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Abstract: This paper investigates the bearing-only formation control problem of a heterogeneous
multi-vehicle system, which includes unmanned aerial vehicles (UAVs) and unmanned surface
vehicles (UWSVs). The interactions among vehicles are described by a particular class of directed and
acyclic graphs, namely heterogeneous leader-first follower (HLFF) graphs. Under the HLFF structure,
a UAV is selected as the leader, moving with the reference dynamics, while the followers, including
both UAVs and UWSVs, are responsible for controlling the position with regard to the neighbors in
the formation. To solve the problem, we propose a velocity-estimation-based control scheme, which
consists of a distributed observer for estimating the reference velocity of each vehicle and a distributed
formation control law for achieving the desired formation based on the estimations and bearing
measurements. Moreover, it is shown that the translation and scale of the formation can be uniquely
determined by the leader UAV. The theoretical analysis demonstrated the finite-time convergence
of the velocity estimation and the asymptotic convergence of the formation tracking. Comparative
simulation results are provided to substantiate the effectiveness of the proposed method.

Keywords: unmanned aerial vehicle; unmanned surface vehicle; heterogeneous leader-first follower
structure; bearing-only formation control; velocity estimation

1. Introduction

With excellent autonomy and control ability, unmanned aerial vehicles (UAVs) play
an important role in various engineering applications [1–3]. Contrary to a single UAV for
solo operation, the cooperation of multiple UAVs and their formation control have received
increasing attention over the past decades [4–9]. However, in the field of maritime emer-
gency search and rescue (MESAR), UAVs with airborne cameras are capable of searching
quite a long range for targets, but their further application in MESAR is mainly restricted
by limited battery supply and the lack of the perception of the close-quarter maritime envi-
ronment. Conversely, unmanned water surface vehicles (UWSVs) with sufficient power
supply and close-quarter surface detection systems can effectively overcome the power
and perception deficiencies of UAVs. Whereas UWSVs have a limited perception of a wide
range of surrounding dynamic environments, resulting in adverse effects on navigation
safety. By contrast, the cooperation of UAVs and UWSVs can benefit from the advantages of
both and improve the efficiency and robustness of MESAR missions. Thus, the coordination
control of the UAV-UWSV system is meaningful and should be further studied [10,11].

It should be noted that the UAV-UWSV system is typically heterogeneous, i.e., with
non-identical dynamic representations [12], which renders the coordination control meth-
ods for homogeneous multiagent systems unavailable. There have been some great works
on UAV-UWSV systems. The authors of [13] studied the cooperative path-following
problem of UAV-UWSV systems based on dynamic surface control and event-triggered
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techniques. In [14], a spatial mapping guidance law was developed to provide the ref-
erence heading angles for the UAV and UWSV, and an adaptive fuzzy control law was
subsequently designed to track the reference path. Authors of [15] proposed a cooperative
UAV-UWSV platform and a dynamic positioning algorithm to guarantee that UAVs can
land on the UWSV steadily. Note that [13–15] particularly focused on a single pair of
UAV-UWSV. Ref. [16] addressed the formation control problem of a UAV-UWSV hetero-
geneous multiagent system and provided sufficient conditions to achieve the consensus.
In [17], a distributed formation protocol was proposed such that the leader UAV and
follower UWSVs track the desired trajectory and achieve the desired formation simulta-
neously. Ref. [18] proposed a formation control protocol for a UAV-UWSV heterogeneous
system based on leader-following distributed consensus and artificial potential field. Nev-
ertheless, the above-mentioned studies are based on the assumption that "the global posi-
tioning is available for UAVs and UWSVs", which heavily relies on external infrastructure
and high-accuracy sensors and, therefore, is difficult to set up in a harsh maritime environ-
ment. Due to the accessibility of relative bearings by vision-based localization systems and
wireless sensor arrays, a bearing-only control protocol is promising to perform the MESAR
tasks via onboard sensors.

There have been numerous works on bearing-only formation control. Early studies
such as [19,20] focused on the bearing angle between neighbor agents to achieve the target
formation, but it is limited to 2D circumstances. On the basis of bearing rigidity [21],
the relative bearing vector is now mostly employed to overcome this limitation. In [22],
bearing-only formation control laws were designed for single-integrator, double-integrator
and nonholonomic vehicles to achieve formation tracking control in cases where the lead-
ers move with constant velocity. In [23], a velocity-estimation-based formation control
scheme was proposed, which solved the problem of the time-varying velocity of leaders.
Authors in [24] designed a bearing-only control law for networked robots with nonholo-
nomic constraints. Ref. [25] presented a finite-time bearing-only formation control scheme,
wherein a finite-time orientation estimator was incorporated to remove the dependence on
global coordination frame. It is worth noting that the communication and sensing graphs
in [22–25] are assumed to be bidirectional, i.e., we should keep constant mutual visibility
among all inter-agent pairs. This is difficult to satisfy due to the limited field of view.
To remove such a constraint, [26] proposed bearing-based control laws under a particular
directed graph, namely the leader-first follower (LFF) structure, which can be generated
via bearing-based Henneberg construction. The LFF graph has a promising feature in that
the translation of the formation is determined by the leader, and the formation scaling
motion is determined by the relative distance between the leader and the first follower;
thus, the formation’s maneuvers can be flexibly managed. Motivated by this, we have
recently studied bearing-based formation control problems for UAVs [27] and UWSVs [28]
with LFF structures. However, the methods in [26–28] were not bearing-only because the
distance between the leader and the first follower should be measured accurately in order
to maintain the formation scale.

