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Abstract: Over the past decades, climate change has accelerated the deterioration of heritage sites and
archaeological resources in Arctic and subarctic landscapes. At the same time, increased tourism and
growing numbers of site visitors contribute to the degradation and manipulation of archaeological
sites. This situation has created an urgent need for new, quick, and non-invasive tools and method-
ologies that can help cultural heritage managers detect, monitor, and mitigate vulnerable sites. In this
context, remote sensing and the applications of UAVs could play an important role. Here, we used
a drone equipped with an RGB camera and a single multispectral/thermal camera to test different
possible archeological applications at two well-known archaeological sites in the UNESCO World
Heritage area of Kujataa in south Greenland. The data collected were used to test the potential of
using the cameras for mapping (1) ruins and structures, (2) the impact of human activity, and (3) soil
moisture variability. Our results showed that a combination of RGB and digital surface models offers
very useful information to identify and map ruins and structures at the study sites. Furthermore, a
combination of RGB and NDVI maps seems to be the best method to monitor wear and tear on the
vegetation caused by visitors. Finally, we tried to estimate the surface soil moisture content based
on temperature rise and the Temperature Vegetation Dryness Index (TVDI), but did not achieve
any meaningful connection between TVDI and on-site soil moisture measurements. Ultimately, our
results pointed to a limited archaeological applicability of the TVDI method in Arctic contexts.

Keywords: UAV; archaeology; Arctic; climate change; multispectral sensors; thermal sensors; archaeological
surveying; soil moisture; vegetation damage

1. Introduction

Across the Circumpolar North, low temperatures, moist soil conditions, and minimal
human interference have contributed to the high degree of preservation of archaeological
artefacts, features, and sites [1]. These elements have provided researchers with unique
opportunities to learn about ancient cultures and environments and the origins of indige-
nous peoples [2–5]. Out of ~180,000 sites registered across the Arctic, only a small fraction
has been properly documented and it is estimated that there are many sites that remain
undiscovered [6]. Thus, Arctic archaeological sites have a great potential to reveal further
spectacular finds and provide novel contributions to the understanding of past human
behavior and habitation in the Arctic. However, this potential is currently waning due to
climate-related pressures. Critical, well-known effects include physical destruction due to
coastal erosion [7,8] and increased microbial degradation of organic archaeological deposits
due to warming temperatures and changing hydrology [8]. Additionally, Arctic warming
has promoted a well-documented ‘greening’ [9,10] effect, with negative consequences for
archaeological sites occurring both above and below ground [11,12]. Finally, increasing
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tourism and other human activities may additionally accelerate processes of transformation
and decay at these locations [13].

Since it is impossible to visit and monitor every site, there is an urgent need to
improve techniques to document, assess, and quantify damage to archaeological sites
and artefacts across the Circumpolar North [14]. Remote sensing techniques based on
optical and thermal imagery from UAV or satellites provide an attractive alternative to
expensive and time-consuming ground surveys and traditional on-site environmental
monitoring and data collection. While the coarse spatial resolution of satellite images often
limits their application at small archaeological sites, UAV-based solutions can provide the
needed high spatial resolution for identifying critical changes occurring over time. Aerial
photographs, photogrammetry, and remote sensing have been used in archeological studies
for several decades [15]. At the same time, UAV-based systems have become cheaper
and more ruggedized with options for integrating new, lightweight thermal and optical
sensors. Accessibility to these UAVs, with higher computing power and software, has
provided new avenues for the generation of high-resolution mosaics and digital surface
models (DSMs) in archaeological contexts [16]. For example, information captured in
the near infrared region (NIR) has been successfully used to recognize and gain new
levels of insight on archaeological remains in other parts of the globe [17]. Multispectral
sensors have been used to derive spectral indices and band combinations that highlight
specific features on archeological sites [18] and vegetation properties [19,20] as well as soil
properties [21]. Other studies have also combined multispectral and thermal information to
identify archeological features [18,22–25]. Another technique for improved visualization is
principal component analysis (PCA), which reduces redundancy in multiband images and
produces uncorrelated principal components that enhance different parts of the variation
from the original data set [18,26,27].

In this study, we used a tetra copter equipped with an RGB camera and a multispec-
tral/thermal sensor to test the possibilities for identifying ruins and structures, mapping
wear on vegetation caused by human activity, and quantifying soil moisture variation.
The study was performed in south Greenland at two of the most famous archaeologi-
cal sites from the Norse Viking Age settlers who inhabited the area from approximately
985–1450 AD.

