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Abstract: This paper proposes a fault tolerant control strategy for drone interceptors with fixed wings
and reaction jets subject to actuator faults. The drone interceptors have both continuous and discrete
actuators, which pose a challenge to the control system design. The proposed fault tolerant control
system consists of two parts, a nonlinear virtual control law and a dynamic control allocator. To deal
with system uncertainty and quantization error, a virtual control law with a parameter update law
is designed by command filtered backstepping. Then, a fault weighting dynamic control allocation
algorithm is developed to distribute the virtual control signal to the actuators on the drone interceptor.
When an actuator fault occurs, the proposed fault weighting dynamic control allocation scheme
can redistribute the control signals to the remaining actuators. The effectiveness of the proposed
algorithm is confirmed by numerical simulation.

Keywords: drone interceptor; fault tolerant control; command filtered backstepping; dynamic control
allocation; reaction control system; quantization error

1. Introduction

Drone interceptors, also called interceptor drones or drone interdictions, are unique
agile UAVs (unmanned aerial vehicles) that specialize in destroying other drones before
they achieve their goals. To accomplish this, an agile UAV launches at a moment’s notice,
covers a sizable distance fast, outmaneuvers the opposing drone, and intercepts it. Even
though the technology is recent, existing reaction jet systems can provide solutions. Drone
interceptors can employ reaction jets to enhance maneuverability and agility [1,2]. Drone
interceptors with multiple actuators can also increase the fault tolerance ability of the
control system [3,4].

In the past several decades, various nonlinear and robust control methods have been
applied to the control system design of interceptors with multiple actuators [5]. In [6],
a variable structure control is used in the control system design of interceptors with
aerodynamic surfaces and reaction jets. Considering the coupling effect of the flight control
system, a second order sliding mode control algorithm is designed for the autopilot system
of the interceptor in [7]. Based on the extended state observer, an autopilot system is
proposed to reduce couplings [8]. For an agile air to air interceptor, a robust backstepping
control method is proposed in [9]. The θ-D method is a nonlinear suboptimal algorithm
which solves the Hamilton–Jacobi–Bellman equation by adding perturbations to the cost
function [10]. A nonlinear control law of an interceptor with tail fins and reaction jets is
developed by the θ-D method in [11]. For the longitudinal autopilot design, a suboptimal
control algorithm is proposed by the θ-D method [12]. µ-synthesis methods are also used
in the flight control systems. In [13], a three-loop control law is developed via H∞ and
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µ-synthesis methods. Feedback linearization method is an effective approach to design
nonlinear flight control systems [14,15]. For interceptors with dual control systems, a
nonlinear control law is designed by input–output linearization [16]. However, the above
methods do not fully consider the cooperation between discrete and continuous actuators
and the problem of fault tolerance.

Since there is actuator redundancy in the interceptor control system, we need to
consider the cooperation of different actuators. There are two types of actuators on the
interceptor. The aerodynamic control surfaces are continuous while the reaction jets are
discrete, which brings difficulty in the design of the control system. Control allocation is one
of the effective approaches to solve actuator redundancy and handle actuator faults [17].
In [18], an observer-based adaptive variable structure control law is proposed for an
interceptor with dual control systems by using a fuzzy allocation algorithm. Considering
the autopilot dynamics of the interceptor with aerodynamic control surfaces and reaction
jets, an adaptive control law is designed by sliding mode control and optimal control
allocation [2]. For interceptors with blended aero-fin and lateral impulsive thrust, a classical
control system with optimal control allocation module is designed in [19]. Approximate
linear models are used in the above methods, which may be limited for implementing in a
wide range of flight conditions. To realize the control of UAV with nonlinear characteristics,
a fault tolerant controller is proposed by observer-based adaptive dynamic inversion [4].
Based on the boundary estimation, an adaptive fault-tolerant control algorithm is designed
for attitude control under joint actuator faults and uncertain parameters [20]. An on-
line sliding mode control allocation scheme for the fault tolerant control of aircraft is
designed in [21]. Based on quadratic programming and integer linear programming
techniques, a fault tolerant control method that includes a fault detection and control
allocation algorithms is designed in [22]. For these optimization-based allocations, the
mapping relationship between the virtual control command and the true control inputs
is static. Compared to static control allocation, dynamic control allocation provides an
additional degree of freedom to account for different actuators [23].