Another thing worth mentioning is that the above methods concentrated on homo-
geneous multiagent systems, and, therefore, cannot be applied to a UAV-UWSV hetero-
geneous system. Ref. [29] studied finite-time bearing-only formation control problem of
heterogeneous multi-robot systems with collision avoidance, however, the order of each
robot is assumed to be identical. In our mix-order UAV-UWSV system, UAVs can navigate
in three-dimensional (3D) space, while the UWSVs maneuver in the two-dimensional (2D)
plane. This results in more difficulties, since the UWSVs can measure the 3D relative
bearing vectors to the neighboring UAVs but are only allowed to translate in the horizontal
plane in order to maintain the desired 3D bearings. In other words, the formation control
problem of UAV-UWSV systems is subject to spatial constraints, which makes it more
complex and difficult. To the best of the authors’ knowledge, the bearing-only formation
control problem for UAV-UWSV heterogeneous multiagent system is hitherto rare.
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Motivated by the above discussions, we propose a novel bearing-only formation
control scheme for a UAV-UWSV heterogeneous multiagent system. We first describe the
communication and sensing networks of the system via a directed and acyclic graph called
the heterogeneous leader-first follower (HLFF) graph. On this basis, a velocity-estimation-
based control scheme is proposed, which consists of a finite-time distributed observer for
estimating the reference velocity of each follower and a bearing-only formation control law
to achieve the desired formation without global positioning. It is shown that the formation
tracking error converges to zero asymptotically. The main contributions of this article are
summarized as follows.

1. We extend the LFF graph for the homogeneous multiagent systems to the HLFF graph
for the heterogeneous system. The HLFF graph is verified to have distinct properties
from LFF graphs as a single-leader bearing-only graph since both the translation
and scale of the formation can be uniquely determined by the position of the leader
other than the position of the leader and its distance between the leader and the first
follower. Thus the distance measurements between the leader and the first follower
are not required as [26–28].

2. Compared with the existing control methods for UAV-UWSV systems [13–18], which
heavily rely on global positioning, our proposed control scheme only requires relative
bearing vectors between neighboring vehicles, which can be obtained via onboard
sensors such as vision cameras and sensing arrays.

3. Different from the bearing-only formation control for a homogeneous system [22–25]
and a heterogeneous system with identical system order [29], our proposed forma-
tion protocol can be applied to heterogeneous mixed-order systems, which is more
challenging and complex as some agents have spatial constraints.

The remainder of this paper is organized as follows: Section 2 presents the prelim-
inaries and formulates the bearing-only formation control problem for a UAV-UWSV
heterogeneous system. The proposed unified formation control scheme, including finite-
time distributed observer and bearing-only formation control law, is detailed in Section 3.
The comparative simulation results are presented in Section 4, after which we conclude
the paper.

2. Preliminaries and Problem Formulation
2.1. Model of UAV and UWSV

This paper investigates the formation control problem of UAV-UWSV heterogeneous
multiagent system, and thus we only consider the kinematic models of UAVs and UWSVs
that are selected from [30,31]. As shown in Figure 1, {O0 − x0y0z0} is the earth-fixed
coordinate frame, and {Oi − xiyizi} is the body-fixed coordinate frame of the ith agent.

2.1.1. UAV Model

The fixed-wing UAV is employed in our heterogeneous system, and the kinematics
are described as [27]. 

ẋci = vi cos βi cos αi
ẏci = vi cos βi sin αi
żci = −vi sin βi
α̇i = ωαi

β̇i = ωβi

, (1)

where pci = [xci, yci, zci]
T is the position coordinate of the mass center of ith-UAV, αi and βi

represent the heading angle and flight path angle, vi is the airspeed and ωαi and ωβi are the
angular rates. Inspired by [31,32], the following coordinate transformation is performed, as
shown in Figure 1. The hand position pi = [xi, yi, zi]

T is at a distance Li from the center of
mass pci, as defined below.

pi = [xci, yci, zci]
T + Li[cβicαi, cβisαi,−sβi]

T , (2)
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where cαi
∆
= cos αi, sαi

∆
= sin αi, respectively. Then, we have

ṗi =

 cβicαi −Licβisαi −Lisβicαi
cβisαi Licβicαi −Lisβisαi
−sβi 0 −Licβi

ηi, (3)

where ηi =
[
vi, ωαi , ωβi

]T . By inversion, one has ηi = Ji ṗi, where

Ji =

 cβicαi cβisαi sβi
−sαi/Licβi cαi/Licβi 0
−sβicαi/Li −sβisαi/Li cβi/Li

. (4)

Figure 1. Coordinate Transformation of UAV and UWSV.

2.1.2. UWSV Model

For the sake of simplicity, we assume that the UWSVs in this research is fully actuated,
i.e., the UWSVs can be individually controlled in heave, sway and spin directions. The
kinematic model of jth-UWSV is described as follows [28]

ẋcj = uj cos ψj − vj sin ψj
ẏcj = uj sin ψj + vj cos ψj
ψ̇j = ωψj

, (5)

where pcj =
[
xcj, ycj, 0

]T is the position coordinate of the mass center of jth-UWSV. Since
UWSVs can only maneuver over the sea surface, we intentionally regulate the altitude of
UWSVs as zero. uj, vj and ωψj are the surge, sway and yaw angular velocity, respectively.