2. Study Sites and Environmental Conditions

The two study sites, Qassiarsuk and Qaqortukulooq (also known as Hvalsey Church),
are located within the UNESCO World Cultural Heritage area of Kujataa (Figure 1A),
which is recognized as an overlapping medieval Norse and Inuit subarctic agricultural
landscape [28]. The geography of this region contains several large-scale natural features:
the inland ice sheet to the North, high mountains, deep fjords, and extensive stretches of
wild, open land where little evidence of past human activity is observed. Kujataa comprises
five individual component areas that stretch across a climatic gradient reaching from the
open sea in the west to the head of the fjords and cutting as much as 100 km inland to the
east. As shown in Figure 1B, there is a marked climatic gradient when traveling from the
outer coast to the inner fjord, with summers in the inner fjord being markedly warmer and
drier than the outer coast. It is here in the inner fjords that early Norse colonists established
their settlements in the late 10th century AD and where the archaeological remains of their
500-year occupation are still seen today [28].

2.1. Qassiarsuk (Brattahlíð)

The archaeological ruins at Qassiarsuk, also known as Eric the Red’s Farm, lies on
the coast of the Tunulliarfik Fjord, approximately 20 km from the Greenland Ice Sheet.
Narsarsuaq, the region’s only international airport, lies across the fjord to the east. Because
of its high-profile status, Qassiarsuk has been one of the most intensively investigated and
documented archaeological sites in Norse Greenland. Our study focused on a small part
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of Erik’s farm, covering the church and some other relevant ruins (Figure 2). The most
recently documented excavation at the site was conducted between 2005 and 2006 [30].
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2.2. Qaqortukulooq (Hvalsey Church)

The ruins of the Hvalsey farmstead and church at Qaqortukulooq are located near
the town of Qaqortoq. The site lies on a large fertile plain that slopes toward the shore
and is bordered by a steep, rocky cliff that rises up behind the farmstead buildings to the
north. The church ruin at Hvalsey is considered to be the best-preserved Norse ruin found
in Greenland [31] and is a highly popular tourist destination (Figure 3).
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3. Materials and Methods
3.1. UAV and Payloads

Fieldwork was performed in July and August 2021 and 2022 (Table 1). However, due
to inclement weather, no flights were carried out at Qassiarsuk in 2022. Drone images
were captured using a DJI Matrice 300 RTK quadcopter using two different cameras. High-
resolution RGB images were captured using a DJI Zenmuse H20 camera that was combined
with the DJI Matrice 300 RTK system and a D-RTK Mobile Station to create high-precision
reference orthomosaic maps of both study sites. Flight altitude was established at 75 m,
resulting in 2.6 cm/pixel images. Multispectral and thermal data were captured using
a MicaSense Altum camera. The Altum camera captures six bands defined by different
wavelengths and bandwidths on the electromagnetic spectrum: blue (459–491 nm), green
(546–574 nm), red (661–675 nm), red-edge (711–723 nm), near infrared (NIR) (813–871 nm),
and thermal (5–17 µm). The image resolution in the optical bands was 2064 × 1544 and
160 × 120 in the thermal infrared band. Flight altitude was established at 60 m, leading to
2.6 cm/pixel in the multispectral channels and 40 cm/pixel in the thermal band. Images of a
calibrated reflectance panel (MicaSense) were taken before and after each flight and used for
radiometric calibration. The Altum camera did not support RTK precision. Consequently,
we performed geometric corrections using ground control points (GCPs) from the high-
precision reference orthomosaic created with images from the DJI Zenmuse H20 camera.
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Table 1. Overview of the flights carried out at the two study sites.