It is not appropriate to use traditional missiles to intercept drones from the perspective
of cost performance, because missiles are more expensive and drones are cheaper. Unlike
traditional intercepting missiles [24–26], drone interceptors are essentially flying hammers.
Ramming interceptors are not single-use munitions, and each unit is actually supposed
to fly multiple times. When designing the control system, it becomes more important to
consider the fault tolerance of the system.

For the interceptor with aerodynamic surfaces and reaction jets, each pulse thrust
has only two states of working and non-working. The thrust cannot be adjusted, and it
cannot be stopped after starting until the work is completed, which has obvious discrete
and nonlinear working characteristics. At the same time, the aerodynamic control system
changes continuously. Therefore, the controller design of the whole is a challenging
problem. In order to deal with this hybrid system and actuator fault tolerance problem, a
fault weighting dynamic control allocation (FWDCA) algorithm is proposed.

In this paper, a fault tolerant autopilot system for interceptors with aerodynamic sur-
faces and reaction jets is designed. The autopilot system involves a fault weighting dynamic
control allocator and a virtual control law. First, an FWDCA algorithm is developed. Then,
a robust virtual control law is designed by using command filtered backstepping [27] with
a parameter update law to produce the virtual control effort signals for the interceptor with
uncertainties. The dynamic control allocator distributes the virtual signals to the actuators
on the interceptor by the FWDCA strategy.

This paper is organized as follows. Section 2 presents the nonlinear system model of
an interceptor with dual control systems. In Section 3, the FWDCA algorithm is proposed
for the interceptor with aerodynamic surfaces and reaction jets. In Section 4, a nonlinear
virtual control law with a parameter update law is designed. Simulation results are shown
in Section 5 and conclusions are given in Section 6.
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2. Nonlinear Model of the Interceptor

For a drone interceptor with aerodynamic surfaces and reaction jets, the nonlinear
model can be expressed as

.
α = g

V cos β (sin α sin θ + cos α cos φ cos θ) + q− (p cos α + r sin α) tan β

− sin α
mV cos β Xa +

cos α
mV cos β (Za + Tz),

.
β = g

V (cos α sin β sin θ + cos β cos θ sin φ− sin α sin β cos φ cos θ)

+p sin α− r cos α− cos α sin β
mV Xa +

cos β
mV
(
Ya + Ty

)
+ sin α sin β

mV (Za + Tz),
.
φ = p + (q sin φ + r cos φ) tan θ,
.
p = qr

(
Iy − Iz

)
/Ix + La/Ix,

.
q = pr(Iz − Ix)/Iy + (Ma + MT)/Iy,
.
r = pq

(
Ix − Iy

)
/Iz + (Na + NT)/Iz.

(1)

where α, β, θ and φ are the angle of attack, sideslip angle, pitch angle and roll angle,
respectively; p, q and r are roll, pitch, and yaw rotational rates, respectively; Ix, Iy and Iz
are the moments of inertia; Xa, Ya and Za are aerodynamic forces along the x, y and z axis,
respectively; La, Ma and Na are aerodynamic moments in roll, pitch and yaw, respectively.
The aerodynamic forces and moments can be expressed asXa

Ya
Za

 = qSm

cx
cy
cz

,

 La
Ma
Na

 = qSmLm

 cl
cm
cn

, (2)

where q is dynamic pressure; Sm is reference surface;Lm is reference length; cx, cy, cz, cl , cm
and cn are aerodynamic coefficients. These coefficients can be expressed by angle-of-attack,
sideslip angle, angular rates, and control surface deflection as

cy = cyββ + cyδz δz,
cz = czαα + czδy δy,
cl = clp p + clδx δx,
cm = cmαα + cmδy δy + cmqq,
cn = cnββ + cnδz δz + cnrr.

(3)

where cyβ, cyδz , czα and czδy are aerodynamic force coefficients; clp, clδx , cmα, cmδy , cmq, cnβ,
cnδz and cnr are aerodynamic moment coefficients. In order to track the normal acceleration
commands, two augmented system states are designed as{

xIy =
∫ t

0

(
Nyc(τ)− Ny(τ)

)
dτ,

xIz =
∫ t

0 (Nzc(τ)− Nz(τ))dτ.
(4)

where Nyc and Nzc are normal acceleration commands; Ny and Nz are normal accelerations.
For the divert acceleration is maintained by the aerodynamic lift, the acceleration can be
approximately expressed as

Ny =
ay

g
≈

qSmcyββ

mg
, Nz =

az

g
≈ qSmczαα

mg
, (5)

where ay and az are accelerations along the y and z axes of the interceptor body frame,
respectively. Define the system states x1, x2, x3 and the control inputs uc as

x1 =
[
xIz xIy

]T , x2 =
[
α β

]T , x3 =
[
q r

]T , (6)

uc =
[
δy Tz δz Ty

]T . (7)
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Taking Equations (1)–(3) into account and considering the choices of x1, x2, x3 and uc,
we rearrange the dynamic model of the interceptor as

.
x1 = g1x2 + w1,
.
x2 = f21 + f22x2 + g2x3 + w2,
.
x3 = f32x2 + f33x3 + Buuc + w3.