Similarly, with the hand position pj =
[
xj, yj, 0

]T
= pcj + Lj

[
cψj, sψj, 0

]T at a distance
Lj from the center of mass pcj, we have

ṗj =

 cψj −sψj −Ljsψj
sψj cψj Ljcψj
0 0 0

ηj, (6)
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where ηj =
[
uj, vj, ωψj

]T
. By inversion, we have ηj = J j ṗj with

J j =


cψj sψj 0

sψj

/(
L2

j + 1
)

cψj

/(
L2

j + 1
)

0

−Ljsψj

/(
L2

j + 1
)

Ljcψj

/(
L2

j + 1
)

0

. (7)

2.2. Heterogeneous Leader-First Follower Formation

Consider a UAV-UWSV heterogeneous multiagent system with m UAVs and n UWSVs.
The communication and sensing graph of the system can be described by a directed
graph G = {V , E}, where V = {v1, v2, · · · , vm+n} is a vertex set with |V| = m + n
and E =

{
eij =

(
vi, vj

)
|vi, vj ∈ V , vi 6= vj

}
is an edge set. If there exists eij ∈ E from

vi to vj, vj is called a neighbor vertex of vi and the neighbor set of vi is represented
as Ni :=

{
vj ∈ V|eij ∈ E

}
.

We associate each vertex vi ∈ V with the position of the ith vehicle (including both
UAVs and UWSVs). If a directed edge eij exists, agent i can receive information from agent

j. The stacked vector p =
[
pT

1 , · · · , pT
m+n

]T ∈ R3(m+n) is referred to as a configuration of
G. The formation G(p) is defined with the directed graph G and the configuration p [33].
With zij = pj − pi as the displacement vector of pi and pj, the distance of pi and pj is
defined as dij =

∥∥zij
∥∥. The bearing vector gij is defined as the unit vector from pi to pj as

shown below

gij =
pi − pj∥∥∥pi − pj

∥∥∥ =
zij∥∥zij
∥∥ . (8)

Unlike position-based formation control approaches [13–18], in which every vehicle
has access to its global position, bearing-based approaches require each agent to maintain
one or several bearing vectors with its neighbors, which makes the uniqueness of the
bearing-based formation a fundamental problem. Obviously, it is unnecessary to control all
bearing vectors to maintain a target formation. According to the bearing rigidity theory
proposed in [21], the target formation is achieved if a specific subset of desired bearing
vectors is attained in an undirected graph. In practice, it is difficult to guarantee the agents
can communicate with each other directly, whereas the uniqueness of the bearing-based
formation in directed graphs remains unsolved so far. As a primary study, [26] discussed
the uniqueness of the bearing-based formation in a certain class of directed graph named
LFF graph under the following assumption.

Assumption 1 ([26]). The target formation is characterized by a set of desired constant bearing
constraints B =

{
g∗ij|eij ∈ E

}
with the following conditions: (1) The target bearing constraints are

achievable. In other words, there exists a configuration p̃ such that g∗ij =
p̃j−p̃i∥∥∥p̃j−p̃i

∥∥∥ . (2) For agent vi

(i ≥ 3), the desired bearing vectors to its two neighbors vj and vk are not co-linear, i.e., g∗ij = g∗ik.

With this assumption, the definition of LFF graph is given as follows.

Definition 1. (LFF Graph) [26] A LFF graph G = (V , E) is an acyclic and rooted in-branching
directed graph with n vertices (n ≥ 3) and 2n− 3 well-selected directed edges. The n vertices
are composed of one leader vertex v1, one first follower vertex v2 and n− 2 follower vertices
{v3, · · · , vn}. The 2n− 3 directed edges consist of one from the first follower vertex to the leader
vertex and two for each follower vertex.

Inspired by the above study, we extend the LFF graph to a heterogeneous multiagent
system and propose a heterogeneous leader-first follower (HLFF) formation. With the
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above assumption, the definition of an HLFF graph for m UAVs and n UWSVs is given
as follows.

Definition 2. (HLFF Graph) An HLFF graph G = (V , E) is an acyclic and rooted in-branching
directed graph with m UAV vertices, n UWSV vertices and 2(m + n)− 3 well-selected directed
edges. The m + n vertices are composed of one leader UAV vertex v1, one first follower UWSV
vertex and v1 and m + n− 2 follower vertices {v2, · · · , vm+n}. The 2(m + n)− 3 directed edges
consist of one from the first follower UWSV vertex to the leader UAV vertex and two for each other
follower vertices.

Remark 1. The LFF graph concentrates on homogeneous systems, and, therefore, it cannot be
applied directly to a mixed-order heterogeneous system such as the UAV-UWSV system. That is
because the UWSVs can measure the three-dimensional (3D) bearing vector between UWSV and
UAV, but they can only maneuver in the two-dimensional (2D) plane to achieve the 3D formation.
However, in the LFF graph, it is assumed that all agents can move in the same dimensional space.

Without loss of generality, let leader vertex v1 represent the position of the leader UAV,
vertex v2 represents the position of the first follower UWSV, vertex vi (i ≥ 3) represents
the position of the ith-UAV or UWSV. v2 has only one directed edge eij, which means it
can measure the relative bearing vector gij from the leader UAV. Each follower agent has
two directed edges to receive information from its neighbors. An example of an HLFF
graph with three UAVs and three UWSVs is shown in Figure 2.

Figure 2. An Example of an HLFF graph with three UAVs and three UWSVs.

2.3. Properties of HLFF Graph

This section discusses some properties of HLFF graphs, including the uniqueness of
the HLFF graph and the translational and scaling motion of the HLFF graph.

Lemma 1. (Uniqueness of HLFF graph) Consider a UAV-UWSV heterogeneous multiagent
system with an HLFF graph. Under Assumption 1, given the position of the leader UAV p∗1 and

a set of desired bearing constraints B =
{

g∗ij|eij ∈ E
}

, then, the desired formation G(p∗) with

p∗ =
[
p∗T1 , p∗T2 , . . . , p∗Tm+n

]T is uniquely determined.

