performs well in detection
accuracy. However, the model parameter size of YoloV4 is still relatively large, which
causes a slow speed of performance with FPS of only 17.01. To address this problem,
YoloV4+ takes MobileNetv1 as its backbone, and relatively reduces the parameters, ranked
first in FPS. Yolo X adopts the simple optimal transport assignment (SOTA) strategy to
address the problem of sample imbalance. In addition, in the head network, it decouples
the feature map to obtain the class and position information separately. The decoupling
strategy makes utilization of the feature map more reasonable. Compared to SSD, Faster
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R-CNN, YoloV3, and YoloV4, Yolo X achieves the best insulator detection accuracy and
speed. These experimental results are consistent with their performance in public datasets,
such as Pascal VOC, ImageNet, COCO, ViViD++, and KAIST [13–17].

YoloV4++ uses cross stage partial (CSP) and spatial pyramid pooling (SPP) modules
for feature extraction. CSP and SPP mean that the input feature is divided into several
branches, and the output features from these branches are fused after different convolu-
tional operations. Thus, the utilization rate of feature information is improved. Next, the
feature pyramid strategy is used for integrating the feature maps, which fuse the differ-
ent layers adequately. In addition, YoloV4++ calculates the total loss based on the focal
loss function.

Compared with baseline methods, YoloV4++ has achieved remarkable results. Com-
pared with a two-stage method, namely Faster R-CNN, we increased mAP by 1.52% and
FPS by 49.26. In the comparisons with one-stage methods (SSD, YoloV3, YoloV4, and Yolo
X), we have achieved the best results on both mAP and FPS. In terms of mAP, the value
of YoloV4++ is 9.26% higher than that of SSD, 18.72% higher than that of YoloV3, 2.31%
higher than that of YoloV4, and 0.91% higher than that of Yolo X. In terms of FPS, the value
of YoloV4++ is 18.41 more than that of SSD, 31.78 more than that of YoloV3, 36.81 more
than that of YoloV4, and 15.36 more than that of Yolo X. Experimental results show that
YoloV4++ can detect insulator targets well in real time.

To analyze the difference more intuitively, we have drawn their speed versus accuracy
diagram, as shown in Figure 11. The closer the point is to the upper right, the better the
comprehensive performance of the method is. YoloV4+ and YoloV4++ are on the top right
of Figure 11. Faster R-CNN is on the left and YoloV3 is at the bottom. SSD, YoloV4, and
Yolo X are in the middle.
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YoloV4+ has the best performance in detection speed while it is below Faster R-CNN,
YoloV4, Yolo X, and YoloV4++ in the detection accuracy. This is because YoloV4+ adopts the
lightweight backbone network MobileNetV1, which reduces the parameters. However, the
lightweight backbone causes inadequate utilization of image information. Thus, YoloV4+
does not have an advantage in detection accuracy.

YoloV4++ is better than SSD, Faster R-CNN, YoloV3, YoloV4, and Yolo X in both
detection accuracy and speed. Especially, YoloV4++ has achieved a great improvement in
accuracy based on YoloV4, while the detection speed is about three times that of YoloV4.
Note that, compared to YoloV4+, YoloV4++ has greater detection accuracy with little
decrease in FPS. This is because YoloV4++ employs the focal loss function to raise detection
accuracy while using MobileNetV1 to reduce model parameters. Experimental results
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show that the proposed lightweight network, YoloV4++, achieves the best balance between
insulator detection accuracy and speed.

6. Conclusions

In this research, we build RSIn-Dataset to promote the development of deep learning
in the power line inspection field. RSIn-Dataset is a power patrol scene dataset for insulator
detection. It has distinctive characteristics of high resolution, richness of annotations,
extensive backgrounds, and diversity. Due to these advantages, RSIn-Dataset can be used
for power device detection tasks. Additionally, we propose the new lightweight network
YoloV4++ for detecting insulators. In YoloV4++, MobileNetv1 is used as the backbone to
reduce the model parameters. Then, depthwise separable convolution is used in the neck
network for a further parameter reduction. To compensate for the decline in accuracy, focal
loss is introduced to alleviate the sample imbalance. Moreover, we conduct experiments
with mainstream object detection methods and the proposed method on RSIn-Dataset.
From the experimental performances, we analyze the advantages and disadvantages of
these object detection methods and build a benchmark to supply references for other
insulator detection researchers. The experimental results show that RSIn-Dataset can be
used for the performance evaluation of object detection and our proposed lightweight
network provides greater improvements to the baseline YoloV4 on RSIn-Dataset. In the
benchmark, YoloV4++ also achieves the best results of mAP and excellent performance
of FPS.

However, there are still some challenges in the detection of power devices in power line
inspection. Our method is still inadequate in terms of the detection accuracy and the model
parameters could be further reduced. Therefore, our future research will be dedicated
to raising the detection accuracy and reducing the model parameters. For example, the
method of small object detection or model compression strategies can be employed in the
object detection methods. Meanwhile, RSIn-Dataset can be extended by collecting other
power device data to apply the dataset to other power device detection tasks.
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