(8)

where the control matrix Bu and g1, g2, f21, f22, f32 and f33 can be calculated from
Equations (1)–(3) and is not given due to the length of the paper. w1, w2 and w3 are
the system uncertainties. Suppose w1, w2 and w3 are norm bounded as

‖wi‖ ≤ di, (9)

where di are unknown constants and i = 1, 2, 3.

3. Fault Weighting Dynamic Control Allocation
3.1. Fault Weighting Dynamic Control Allocation Strategy

Considering the system (8) subject to actuator faults, we can rewrite the third Equation (8) as

.
x3 = f32x2 + f33x3 + Buuc − BuKuuc + w3, (10)

where the effectiveness gain Ku = diag(ku1, ku2, ku3, ku4). The parameters ku1, ku2, ku3
and ku4 satisfy 0 ≤ kui ≤ 1, i = 1, 2, 3, 4. If kui = 0 means the ith actuator uci works
perfectly, and if 0 < kui ≤ 1 means a fault occurs.

Proceeding to Equation (10), the control matrix is

Bu =

[
Mδy −MTz 0 0

0 0 Mδz MTy

]
, (11)

where Mδx = qSmLmclδx /Ix, Mδy = qSmLmcmδy /Iy, MTz = lT/Iz, Mδz = qSmLmcnδz /Iz,
MTy = lT/Iy. The variables with the same control effort are combined to form the virtual
control inputs as

vc =

[
vc1
vc2

]
=

[
Mδy δy −MTz Tz

Mδz δz + MTy Ty

]
, (12)

Considering (12), we divide Bu as

Bu = BvB, (13)

where Bv = I. Following the transformation of the control allocation, the original system
has four control inputs changed to two virtual inputs. The advantage is that it is convenient
to deal with system redundancy and fault tolerance issues. Then, Buuc in Equation (10) and
virtual control in Equation (12) can be expressed as

Buuc = Bvvc, vc = Buc, (14)

The virtual control law vc is not the actual control effort of individual actuator. The
virtual control law vc is required to be distributed to actual actuators by FWDCA algorithm.
Suppose the constraint of the control input uc is given by [23].

u ≤ uc ≤ u, (15)

where
u = max[umin, uc(t− T)− urateT], (16)

u = min[umax, uc(t− T) + urateT], (17)
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and T is the sampling time; urate is the maximal actuator rates. The command uc is
determined by solving the mixed optimal problem

min
uc

{
‖ W1

I-Ku
[uc(t)− us(t)]‖

2
+ ‖ W2

I-Ku
[uc(t)− uc(t− T)]‖

2
+ ‖ W3

I-Ku
uc(t)‖

2}
, (18)

subject to
Buc(t) = vc(t), (19)

where us(t) is the desired steady state control input; W1, W2 and W3 are the positive
definite weighting matrices. The fault weighting dynamic control allocation will depend
on the effectiveness of the actuators. In the fault free case, I−Ku = I. When faults occur,
the associated actuator uci will be weighted heavily since 1− kui becomes small.

The reaction control force of the interceptor is large enough. In fact, if we do not
consider the consumption of the reaction pulse thrust, the output of the reaction control
system can directly act as normal accelerations, so the response speed is almost without
delay. We only need to adjust the appropriate parameters and allocate more control to the
reaction force system to ensure that the system will not be saturated, but at the same time
we need to balance the consumption of the reaction force system.