Proof. As shown in Figure 3, θ is the angle between g∗21 and axis z0. In triangle p∗1O0p∗2,
the relative position between p∗1 and p∗2 can be obtained according to trigonometric geometry
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Figure 3. An illustration of the HLFF graph’s uniqueness.

p∗2 =
[
(p∗1)x, (p∗1)y, 0

]T
+

[(
p∗1
)

z

(
g∗21
)

x(
g∗21
)

z
,

(
p∗1
)

z

(
g∗21
)

y(
g∗21
)

z
, 0

]T

, (9)

where
(

g∗21
)

k is the component of g∗21 on the k-axis (k = x, y, z).
For the third agent, the position p∗3 satisfies two bearing vectors g∗31 and g∗32, as shown

in Figure 3. Thus,
Pg∗31

(
p∗1 − p∗3

)
= 0

Pg∗32
(p∗2 − p∗3) = 0,

(10)

where Pg∗ij
= I − g∗ij

(
g∗ij
)T

is the orthogonal projection matrix of g∗ij.
From (10), it follows that(

Pg∗31
+ Pg∗32

)
p∗3 = Pg∗31

p∗1 + Pg∗32
p∗2 . (11)

For
(

Pg∗31
+ Pg∗32

)
, we have Null

(
Pg∗31

)
= span

(
g∗31
)

and Null
(

Pg∗32

)
= span(g∗32).

As g∗31 6= ±g∗32 exists under Assumption 1, and Pg∗31
, Pg∗32

are positive semidefinite matrices;

we have Null
(

Pg∗31

)
∩ Null

(
Pg∗32

)
= {0}. Therefore,

(
Pg∗31

+ Pg∗32

)
is non-singular and

p∗3 can be obtained by

p∗3 =
(

Pg∗31
+ Pg∗32

)−1(
Pg∗31

p∗1 + Pg∗32
p∗2
)

. (12)

Similarly, for i = 4, . . . , n + m, the desired position can be iteratively calculated as

p∗i =
(

Pg∗ij
+ Pg∗ik

)−1(
Pg∗ij

p∗i + Pg∗ik
p∗k
)

. (13)

Thus, given the desired bearing constraints B and the position of leader UAV p∗1 ,
the HLLF formation can be uniquely determined.

To describe the translation and scaling of the HLFF graph, we introduce the centroid
c(p∗(t)) and scale s(p∗(t)) of the HLFF graph as follows.

c(p∗(t)) = 1
n

n
∑

i=1
p∗i (t)

s(p∗(t)) =

√
1
n

n
∑

i=1

∥∥p∗i (t)− c(p∗(t))
∥∥2

(14)
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Lemma 2. (Translation and scale of HLFF graph) For an HLFF graph, given a set of bearing
vectors

{
g∗ij
}

((i, j) ∈ E), the translation of the entire formation is determined by the leader
UAV’s horizontal motion and the scale of the entire formation is determined by the leader UAV’s
vertical motion.

Proof. Similar to Lemma 1, we consider the HLFF graph shown in Figure 3. Consider
the leader UAV moves from p∗1 to q∗1 = p∗1 + δ; the motion process δ can be decomposed
into two individual motion: horizontal motion δh =

[
δx, δy, 0

]T and vertical motion
δv = [0, 0, δz]

T , as shown in Figure 4.

Figure 4. Decomposition of the leader’s motion.

If the leader UAV only has horizontal motion
(

p∗1
)

h = p∗1 + δh, we only need to prove
that each follower has

(
p∗i
)

h = p∗i + δh. For the first follower UWSV, according to (9),
we have

(p∗2)h =
[
(p∗1)x, (p∗1)y, 0

]T
+ δh +

[((
p∗1
)

h

)
z

(
g∗21
)

x(
g∗21
)

z
,

((
p∗1
)

h

)
z

(
g∗21
)

y(
g∗21
)

z
, 0

]T

. (15)

As
((

p∗1
)

h

)
z =

(
p∗1
)

z, we have (p∗2)h = p∗2 + δh. For the UAV follower 3, we have

(p∗3)h =
(

Pg∗31
+ Pg∗32

)−1(
Pg∗31

(p∗1)h + Pg∗32
(p∗2)h

)
=
(

Pg∗31
+ Pg∗32

)−1(
Pg∗31

p∗1 + Pg∗32
p∗2 +

(
Pg∗31

+ Pg∗32

)
δh

)
= p∗3 + δh.

(16)

The proof for i ≥ 4 can follow the same pattern as follower 3. According to (14),
we have c((p∗)h) = c(p∗) + δh, which means that the translation of the formation can be
controlled by the horizontal motion of the leader UAV.

If the leader UAV only has vertical motion
(
p∗1
)

v = p∗1 +δv, we assume that
((

p∗1
)

v

)
z = β

(
p∗1
)

z.
For first follower UWSV, we have

∥∥(p∗1
)

v − (p∗2)v

∥∥ = β
∥∥p∗1 − p∗2

∥∥ according to trigonometry.
With (9), it can be obtained that

∥∥(p∗1)v − (p∗2)v

∥∥ = β

√((
g∗12
)

x

)2
+
((

g∗12
)

y

)2

∣∣(g∗12
)

x

∣∣ ∣∣(p∗1)z

∣∣. (17)



Drones 2023, 7, 124 9 of 20

Therefore, we have
∥∥(p∗1

)
v − (p∗2)v

∥∥ ∝
∣∣(p∗1

)
z

∣∣. For the UAV follower 3, we have

(p∗1)v − (p∗3)v = (p∗1)v −
(

Pg∗31
+ Pg∗32

)−1(
Pg∗31

(p∗1)v + Pg∗32
(p∗2)v

)
=
(

Pg∗31
+ Pg∗32

)−1((
Pg∗31

+ Pg∗32

)
(p∗1)v − Pg∗31

(p∗1)v − Pg∗32
(p∗2)v

)
=
(

Pg∗31
+ Pg∗32

)−1
Pg∗32

(
(p∗1)v − (p∗2)v

)
.