Location Date Time Camera Derived Maps Study
Relevance Alt. (m) Pixel Size (cm)

(Thermal) Weather

Qassiarsuk 28 July 2021 15.00 Zenmouse H20 RGB, DSM

Mapping
structures,
Mapping

human impact,
High precision
GCP reference

75 2.6 Cloudy

Qassiarsuk 29 July 2021 08.30 MicaSense Altum Thermal,
NDVI, PCA

Mapping
structures,
Mapping

human impact,
Mapping SSM

60 2.6
(40.0) Sunny/clouds

Qassiarsuk 29 July 2021 12.30 MicaSense Altum Thermal,
NDVI Mapping SSM 60 2.6

(40.0) Sunny/clouds

Qaqortukulooq 4 August 2021 17.30 Zenmouse H20 RGB

Mapping
human impact,
High precision
GCP reference

75 2.6 Cloudy

Qaqortukulooq 6 August 2021 10.30 MicaSense Altum Thermal Mapping SSM 60 2.6
(40.0) Sunny, clear sky

Qaqortukulooq 6 August 2021 13.30 MicaSense Altum Thermal,
NDVI

Mapping
human impact,
Mapping SSM

60 2.6
(40.0) Sunny, clear sky

Qaqortukulooq 8 August 2022 13.00 MicaSense Altum Thermal,
NDVI, PCA

Mapping
structures,
Mapping

human impact

60 2.6
(40.0) Sunny/clouds

Qaqortukulooq 8 August 2022 16.00 Zenmouse H20 RGB, DSM

Mapping
structures,
Mapping

human impact,
High precision
GCP reference

75 2.6 Sunny, clear sky

3.2. Data Processing

Orthorectified image mosaics (RGB, blue, green, red, red-edge, NIR, and thermal),
digital surface model (DSM), geometric corrections, conversion to reflectance, and tem-
perature were made in using Pix4DMapper software. All raster image calculations of
DSM visualization images, indices, and delta TS images, as well as color composites, were
performed in QGIS [32]. SAGA GIS was used for principal component analysis [33]. To
optimize the interpretation of the generated height data, we conducted multiple DSM
visualizations in Relief Visualization Toolbox (RVT) [34] and achieved the best result using
a multi-scale Relief model (MSRM) [35]

We used the RED and NIR bands collected with the MicaSense Altum camera to derive
the Normalized Difference Vegetation Index (NDVI):

NDVI =
(NIR − RED)

(NIR + RED)
(1)

Furthermore, we carried out a principal component analysis (PCA) [36]. For the PCA,
the first three components were calculated from a multiband raster containing orthomosaics
from all bands collected with the MicaSense Altum camera. The PCA reduced redundancy
in the multiband raster by creating principal components (PCs) from uncorrelated variance
in the image data set. PC1 included most of the variance across the data set. PC2 included
a smaller part of the variance, which was uncorrelated with the PC1. PC3 included an even
smaller part of the original variance but was also uncorrelated with the other PCs.

Finally, we tested the possibility of mapping SSM at the two study sites based on
a well-described relation between NDVI and land surface temperature. The method of
mapping SSM from NDVI and thermal imagery was first suggested by Sandholt et al. [37] as
the Temperature Vegetation Dryness Index (TVDI). Stisen et al. [38] suggested an improved
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TVDI methodology by applying the thermal inertia of mapped surfaces as the difference in
thermal images (δTS) between morning and midday:

δTS =
(F2 − F1)

Time
(2)

where F2 and F1 correspond to the thermal orthomosaic from midday and morning flights,
respectively, while Time is the elapsed time between the observations, thus defining the
‘delta(δ)’ state of the expression.

The TVDI is a semi-empirical method that delimitates the triangle formed when
plotting surface temperature (δTS) versus NVDI [37,39–41] (Figure 4). The upper boundary
is called “dry-edge” and represents dry soils and stressed vegetation with the surface
temperature at its maximum. The lower boundary is called “wet-edge” and represents
conditions with minimum surface temperatures and where the evapotranspiration is close
to the potential rate. TVDI is calculated from Formula (3):

TVDI =
δTS − δTSMin

δTSMax − δTSMin
(3)

where the δTS value for each pixel in the scene is related to the lower boundary by δTSMin
and to the upper boundary by δTSMax for the corresponding pixel NDVI value. Dry- and
wet-edge calculations for Qassiarsuk 2021 and Qaqortukulooq 2021 were performed using
a dedicated TVDI Python tool [42]. The NDVI and δTS maps and the TVDI dry- and
wet-edge calculations are presented in supporting Figures S1–S4.
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Figure 4. Triangle conceptual scheme (Reproduktion of Sandholt et al. [37]).