3.2. Fault Estimation

The actuator dynamics can be expressed as [16]

.
uc =


.
δy.
Tz.
δz.
Ty

 =


−δy/τδ + δyc/τδ

−Tz/τT + Tzc/τT
−δz/τδ + δzc/τδ

−Ty/τT + Tyc/τT

, (20)

where δyc, δzc, Tyc and Tzc are command variables; τd = 0.005 and τT = 0.001 are time
constants of fins actuators and reaction jets, respectively. The actuators of aerodynamic
control surfaces are slow, whereas reaction jets are fast. In the presence of an actuator fault,
the ith actuator uci dynamics can be rewritten as

.
uci = −uci/τi + kuiucic/τi, (21)

where τi and ucic are the time constant and command variable of ith actuator. To estimate
values for the loss of effectiveness, a group of observers are designated as

.
ûci = −ûci/τi + k̂uiucic/τi + gτi(uci − ûci)/τi, (22)

where ûci is the output of the ith observer, gτi is the output error feedback coefficient of the
state observer and k̂ui is the estimated value of the loss in effectiveness. The error dynamics
have the following form

.
ũci = −(1 + gτi)ũci/τi + k̃uiucic/τi, (23)

where ũci = uci − ûci and k̃ui = kui − k̂ui. The adaptive law of k̂ui is designed as

.
k̂ui = bkiũciucic/τi, (24)

where bki > 0. Consider the following Lyapunov function

Vui =
1
2

bkiũ2
ci +

1
2

k̃2
ui, (25)
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The derivative of the Lyapunov function (25) is

.
Vui = bkiũci

(
−(1 + gτi)ũci + k̃uiucic

)
/τi − k̃ui

.
k̂ui. (26)

By substituting Equation (24) into Equation (26), we obtain

.
Vui = bkiũci

(
−(1 + gτi)ũci + k̃uiucic

)
/τi − k̃uibkiũciucic/τi

= −bki(1 + gτi)ũ2
ci/τi ≤ 0.

(27)

Define a set Ω1 =
{(

ũci, k̃ui
)∣∣ .

Vui = 0
}

. When
.

Vui = 0, we have ũci = 0. Hence,

Ω1 =
{(

ũci, k̃ui
)∣∣ũci = 0

}
. Note that the command ucic ≡ 0 in Equation (23). Therefore, if

ũci ≡ 0, we obtain k̃ui ≡ 0. By Applying LaSalle’s invariance principle, we find that the
only solution that can stay identically in Ω is the trivial solution

[
ũci k̃ui

]
≡ 0. Thus, we

obtain lim
t→∞

ũci = 0 and lim
t→∞

k̃ui = 0.

3.3. Desired Steady State Control Input

Suppose the desired steady state control input is us =
[
δys Tzs δzs Tys

]T . With the
pitch loop as an example, the decoupled linearized equations are given by

.
α = Zαα + q + Zδy δy + ZTz Tz, (28)

.
q = Mαα + Mqq + Mδy δy −MTz Tz, (29)

Nz =
V
g
( .
α− q

)
, (30)

where Zα = qSmczα/(mV), Zδy = qSmczδy /(mV), ZTz = 1/(mV), Mα = qSmLmcmα/Iy,
Mq = qSmLmcmq/Iy. It follows from Equations (28) and (29) that the angle-of-attack αs and
the pitch rate qs at a steady state satisfy[

αs
qs

]
= −

[
Zα 1
Mα Mq

]−1
[

Zδy δys + ZTz Tzs

Mδy δys −MTz Tzs

]
, (31)

Substituting Equations (28) and (31) into Equation (30), we obtain

Nzc = −
Vm

(
Zδy Mα − Zα Mδy

)
g
(
Zα Mq −Mα

) δys −
Vm(ZTz Mα + Zα MTz)

g
(
Zα Mq −Mα

) Tzs. (32)

The normal acceleration is principally maintained by the angle-of-attack, so that we
choose Tzs = 0 and δys is obtained as

δys = −
g
(
Zα Mq −Mα

)
Vm

(
Zδy Mα − Zα Mδy

)Nzc. (33)

By the same approach, we obtain the steady input in yaw loop as

δzs = −
g
(
Zβ Mr −Mβ

)
Vm
(
Zδz Mβ − Zβ Mδz

)Nyc. (34)
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Remark 1: The three weighting matrices play important roles in the control allocation algorithm.
A large W1 ensures the corresponding actuator converges fast to its desired position; A large W2
makes the actuator move slowly; a large W3 prevents the actuator from consuming too much energy.
The design parameter us can be seen as the forward control input, it does not affect the system
stability and does not need to be known precisely. Therefore, we use a decoupled approximate model
to design us.

4. Nonlinear Virtual Control Law Design
4.1. Virtual Control Law

Define the tracking error vectors as

zi = xi − xic, i = 1, 2, 3, (35)

where x1c is the tracking command, x2c and x3c are the command filtered terms which can
be obtain by the following filters{ .