(18)

Thus,
∥∥(p∗1

)
v − (p∗3)v

∥∥ ∝
∥∥(p∗1

)
v − (p∗2)v

∥∥ ∝
∣∣(p∗1

)
z

∣∣.
Similarly, it can be seen that ∀

(
vi, vj

)
∈ E ,

∥∥∥(p∗i
)

v −
(

p∗j
)

v

∥∥∥ = β
∥∥∥p∗i − p∗j

∥∥∥. Since
the HLFF graph can be generated via the bearing-based Henneberg construction; it has a
spanning tree [27]. ∀vi ∈ V , there exists a finite path (vi0, vi1), (vi1, vi2), · · · ,

(
vi(k−1), vik

)
that vi0 = v1, vik = vi. Then we have

(p∗1)v − (p∗i )v =
k

∑
j=1

((
p∗i(j−1)

)
v
−
(

p∗ij
)

v

)
=

k

∑
j=1

β
(

p∗i(j−1) − p∗ij
)
= β(p∗1 − p∗i ) (19)

Furthermore, it can be deduced that ∀vi ∈ V ,
∥∥∥(p∗i

)
v −

(
p∗j
)

v

∥∥∥ = β
∥∥∥p∗i − p∗j

∥∥∥. There-
fore, we conclude that

∥∥(p∗i )v − c((p∗)v)
∥∥ =

1
n

n

∑
j=1

∥∥∥(p∗i )v −
(

p∗j
)

v

∥∥∥ = β‖p∗i − c(p∗)‖ (20)

Equivalently, we have s((p∗)v) = βs(p∗), which means the scale of the HLFF graph
can be controlled by the vertical motion of the leader UAV.

Remark 2. From [25], it can be seen that LFF graph is not bearing-only, because it needs to measure
the distance between the leader and the first follower accurately to control the scale of the formation,
which still retains the disadvantage of distance measurement in the practical perspective. However,
the HLFF graph does not need any distance measurement, which makes it a bearing-only method.

Remark 3. The LFF graph needs the first follower to actively measure its distance and bearing
vector from the leader to find its global position, which can be seen as a two-leader control scheme as
the scaling of the formation cannot be controlled by the leader individually. However, in the HLFF
graph, both translation and scaling of the formation can be controlled by the leader, which makes it a
single-leader control scheme. Therefore, the HLFF graph reduces the parameters required for the
formation maneuver.

2.4. Problem Formulation

Before the problem is formulated, we assume that the UAV-UWSV heterogeneous
multiagent system satisfies the following assumptions:

Assumption 2. The communication graph of the system is characterized by a directed graph
G = (V , E) with an HLFF structure.

Assumption 3. The initial positions of all agents are not collocated, i.e., pi(0) 6= pj(0)
(∀1 ≤ i 6= j ≤ m + n).

Assumption 2 guarantees that the desired formation is uniquely determined given a
set of achievable bearing vectors

{
g∗ij
}

, and the translation and the scale of the formation
can be regulated by the leader UAV p̈∗1 .
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Assumption 4. The leader UAV satisfies p1(t) = p∗1(t), ∀t > 0, and there exists a positive
constant δL such that ‖p̈1‖1 ≤ δL < +∞, that is, the acceleration of the leader is bounded.

In this paper, assuming the leader UAV moves along a predefined trajectory, we do
not consider its motion control. For the sake of simplicity, we assume that there is no
internal failure or external disturbance, such as potential obstacles or disruptions during
the formation maneuver. With Assumption 4 and (13), we have

∥∥p̈∗i
∥∥ ≤ δL (2 ≤ i ≤ m + n).

Under the above assumptions, our problem is formulated as follows.

Problem 1. Consider a UAV-UWSV heterogeneous multiagent system with m UAVs and n
UWSVs, under Assumptions 1–4, using only relative bearing measurements and local interactions,
design distributed control law for ηi such that i (2 ≤ i ≤ m + n) such that gij(t) converges to g∗ij
asymptotically as t→ ∞.

3. Bearing-Only Formation Control Scheme

In this section, we propose a hierarchical bearing-only formation protocol for UAV-
UWSV heterogeneous multiagent system. Specifically, we first propose a finite-time dis-
tributed observer for each follower to estimate the reference velocity. Secondly, on the basis
of estimated reference and relative bearing measurements, a bearing-only formation control
law is designed to achieve the target formation. The control scheme is shown in Figure 5.

Figure 5. The proposed distributed bearing-only formation protocol.

3.1. Finite-time Distributed Observer Design

Because the first follower can receive the information from the leader UAV directly,
as illustrated in Figure 3, the reference velocity of the first follower UWSV p2 can be
calculated as

r2 =
[
(ṗ∗1)x, (ṗ∗1)y, 0

]T
+

[(
ṗ∗1
)

z

(
g∗21
)

x(
g∗21
)

z
,

(
ṗ∗1
)

z

(
g∗21
)

y(
g∗21
)

z
, 0

]T

. (21)

For the ith-follower (i ≥ 3), the distributed observer is designed as follows.

ṙi = −βsgn
(

Pg∗ij

(
ri − r j

)
+ Pg∗ik

(ri − rk)
)

, (22)

where ri is the estimation of ṗi, β is a positive constant to be determined, r1 = ṗ∗1 . It can
be observed that the velocity estimation of the ith-follower requires its neighbors’ velocity
estimations r j and rk.