In order to test our results, volumetric soil moisture content was measured at both sites
in 0–5 cm depth using a Delta-T HH2 Moisture Meter WET sensor. Measuring points were
selected and distributed in the field according to site area size and topography and to cover
variation in vegetation cover and plant species’ distribution (Figure 5). SSM measurements
were conducted immediately after capturing the multispectral/thermal imagery.
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area size and topography and to cover variation in vegetation cover and plant species’ distribution.

4. Results and Discussion
4.1. Mapping Ruins and Structures

Over 5500 registered archaeological sites are scattered throughout Greenland’s ice-free
margins. Many of these sites have not been documented properly, and, for sites documented
before 2000, the geo-referencing is poor, resulting in high uncertainties in the available
spatial data. This lack of suitable “baseline data” limits the possibility of monitoring gradual
changes to sites over time. The proliferation of affordable and practically transportable
UAVs and new imaging sensors represents an opportunity to improve the spatial accuracy
of already documented archaeological sites in Greenland.

Our results showed that it is possible to use a UAV to detect many of the different
types of structures found at Qassiarsuk and Qaqortukulooq. Figures 6A and 7A show
ruin sketches from previous archaeological investigations at the two sites together with
the different types of maps derived from our drone missions. At both sites, the RGB maps
revealed many of the structures seen on the sketches, and almost all structures were easily
recognized in the MSRM maps. The thermal maps obtained at the two study sites showed
that the ruins were clearly recognizable, even though the spatial resolution in the thermal
band was much lower than in the optical bands. The information provided by the thermal
maps complemented the information from the RGB mosaic and the MSRM but did not
contribute any additional information. At Qaqortukulooq, rock fences were visible as linear
features in both the NDVI and PCA maps (Figure 7E,F). Most of these fences were also
drawn in the sketch, for instance, around the church and in the top, left corner of the map.
However, the NDVI and PCA maps also revealed a non-registered linear structure, possibly
a rock fence, oriented from east to west just north of the large building compartment
(Figure 7A, illustrated with a red, dotted line). This feature was not visible on any of the
other drone maps. Whether the found structure was an actual rock fence or just stones
piled up during archaeological investigations, performed after the ruin sketch in Figure 7A
was drawn, still needs to be examined in the field.
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2021, (E) NDVI map 2022, (F) PCA map 2022.

In general, structures were more visible in the late season images taken at Qaqor-
tukulooq on 8 August 2022 compared to those taken in Qassiarsuk from 28–30 July 2021.
Although the sites were different and not directly comparable, the NDVI values were
generally lower and ancient structures were observed to be less overgrown by vegetation
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at Qaqortukulooq. This highlights that the timing of drone missions and image acquisition
has a great influence on the overall quality of the drone maps. Although vegetation and
overgrowth did not have a great influence on the maps created in this study, dense vegeta-
tion and overgrowth may be important at other sites in Greenland. This may especially be
the case at sites/ruins that have not yet been excavated and, hence, are partly or completely
submerged and/or densely covered by vegetation. Under such conditions, it would be
interesting to apply technologies such as LIDAR (light detection and ranging) with the
ability to map both vegetation surface and the underlying terrain.

4.2. Mapping the Impacts from Human Activity

Accessibility to the Arctic has improved as a direct consequence of increasing seasonal
sea ice melt and is expected to drive the development of coastal infrastructure and cruise
tourism in many parts of the Circumpolar North in the next decades [43]. In areas that
are already accessible by expedition cruise ships such as in south Greenland, tourist visits
are anticipated to increase markedly in the coming decades, especially at high-profile sites
such as Qassiarsuk and Qaqortukulooq. Tourism is known to be a contributing factor to
processes of transformation and decay in cultural heritage [44]. Visitor impacts can be
linked to people walking through the archaeological sites, physically disturbing structures
and manipulating or removing loose objects lying on the surface. Over time, such activities
can irreparably damage or destroy the integrity of cultural heritage features. Therefore, it
is important to find a balance among site access, use, and preservation. It has previously
been shown that drones equipped with an RGB camera can be used to monitor the wear of
vegetation and trail conditions [45].