χi1 = ωnχi2,
.
χi2 = −2ζωnχi2 −ωn(χi1 − µi),

(36)

with x(i+1)c = χi1 and
.
x(i+1)c = ωnχi2 as the outputs of the filters, where i = 1, 2. Therefore,

x(i+1)c − µi represents the unachieved portion of µi. ωn > 0 and 0 < ζ ≤ 1 are design
parameters. ε = 1/ωn is picked as the small perturbation in virtual control law design.

Define the boundary layer
yi = χi − hi, (37)

where χi =
[
χi1 χi2

]T and hi is “quasi-steady-state” of the command filter. By setting the
small perturbation parameter ε = 0, the unique “quasi-steady-state” solution to thecom-
mand filter is obtained as hi =

[
µi 0

]T or χi1 = µi and χi2 = 0. The proposed virtual
control law can be obtained in the following steps.

Step 1. The time derivative of z1 is calculated as

.
z1 = g1x2 + w1 −

.
x1c. (38)

The Lyapunov function candidate is chosen as

Vz1 =
1
2

zT
1 z1. (39)

The derivative of Vz1 along the system trajectories satisfies

.
Vz1 = zT

1
(
g1x2 + w1 −

.
x1c
)
. (40)

Observing Equations (9) and (40), we design the virtual control law µ1 as

µ1 = g−1
1

(
−k1z1 +

.
x1c − d̂1tanh(z1/δ1)

)
. (41)

where δ1 > 0,k1 > 0, tanh(x) is a hyperbolic tangent function and the parameter d̂1 is
designed as

.
d̂1 = σ1zT

1 tanh
(

z1
δ1

)
+ σ1δ1 − σ1λ1d̂1, (42)

with the adaptation gain σ1 > 0 and λ1 > 0. Consider the augmented Lyapunov function
candidate

V∗z1 = Vz1 +
1

2σ1
d̃2

1, (43)
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where d̃1 = d1 − d̂1. The derivative of V∗z1 along the system trajectories is given by

.
V
∗
z1 = zT

1

(
−k1z1 + w1 − d̂1tanh

(
z1
δ1

)
+ g1z2

)
− d̃1

(
zT

1 tanh
(

z1
δ1

)
+ δ1 − λ1d̂1

)
= −k1‖z1‖2 + zT

1

(
w1 − d1tanh

(
z1
δ1

)
+ g1z2

)
− d̃1

(
δ1 − λ1d̂1

)
.

(44)

The function tanh(z/δ) satisfies the following property [1]

‖z‖
‖z‖+ δ

≤ sgn
(

zT
)

tanh
(

z
δ

)
, (45)

where δ is a positive constant. Substituting Equation (45) into Equation (44), we have

.
V
∗
z1 ≤ −k1‖z1‖2 + d1‖z1‖ − d1‖z1‖2

‖z1‖+δ1
− d̃1

(
δ1 − λ1d̂1

)
+ zT

1 g1z2

≤ −k1‖z1‖2 + δ1d̂1 + λ1d̃1d̂1 + zT
1 g1z2.

(46)

By considering 2d̃d̂ = −d̃2 + d2 − d̂2, we obtain

.
V
∗
z1 ≤ −k1‖z1‖2 + δ1d̂1 − λ1

2

(
d̃2 − d2 + d̂2

)
+ zT

1 g1z2

≤ −k1‖z1‖2 − λ1
2 d̃2

1 + zT
1 g1z2 −

(√
2λ1
2 d̂1 − δ1√

2λ1

)2
+

δ2
1

2λ1
+ λ1

2 d2
1

≤ −k1‖z1‖2 − λ1
2 d̃2

1 + zT
1 g1z2 + δ1.

(47)

where δ1 = δ2
1/(2λ1) + λ1d2

1/2 can be made arbitrarily small by choosing δ1 and λ1, which
is small enough.

The time derivative of z2 is given as

.
z2 = f21 + f22x2 + g2x3 + w2 −

.
x2c. (48)

The virtual control law µ2 is chosen as

µ2 = g−1
2

(
−k2z2 − f21 − f22x2 − d̂2tanh(z2/δ2)− g1z1 +

.
x2c

)
, (49)

where δ2 > 0, k2 > 0 and the parameter d̂2 is designed as

.
d̂2 = σ2zT

2 tanh
(

z2
δ2

)
+ σ2δ2 − σ2λ2d̂2, (50)

with the adaptation gain σ2 > 0 and λ2 > 0. Define d̃2 = d2 − d̂2 and consider the
augmented Lyapunov function candidate