Lemma 3. Let β > δL, under Assumptions 1–4 and the estimation law (22), ri(t) converges to
ṗ∗i (t) in finite time, i.e., ri(t) = ṗ∗i (t) (t ≥ Te), where Te is a positive constant to be introduced later.

Proof. Let r̃i = ri − ṗ∗i and define r̃ =
[
r̃T

3 , r̃T
4 · · · , r̃T

m+n
]T for convenience.
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Before proceeding, we introduce a bearing Laplacian matrix B, which is defined as

Bij =


0 i 6= j, eij /∈ E
−Pgij

i 6= j, eij ∈ E
∑

vk∈Ni

Pgik
i = j

, (23)

where Bij is the (i, j)th submatrix of B.
Considering the hierarchical structure of the HLFF graph, the leader has no neighbors.

Therefore, the bearing Laplacian matrix can be partitioned as

B =

 0 0 0
B2,1 B2,2 0
B f ,1 B f ,2 B f ,3.

 (24)

Note that B f ,3 is a lower triangular matrix; its eigenvalues are the eigenvalues of
diagonal matrix Bi,i (i ≥ 3). Under the feasibility conditions of desired bearing vectors, Bi,i
is positive definite. Therefore, B f ,3 is positive definite [34].

Consider the Lyapunov function Ve = r̃T BT
f ,3r̃
/

2. The derivative can be obtained as

V̇e = r̃T BT
f ,3

(
−βsgn

(
BT

f ,3r̃
)
− p̈∗

)
≤ −(β− δL)

∥∥∥B f ,3

∥∥∥
1
‖r̃‖1

≤ −(β− δL)
∥∥∥B f ,3

∥∥∥
1
‖r̃‖2

≤ −
√

2
(β− δL)

∥∥∥B f ,3

∥∥∥
1√

λmax

(
B f ,3

) V
1
2

e .

(25)

Under Theorem 4.2 in [35], r̃ → 0 in a settling time Te =

√
2λmax(B f ,3)

(β−δL)‖B f ,3‖1
V

1
2

e .

3.2. Bearing-Only Formation Control Law Design

We now consider the case with t ≥ Te. The following bearing-only formation control
law for the ith-follower is proposed as follows.

ηi = Ji

(
−cPi

(
∑

j∈Ni

Pgij
g∗ij

)
+ ri

)
. (26)

where c is a positive constant to be determined, and Pi is the projection matrix with the
following form:

Pi =

{
I − e3e3

T i ∈ UWSV
I i ∈ UAV

, (27)

where e3 denotes the ith unit orthogonal base of R3.

Theorem 1. Under Assumptions 1–4 and control law (26), pi(t) asymptotically converges to p∗i (t)

Proof. For the first follower UWSV, as it only has the leader UAV as its neighbor, substitut-
ing the control law (26) into (6) yields

ṗ2 = −cP2Pgij
g∗ij + r2. (28)
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From (28) and the properties of the orthogonal projection matrix, we have that ṗ2 = r̂2
if and only if g21 = g∗21.

Considering the Lyapunov function V2 = 1
2‖p2 − p∗2‖

2. The derivative of Vb is

V̇2 = (p2 − p∗2)
T(ṗ2 − ṗ∗2) = (p2 − p∗2)

T(−cP2Pg21
g∗21 + r̂2 − ṗ∗2

)
= −cP2(p2 − p∗2)

T Pg21

d∗21
(p1 − p2 + p2 − p∗2)

= −cP2(p2 − p∗2)
T Pg21

d∗21
(p2 − p∗2) ≤ 0.

(29)

Therefore, p∗2 is almost globally asymptotically stable due to LaSalle’s invariance principle.
Furthermore, we have

V̇2 = −2sin2θ

d∗21
V2 ≤ −

2
d∗21

V2 = −kV2. (30)

where θ is the angle between p2 − p∗2 and p2 − p1. It follows that p2 converges to p∗2
exponentially fast.

For the third agent, whose neighbors are the leader and the first follower, the control
law is

ṗ3 = u3(p1, p2, p3) = −P3(P31g∗31 + P32g∗32) + r3. (31)

We consider (31) as a cascade system in which p3 is an input to the unforced system.
As an interconnected cascade system, the formation tracking error e3(t) = p3(t)− p∗3(t)
converges to zero if the following two conditions are satisfied: (1) p∗3 is an asymptotically
stable equilibrium; (2) ‖e3(t)‖ is ultimately bounded.

In the following part, we prove the two conditions separately.
Consider the Lyapunov function V3 = 1

2

∥∥p3 − p∗3
∥∥2. We have

V̇3 = (p3 − p∗3)
T(−cP3

(
Pg31

g∗31 + Pg32
g∗32
)
+ r3 − ṗ∗3

)
= −cP3(p3 − p∗3)

T
(

Pg31

d∗31
(p1 − p3 + p3 − p∗3) +

Pg32

d∗32
(p2 − p3 + p3 − p∗3)

)
= −cP3(p3 − p∗3)

T
(

Pg31

d∗31
+

Pg32

d∗32

)
︸ ︷︷ ︸

:=M

(p3 − p∗3).

(32)

Since Pg31
, Pg31

and P3 are positive semidefinite matrices. Thus, V̇3 ≤ 0. V̇3 = 0 if
and only if p3 − p∗3 ∈ N (M). Therefore, p∗3 is an asymptotically stable equilibrium for
system (31).