In this study, we tested the benefits of multispectral data on foot paths. As shown in
Figures 6B and 7B, it was possible to visually detect many tracks and paths on the RGB
images, whereas only the major paths were visible on the NDVI images (Figures 6E and 7E).
This tendency became even clearer when looking more closely at the images (Figure 8) and
especially when comparing the images from Qaqortukulooq from 2021 (Figure 8C,D) and
2022 (Figure 8E,F). In 2021, very few tourists visited the site due to COVID-19, whereas,
in 2022, tourism was back to normal with many cruise ships in the area. As can be seen
on Figure 8, the increase in visitor numbers led to the formation of several new paths in
2022. The RGB images were good at defining the complete variety of paths. However,
the NDVI was favorable in separating vegetation from soil; hence, heavily used paths
where vegetation was worn away stood out from the vegetated surroundings. This helped
in the process of defining areas where the vegetation was heavily damaged from areas
where the vegetation can recover. When comparing 2021 with 2022, the vegetation damage
from visitors increased in some areas. This was particularly clear in the upper part of the
selected area, where a large track was formed. The formation of this track can be linked to
the installation of a new interpretive sign overlooking the site. The sign was installed in
mid-July 2021 and, since then, most visitors have taken the direct route to read the sign.

4.3. Soil Water Content

Soil water is a key controlling factor for the degradation of buried archaeological
materials as high water content limits the availability of oxygen and the risk for microbial
degradation [46,47]. Thus far, the only way to monitor for changes in soil water content in
Greenland has been via manual point measurements or via subsurface automatic sensors
installed at a single point in the landscape. Consequently, being able to capture high-
resolution soil moisture maps via drones would offer a significant improvement in data
collection that would make assessments of climate change impacts on archaeological sites
much more detailed.
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We tested the possibility of mapping surface soil moisture (SSM) at the two study
sites according to the method and theory of TVDI. The calculated TVDI maps showed a
pronounced difference in TVDI across the two sites (Figure 9). At Qassiarsuk, a marked
variation in TVDI was found, primarily due to the abundance of houses, roads, bare rocks,
and vegetated areas, whereas at Qaqortukulooq, TVDI was slightly more uniform, with mid
to low TVDI values, though with high TVDI values in the rockiest parts of the landscape. At
Qassiarsuk, regression analysis between observed SSM and TVDI at the sampling points did
not provide any significant correlations between the two variables (Figure 10A) (r = −0.12,
p = 0.50, n = 34). At Qaqortukulooq, on the other hand, the correlation was statistically
significant (r = 0.47, p = 0.04, n = 20). However, as can be seen from the confidence and
prediction intervals for the linear regression, there was a large uncertainty related to the
connection between SSM and TVDI (Figure 10B). This means that, although it may be
possible to distinguish between dry and wet areas, it was not possible to describe variations
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in water content within the vegetated archaeological areas. Although the relationship
between SSM and δTS/TVDI is well documented [30–34], previous studies were conducted
at lower latitudes and in environments with larger variations in both δTS and SSM. At
latitudes of appr. 61◦ N (Kujataa, Greenland), the sun azimuth angle above the horizon is
low, even in summer months, resulting in relatively little incoming solar radiation. Hence,
the incoming radiation is not controlling the rates of evapotranspiration as dominantly
as is observed in lower latitudes. This may allow other variables to have relatively larger
effects on the variation in TVDI. The low sun angles also affect the thermal band output
as a larger bias from microtopography becomes pronounced. With low sun angels, even
at midday, the effect of microtopography leads to shadow-covered areas in the scenes.
Hence, large differences in incoming radiation will occur between south- and north-facing
surfaces, creating variations in surface temperature. Furthermore, it is difficult to map
temperature from a UAV without having some thermal drift within the scene. Although
our UAV surveys were conducted over short time intervals of approximately 30 min, the
thermal conditions may have varied within this period due to clouds or wind gusts from
the cold sea. When calculating the δTS map from two thermal images, the bias from these
different factors will be even more pronounced, ultimately leading to discrepancy between
the δTS and SSM variables. The two site visits in 2021 and 2022 were carried out during
very wet periods. At the same time, vegetation at the sites was dense and without any sign
of water stress or drought in the area. Under these conditions, vegetation transpiration is
high as water is not a limiting factor, thereby keeping leaf temperature low. Finally, we
compared TVDI with SSM from 0–5 cm depth in this study. However, previous studies
suggested that the connection between TVDI and soil moisture measurements is highly
dependent on the depth of sampling and that the optimal depth for the applicability of
TVDI may vary from site to site [48,49].
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5. Conclusions and Future Perspectives