V∗z2 = V∗z1 +
1
2

zT
2 z2 +

1
2σ2

d̃2
2. (51)

The derivative of V∗z2 along the system trajectories is given by

.
V
∗
z2 ≤ −k1‖z1‖2 − k2‖z2‖2 − λ1

2 d̃2
1 + zT

2

(
w2 − d2tanh

(
z2
δ2

)
+ g2z3

)
− d̃2

(
δ2 − λ2d̂2

)
+ δ1

≤ −k1‖z1‖2 − k2‖z2‖2 − λ1
2 d̃2

1 + d2‖z2‖ − d2‖z2‖2

‖z2‖+δ2
− d̃2

(
δ2 − λ2d̂2

)
+ δ1

≤
2
∑

i=1
−ki‖zi‖2 − λi

2 d̃2
i + δi + zT

2 g2z3.

(52)

where δ2 = δ2
2/(2λ2) + λ2d2

2/2 can be made arbitrarily small by choosing δ2 and λ2, which
is small enough.
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The time derivative of z3 is

.
z3 = f32x2 + f33x3 + Bvvc + w3 −

.
x3c. (53)

The virtual control law vc is designed as

vc = B−1
v

(
−k3z3 − f32x2 − f33x3 − d̂3tanh(z3/δ3)− g2z2 +

.
x3c

)
, (54)

where δ3 > 0, k3 > 0 and the parameter d̂2 is designed as

.
d̂3 = σ3zT

3 tanh
(

z3
δ3

)
+ σ3δ3 − σ3λ3d̂3, (55)

with the adaptation gain σ3 > 0 and λ3 > 0. Define d̃3 = d3 − d̂3 and choose a Lyapunov
function candidate as

V∗z3 = V∗z1 + V∗z2 +
1
2

zT
3 z3 +

1
2

d̃2
3. (56)

Substituting Equations (54) and (55) into Equation (56), we obtain the derivative of V∗z3 as

.
V
∗
z3 ≤

2
∑

i=1
−ki‖zi‖2 − λi

2 d̃2
i + δi + zT

3

(
w3 − d3tanh

(
z3
δ3

))
− d̃3

(
δ3 − λ3d̂3

)
≤

2
∑

i=1
−ki‖zi‖2 − λi

2 d̃2
i + δi + d3‖z3‖ − d3‖z3‖2

‖z3‖+δ3
− d̃3

(
δ3 − λ3d̂3

)
≤

3
∑

i=1
−ki‖zi‖2 − λi

2 d̃2
i + δi.

(57)

where δ3 = δ2
3/(2λ3) + λ3d2

3/2. Define c = min{2ki, σiλi} and δ = δ1 + δ2 + δ3, we obtain

.
V
∗
z3 ≤ −cV∗z3 + δ. (58)

This implies that
.

Vz3 < 0 when Vz3 > δ/c. Therefore, the error states are bounded
and converge to an arbitrarily small invariant set

Ω2 =

{
zi, d̃i

∣∣∣∣∣ 3

∑
i=1
‖zi‖2 + d̃2

i /σi ≤ 2δ/c

}
. (59)

Step 2. Replacing zi, in terms gizi and tanh(zi/δi) by ηi to compensate the tracking
dynamics of the command filters, we can rewrite the virtual control law as

µ1 = g−1
1

(
−k1z1 − d̂1tanh(η1/δ1) +

.
x1c

)
,

µ2 = g−1
2

(
−k2z2 − f21 − f22x2 − d̂2tanh(η2/δ2)− g1η1 +

.
x2c

)
,

vc = B−1
v

(
−k3z3 − f32x2 − f33x3 − d̂3tanh(η3/δ3)− g2η2 +

.
x3c

)
,

(60)

where ηi is defined as
ηi = zi − ξ i (61)

where i = 1, 2, 3. The compensation ξ i is chosen as

.
ξi = −kiξ i + gi

(
x(i+1)c − µi − ξ i+1

)
, (62)

with ξ i(0) = 0 and ξ3 = 0. If the signals µi are tracked well, the compensation terms ξ1 and
ξ2 are zeros and η1 = z1, η2 = z2. The tracking error zi ∈ Ω2 can be guaranteed. However,
the signals µi are not always well tracked. The stability analysis is give in the following.
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4.2. Stability Analysis

First, a useful concept is introduced before the stability analysis. If there exists positive
constants k and c, such that |y(t, ε)| ≤ k|ε|, ∀|ε| < c and t ≥ 0, the signal y(t, ε) are said
to be order of ε, denoted as y(t, ε) = O(ε) [14]. Since

.
ηi =

.
zi −

.
ξi, it is straightforward to

calculate that 
.
η1 = −k1η1 + g1η2 − d̂1tanh(η1/δ1) + w1,
.
η2 = −k2η2 − g1η1 + g2η3 − d̂2tanh(η2/δ2) + w2,
.
η3 = −k3η3 − g2η2 − d̂3tanh(η3/δ3) + w3.