Consider the derivative of V3 along a trajectory of the system (31):

V̇3 = −(p3 − p∗3)
T(−cP3

(
Pg31

g∗31 + Pg32
g∗32
)
+ r3 − ṗ∗3

)
= −cP3(p3 − p∗3)

T
(

Pg31

d∗31
(p1 − p3 + p3 − p∗3) +

Pg32

d∗32
(p∗2 − p2 + p2 − p3 + p3 − p∗3)

)
= −cP3(p3 − p∗3)

T
(

Pg31

d∗31
+

Pg32

d∗32

)
(p3 − p∗3) + cP3(p3 − p∗3)

T Pg32

d∗32
(p2 − p∗2)

≤ −cP3(p3 − p∗3)
T
(

Pg31

d∗31
+ cP3

Pg32

d∗32

)
(p3 − p∗3) +

2d∗21
d∗32
‖p3 − p∗3‖.

(33)

Note that the first term in (33) is O
(∥∥p3 − p∗3

∥∥2
)

and the second term is

O
(∥∥p3 − p∗3

∥∥). This implies that V̇3 < 0 when ‖p3‖ is large. Therefore,
∥∥p3 − p∗3

∥∥ is
ultimately bounded.
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For the whole heterogeneous system with m UAVs and n UWSVs, the dynamics can
be expressed as the following cascade system

p =



ṗ1
ṗ2
ṗ3
...

ṗi
...

ṗm+n


=



p∗1
u2(p1, p2)

u3(p1, p2, p3)
...

ui

(
pj, pk, pi

)
...

um+n

(
pjm+n

, pkm+n
, pm+n

)
.


(34)

We will now prove the asymptotic stability of the cascade system by mathematical
induction. Because p1 = p∗1 exists under Assumption 4, and p2, p3 have been verified to
converge to p∗2 , p∗3 asymptotically.

Suppose that the claim of Theorem 1 exists for 2 ≤ k ≤ i− 1, i.e., pi(t) → p∗i (t) as
t→ ∞. We have to show the claim is also true for the ith-follower. Note that under HLFF
graph, its two neighbor agents, j and k, satisfy 1 ≤ j, k ≤ i− 1. We consider the Lyapunov
function Vi =

1
2

∥∥pi − p∗i
∥∥2. Similarly, it can be derived that

V̇i = (pi − p∗i )
T
(
−cPi

(
Pgij

g∗ij + Pgik
g∗ik
)
+ ri − p∗i

)
= −cPi(pi − p∗i )

T

(
Pgij

d∗ij

(
p∗j − pj + pj − pi + pi − p∗i

)
+

Pgik

d∗ik
(p∗k − pk + pk − pi + pi − p∗i )

)
= −cPi(pi − p∗i )

T

(
Pgij

d∗ij
+

Pgik

d∗ik

)
(pi − p∗i )

− cPi(pi − p∗i )
T

(
Pgij

d∗ij

(
p∗j − pj

)
+

Pgik

d∗ik
(p∗k − pk)

)

≤ −cPi(pi − p∗i )
T

(
Pgij

d∗ij
+

Pgik

d∗ik

)
(pi − p∗i )

+ c‖Pi‖‖pi − p∗i ‖


∥∥∥Pgij

∥∥∥
d∗ij

∥∥∥p∗j − pj

∥∥∥+ ∥∥Pgik

∥∥
d∗ik

‖p∗k − pk‖

.

(35)

Since Theorem 1 exists for 2 ≤ k ≤ i− 1,
∥∥∥p∗j − pj

∥∥∥ and
∥∥p∗k − pk

∥∥ are bounded and

converge to zero as t → ∞. This yields that
∥∥p∗i − pi

∥∥ is bounded, which follows that
‖pi‖ is bounded. Therefore, using the Input-to-State Stability, p∗i is globally asymptotically
stable, and Theorem 1 is also true for the ith-follower.

According to mathematical induction, the claim holds for all i ≥ 2. It can be concluded
that the whole heterogeneous system with m UAVs and n UWSVs is globally asymptoti-
cally stable.

Theorem 1 shows that with the time-varying leader velocity given, the formation track-
ing error of each follower converges to zero using the control law (26). In addition, with the
introduction of a velocity estimator, the moving formation case can be effectively handled.

It should be noted that there are two parameters to be determined: the estimation
gain β and the control gain c. It is shown in Lemma 3 that increasing β could reduce the
convergence time Te, but an overlarge β can cause instability considering the discontinuous
function sgn. Increasing the control gain c will accelerate the convergence and achieve
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the target formation quicker. However, the velocity amplitude of UAVs and UWSVs will
become too large. Therefore, there are trade-offs in the selection of β and c. In practice,
they should be properly selected to improve the rapidity, stability and accuracy of UAV-
UWSV system.

4. Simulations

In this section, we consider a UAV-UWSV system with four UAVs and four UWSVs to
validate our control scheme. The HLFF structure and the number of each agent are shown
in Figure 6, from which the target-bearing vectors are easily obtained. It should be noted
that UAV 1 is the leader, and UWSV 1 is the first follower. The bearing vectors and initial
positions are well-selected to satisfy Assumptions 1 and 3.

Figure 6. Structure of the HLFF with eight agents.

4.1. Tracking the Target Formation with Time-Varying Velocity

As shown in Figure 6, we consider a typical case in MESAR: Due to the obstacle
blocking in the forward direction, the UAV-UWSV formation has to scale up to avoid the
obstacle on the sea surface and then scale down to continue moving forward. The distances
of the hand position for UAVs and UWSVs are set as LUAV = 0.2 and LUWSV = 0.5,
as the UWSVs are usually larger than UAVs. The initial positions of each agent are set
as: p1 = [0, 0, 50]T , p2 = [0, 0, 0]T , p3 = [0, 50, 50]T , p4 = [0, 50, 0]T , p5 = [50, 50, 50]T ,
p6 = [50, 50, 0]T , p7 = [50, 0, 50]T , p8 = [50, 0, 0]T . Considering the velocity amplitude of
UAVs and UWSVs, the estimation gain and control gain is chosen as β = 6 and c = 5 m
respectively. The velocity of the leader UAV is given as follows.