In this study, we tested the potential of using RGB, multispectral, and thermal imagery
to perform high-resolution site mapping, identify wear on vegetation from human activity,
and quantify soil moisture variations. Our results showed that a combination of RGB maps
and MSRM maps from DSM orthomosaics offer very good data sets to map ruins and
structures in this type of terrain. The thermal band of the multispectral camera did not
provide any additional information to the maps, either as a stand-alone image or as a part
of a PCA analysis on all bands from the multispectral camera. However, we found some
extra features when inspecting the NDVI map created from the multispectral camera. For
ruins covered with dense vegetation, ruin identification was difficult, suggesting that it
will be worth testing technologies such as LIDAR in future studies. Moreover, the human
impacts on the site were distinguishable, making it possible to monitor wear and tear on
the vegetation caused by site visitors in the future. Our results showed that combining
RGB and NDVI might be the best method to pinpoint and distinguish between areas
with temporary and permanent vegetation damage. We also tried to estimate the surface
soil moisture based on δTS and TVDI. However, the results were subject to significant
uncertainties and, therefore, pointed toward limited applicability of the TVDI method
in relation to monitoring soil water variations at archaeological sites under Artic and
subarctic conditions.

The results showed the potential of using different types of drone imagery, not just for
research applications but also as a management tool to map and monitor archaeological
sites in Greenland and the Circumpolar North. However, our investigations also revealed
some challenges and concerns. In Greenland, the field season is limited to 2–3 months
during the summer (generally June to early September) and, therefore, the window for
conducting archaeological fieldwork is short. Being able to map and document site changes
without spending too much time and resources at a site is always preferred. Drone surveys
may be able to carry out these tasks much more efficiently compared to traditional surveys,
but only if suitable flight conditions are met. Throughout our two field campaigns in
2021 and 2022, either unstable weather with large amounts of rain or stable conditions
with thick fog in the morning/evening proved to be the greatest challenges. During both
visits, we succeeded in acquiring the data for the study. Still, conditions were far from
ideal, especially in relation to collecting thermal and multispectral data under stable light
conditions. As site visits involve large travel expenses, there is only one way to lower
the risk of bad weather and that is by adding a significant time buffer into your plans.
The risk of bad weather and the fact that you must be present at each site pose significant
limitation to the number of sites that can be monitored using the setup presented here.
Other approaches, such as imaging from light aircrafts, could expand the methods’ overall
applicability. This is largely a question of resolution and, therefore, it would be interesting
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to test the resolution requirements for different archaeological purposes in Greenland and
the Arctic in general. Currently, the spatial resolution of satellite images is insufficient for
most monitoring purposes [14]. However, on a long-time scale high-resolution satellite
images may prove to be more applicable than drone recordings, especially when it comes
to the continuous monitoring of remote sites. Nevertheless, the current use of drones
and development of sensors and methods to map and monitor sites are an important
first step towards developing new approaches to collect data at many highly vulnerable
archaeological sites in the north. Future work should focus on establishing links between
current UAV and satellite remote sensing data.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/drones7020115/s1, Figure S1: DeltaTS(δTS)(°C) maps used for NDVI/δTS plot for TVDI
calculation. (A) Qassiarsuk 2021. (B) Qaqortukulooq 2021. (Notice different ranges of δTS between
images), Figure S2: NDVI maps used for NDVI/δTS plot for TVDI calculation. (A) Qassiarsuk 2021.
(B) Qaqortukulooq 2021, Figure S3: Qassiarsuk 2021 TVDI dry- and wet-edge calculation. (A) TVDI
calculation area. (B) NDVI/δTS scatterplot with pixels (21,923,044 pixels) from TVDI calculation area
and dry-edge as a regression line defined by the maximum δTS across the NDVI range. Dry-edge:
δTS = −15.42(NDVI) + 44.64, r = −0.69. Wet-edge: δTS = 1.29. (pyTVDI), Figure S4: Qaqortukulooq
2021 TVDI dry- and wet-edge calculation. (A) TVDI calculation area. (B) NDVI/δTS plot with pixels
(105,928,938 pixels) from TVDI calculation area and dry-edge as a regression line defined by the
maximum δTS across the NDVI range. Dry-edge: δTS = −2.94(NDVI) + 15.90, r = −0.47. Wet-edge:
δTS = 0.00. (pyTVDI).
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