(63)

Choose a Lyapunov function candidate as

Vη =
3

∑
i=1

1
2

ηT
i ηi +

1
2σi

d̃2
i . (64)

The time derivative of Vη is

.
Vη ≤ −

3
∑

i=1
ki‖ηi‖2 + λi

2 d̃2
i + δi

≤ −cVη + δ.
(65)

We can ensure that the compensated tracking error ηi converges to an arbitrarily small
neighborhood of zero exponentially. Further, by choosing proper parameters ωn, c and δ,
we have ηi(t, ε) = O(ε).

Because the order of the nonlinear system is high, the stability of zi and χi are ad-
dressed in the following by the perturbation theory to reduce the complexity of the analysis.

Define the state vectors z and χ as

z =
[

z1 z2 z3 ξ1 ξ2 d̃1 d̃2 d̃3
]T , (66)

χ =
[
χ11 χ12 χ21 χ22

]T . (67)

The derivatives of z and χ are expressed as

.
z = f(t, z, χ, ε), (68)

ε
.
χ = g(t, z, χ, ε). (69)

where f and g are obtained based on Equations (1)–(3). Considering the perturbation the-
ory [14], we obtain that the system stability, as determined by the boundary layer. We set

ε
dy
dt

=
dy
dτ

, hence
dτ

dt
=

1
ε

. (70)

In the τ time scale, the derivative of y is obtained as

dy
dτ

=

[
A 0
0 A

]
y. (71)

where A is written as

A =

[
0 1
−1 −2ζ

]
. (72)

The matrix A is Hurwitz. Thus, the boundary layer model is stable and y(t, ε) = O(ε).
Through the above stability analysis, we obtain that the tracking errors zi can converge to
an arbitrarily small neighborhood of zero.
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Remark 2: In conventional command filtered backstepping control, Young’s inequality
zTw− d2‖z‖2/(4δ) ≤ δ is used to counteract the bounded uncertainty by the nonlinear damping
term d2z/δ [12]. The system error states will converge to an arbitrarily small neighborhood of zero,
if we choose δ as small as possible. However, excessive reduction of the parameter δ enlarges the
nonlinear damping term, which is undesirable. In the proposed approach, the hyperbolic tangent
function is introduced to deal with the system uncertainty. Since −1 ≤ tanh(x/δ) ≤ 1, even if δ
is selected as a very small constant, the virtual control signal will not become very large.

5. Simulation Results

In this section, the performance of the proposed fault tolerant control law for the
interceptor is investigated by numerical simulations. The tracking acceleration commands
are set to be Ny = 10g and Nz = 10g; One pulse thrust can produce a force of 2500 N.
The aerodynamic coefficients are obtained from [16]. The parameters of the virtual control
law are chosen as k1 = 10, k2 = 15 and k3 = 20; The parameters of command filter
are chosen as ωn = 10rad/s and ζ = 0.8; The matrices W1, W2 and W3 are chosen
as W1 = diag(3, 3, 1, 3, 1), W2 = diag(15, 15, 1, 15, 1) and W3 = diag(5, 5, 1, 5, 1). The
parameters bki and gτi are bki = 1 and gτi = 1. The desired control inputs δy and δz are
chosen as δys = 0.015Nzc and δzs = −0.015Nyc. In the simulation, the proposed fault
tolerant control law is compared with the feedback linearization (FL) control law. The
simulation results for the interceptor are shown in Figures 1–3.
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Figure 1. Simulation results in pitch. (a) Acceleration. (b) Angle of attack. (c) Elevator deflection.
(d) Reaction jet in pitch.
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Figure 2. Simulation results in yaw. (a) Acceleration. (b) Sideslip angle. (c) Rudder deflection.
(d) Reaction jet in yaw.
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Figure 3. Simulation results in roll. (a) Roll angel. (b) Aileron deflection.