ṗ1 =


[2, 0, 0]T , 0 ≤ t < 300
[2, 0.45 cos(0.02πt)− 0.45,−0.9 cos(0.02πt) + 0.9]T , 300 ≤ t < 400
[2,−0.45 cos(0.02πt) + 0.45, 0.9 cos(0.02πt)− 0.9]T , 500 ≤ t < 600

. (36)

The trajectories of the eight agents are depicted in Figure 7. As can be seen, the target
formation scales up at t = 300 s and scales down at t = 500 s, during which the target
formation is maintained.
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Figure 7. Trajectories of 8 agents in HLFF.

The total bearing error ∑
(i,j)∈E

∥∥∥gij − g∗ij
∥∥∥ is shown in Figure 8. As shown in Figure 8,

the total bearing error converges to zero in 150 seconds, which is consistent with Lemma 1.
To evaluate the performance of our velocity estimator, the total velocity estimation error
∑

i∈V
‖ri − ṗi‖ is illustrated in Figure 9. It can be seen that the total velocity estimation r̂i

converges to ṗi in 150 s.

Figure 8. Total bearing error of the formation.

Figure 9. Total velocity estimation error of the formation.

With the UAV model discussed in Section 2.1.1, ηi =
[
vi, ωαi , ωβi

]T for each UAV and

ςj =
[
uj, vj, ωψj

]T
for each UWSV are illustrated in Figure 10. It can be seen that agents

5 and 7 have the same velocity during scaling. That is because the scale of the entire
formation is controlled by the vertical motion of the leader UAV. Thus the scale origin is
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the intersection of the leader’s velocity vector and the O0 − x0y0z0 plane in the earth-fixed
frame, as shown in Figure 11. Therefore, a horizontal compensation velocity is needed for
the leader to scale the formation along the central plane.

(a) (b)

(c) (d)

(e) (f)

Figure 10. ηi of UAVs and ςj of UWSVs. (a) v of UAVs. (b) ωα of UAVs. (c) ωβ of UAVs. (d) u of
UWSVs. (e) v of UWSVs. (f) ωψ of each UWSVs.

Figure 11. Scale origin of the formation.
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4.2. Comparisons with Existing Works

Some comparisons are made with the works in [26]. As the formation scale is deter-
mined by the distance measurement between two leaders from the formation, we choose
the leader UAV and the first follower UWSV as the leaders for the two methods. As the
method in [26] is used in an undirected graph, the directed edges in Figure 6 are replaced
with undirected edges. The other simulation setups remain the same as the above scenario.
The comparison of formation trajectories is illustrated in Figure 12.

(a)

(b)

Figure 12. Comparison of formation trajectories. (a) Trajectories using our method. (b) Trajectories
using the method in [26].

Moreover, as there are no velocity estimations in [26], we only illustrate the trajectory
and total bearing error for comparison. As shown in Figure 13, the total bearing error
cannot converge to zero with the methods proposed in [26]. That is because this method
requires the leader’s velocity to be constant. As a result, our method has better performance
than that of [26] when tracking the leader with time-varying velocity.

Figure 13. Comparison of the total bearing error in [26].
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5. Conclusions and Future Research
5.1. Conclusions

This paper studies the distributed bearing-only formation control problem of UAV-
UWSV heterogeneous multi-vehicle system. The interactions among vehicles are first
described by HLFF graphs, under which the translation and scale of the heterogeneous
formation can be uniquely determined by the leader UAV, and each follower only needs to
control the relative bearings to its two neighbors. On this basis, a velocity-estimation-based
formation control scheme is developed, which contains a finite-time distributed observer
and a bearing-only control law for the followers. It is shown that the formation scale
can be flexibly adjusted by the leader, and no position/distance measurement is required.
The asymptotic stability of the closed-loop system is proven by mathematical induction.

5.2. Future Research

As this research makes a theoretical contribution to distributed bearing-only formation
control problem of UAV-UWSV heterogeneous multi-vehicle system, future research is still
needed for practical applications.

The proposed method can be extended to a generalized directed graph, and a dis-
tributed obstacle avoidance method would be developed to avoid the potential obstacles
on the maritime, like the method proposed in [36]. Note that this method is designed for a
homogeneous system; more research remains to be conducted to extend it to heterogeneous
mixed-order systems.

In this research, any kind of failure of the UAVs and UWSVs has not been considered
yet, but it is of great significance to discuss this problem from the practical perspective.
It will be our future research direction to develop a hierarchical structure and graph
reconstruction mechanism for the HLFF graph to shift the leader to another UAV and
rebuild a new HLFF graph when the previous leader UAV fails.

Currently, we have verified our method through simulations. However, it is important
to verify the state-of-art method in a real experiment. Although actual agent experiments
are still rare in heterogeneous multiagent system research, we will also consider the practi-
cal constraints associated with multiagent systems, including communication delay and
saturation effect, and subsequently perform experiments to verify our method.

Although heterogeneous UAV-UWSV systems have many advantages over homoge-
neous UAV systems or UWSV systems, they come with their own cons, such as increased
system complexity, uncertainty and dynamic disruptions in the harsh maritime environ-
ment. In this research, we assume that UAVs and UWSVs have accurate models, yet
in practical applications of MESAR operations, UAV-UWSV system uncertainties and
dynamic disruptions could degrade the performance of our current method. Therefore,
a distributed fault-tolerant control method would be introduced in our future research
against uncertainties and dynamic disruptions, such as the method proposed in [37].
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