From Figures 1–3, we can see that there is nonminimum phase phenomenon when the
interceptor controlled purely by aerodynamic control surfaces. The acceleration response
delay is large and the rise time under pure aerodynamic control is about 0.9 s. The
introduction of the reaction system effectively compensates for this delay, significantly
improving the speed of maneuver tracking. The interceptor with aerodynamic surfaces and
reaction jets, under the proposed method and FL approach, there are no minimum phase
phenomenon. The norm accelerations under the proposed method and FL are both stabilized
after 0.2 s. However, the elevator and rudder deflections under FL are smaller than that under
the proposed method and the forces generated by reaction jets under FL are larger than that
under the proposed method, because under FL, the reaction jets and tail fins counteract each
other after the angle-of-attack and sideslip angle have been generated. Therefore, it is hard to
reach the fullest potential of aerodynamic control surfaces by the blending principle of FL.
For the agile interceptor with two different types of actuators, the acceleration commands
can be tracked by several combinations of inputs of the actuators. In the proposed approach,
reaction jets cooperate with aerodynamic control surfaces very well and the fast response
of the acceleration command can also be realized with less energy of the reaction jets by
regulating the control allocation parameters. When the angle-of-attack and sideslip angle
have been generated, the deflections of elevator and rudder under the proposed method are
close to the case of aero only. The forces of reaction jets and aerodynamic control surfaces
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counteract each other under FL, which means the energy of the reaction jets is still consumed
when the angle-of-attack and sideslip angle have been generated.

In practical applications, the reaction jets are pulsed control effectors modeled as
zero-order holders with a sample time of 25 ms. Simulation results with quantization errors
are given in Figures 4–6.
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Figure 4. Simulation results in pitch with quantization errors. (a) Acceleration. (b) Angle of attack.
(c) Elevator deflection. (d) Reaction jet in pitch.
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Figure 6. Simulation results in roll with quantization errors. (a) Roll angel. (b) Aileron deflection.

The control system tracks the acceleration command smoothly under the proposed
method than that under FL when the angle-of-attack and sideslip angle have been generated,
because the norm acceleration is maintained by both aerodynamic control surfaces and
reaction jets under FL. In Figures 1–3, we can see that the forces of the reaction jets under
FL in pitch and yaw do not converge to zero when the acceleration commands are tracked.
In Figures 4–6, when the angle-of-attack and sideslip angle are built up, the reaction jets
under FL are still involved in controlling the attitude of the interceptor. The amount of
pulse thrust consumption in pitch and yaw under the proposed method are 30 and 18,
respectively, while the amount of pulse thrust consumption in pitch and yaw under FL are
57 and 33, respectively. Since the cooperation problem of the two different actuators are
fully considered, the response speed of the proposed autopilot system is ensured while the
consumption of pulse thrusts is reduced.

In the actuator fault case, we consider the damage of the aerodynamic control surfaces
and the reaction control system failure due to the interactions between the airflow and
the reaction jets. We suppose that the aerodynamic control surfaces lose 60% effectiveness
and the reaction jets lose 50% effectiveness. Simulation results with quantization errors are
given in Figures 7–9. In Figures 7–9, we can see that the autopilot system with FWDCA
tracks norm acceleration commands fast and smoothly in the presence of the quantization
errors and actuator faults. At 0.1 s, the acceleration under FL becomes negative, which is
unexpected. The amount of pulse thrust consumption in pitch and yaw under the proposed
method are 41 and 36, respectively, while the amount of pulse thrust consumption in
pitch and yaw under FL are 106 and 61, respectively. Compared with no actuator faults,
the amount of pulse thrust consumption increases by 60.4% under the proposed method,
whereas the amount of pulse thrust consumption increases by 85.6% under the FL. In the
case of actuator faults, the cooperation of the actuator of the proposed method is still better
than FL.
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6. Conclusions

In this paper, a fault tolerant control system with FWDCA is proposed for the inter-
ceptor with aerodynamic control surfaces and reaction jets in the presence of quantization
errors and actuator faults. The nonlinear control system of the interceptor consists of a
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robust virtual control law and an FWDCA algorithm. The adaptive virtual control law is
proposed by using command filtered backstepping with a parameter update law to produce
virtual control signals. The hyperbolic tangent function is introduced to reduce the value
of the nonlinear damping term. The FWDCA algorithm is proposed to optimally allocate
the virtual signals to the actuators. In the proposed method, the cooperation problem of
aerodynamic control surfaces and reaction jets is considered, the consumption of reaction
jets is reduced. Simulation results show that the proposed control system tracks norm
acceleration commands fast and smoothly under the quantization errors and actuator faults.
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