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Abstract: This study focuses on addressing the tracking control problem for a coaxial unmanned
aerial vehicle (UAV) without any prior knowledge of its dynamic model. To overcome the limitations
of model-based control, a model-free approach based on terminal sliding mode control is proposed
for achieving precise position and rotation tracking. The terminal sliding mode technique is utilized
to approximate the unknown nonlinear model of the system, while the global stability with finite-
time convergence of the overall system is guaranteed using the Lyapunov theory. Additionally,
the selection of control parameters is addressed by incorporating the accelerated particle swarm
optimization (APSO) algorithm. Finally, numerical simulation tests are provided to demonstrate the
effectiveness and feasibility of the proposed design approach, which demonstrates the capability of
the model-free control approach to achieve accurate tracking control even without prior knowledge
of the system’s dynamic model.

Keywords: coaxial rotor; model-free control; terminal sliding mode; accelerated particle swarm
optimization

1. Introduction

In recent years, advancements in technology, extensive research, and focused devel-
opment efforts have propelled significant progress in unmanned aerial vehicles (UAVs).
UAVs have found diverse applications across industries, including photography, path
planning, search and rescue operations, inspection of power lines and civil infrastructure,
agriculture, as well as police and traffic surveillance [1–3]. Within the realm of unmanned
aerial vehicles, coaxial rotor helicopters have garnered notable attention. Their compact
design, capability of vertical takeoffs and landings, and exceptional hovering abilities
contribute to their versatility (see Figure 1). The coaxial rotor helicopter is an extremely
agile aircraft comprising two counter-rotating brushless DC motors, swash-plate incidence
angles, and two servo motors mounted on the lower rotor [4]. These UAVs have six degrees
of freedom providing motion along three translatory and three rotational axes. Control-
ling the dynamics of each degree of freedom proves to be a formidable challenge due to
their strong interconnections, complex nonlinearities, physical constraints, uncertainties in
parameters, and external disturbances.

The position and attitude control of coaxial rotor helicopters has been dealt with
in several works using various linear/nonlinear control approaches, including propor-
tional–integral–derivative controllers (PID) [5,6], linear quadratic (LQ) regulators [7], H∞
control [8], and feedback linearization control [9]. Such works typically linearize the nonlin-
ear dynamics of the vehicle, leading to approximation errors and performance limitations.
Controllers based on sliding mode control (SMC) [10] and back-stepping [4,11,12] that do
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not use linearization have also been explored. Such approaches can ensure swift conver-
gence of the error while attaining robustness to external disturbances. However, issues
of chattering, control input saturation, the necessity of strict feedback architecture, and
resulting singularities in controller development limit the applicability of these techniques.
To improve on the limitations of such approaches, hybrid controllers integrating various
control approaches have also been explored for coaxial rotor UAVs. On such lines, in [13],
an adaptive global sliding mode control strategy with fuzzy logic to mitigate disturbances
was proposed. The work in [14] integrated model predictive control with SMC to manage
the motion of a coaxial aerial underwater vehicle. The proposed controller was able to
ensure seamless locomotion across different domains while effectively dealing with en-
vironmental disturbances. In [15], an adaptive sliding mode control approach to ensure
precise path tracking for UAVs, even in the presence of actuator faults, was proposed.
Similarly, in [16], an adaptive compensation control scheme based on a back-stepping
dual-loop structure specifically designed for coaxial rotor vehicles was developed for accu-
rate trajectory tracking. Despite the satisfactory results obtained in the mentioned works,
the design of these types of controllers required accurate knowledge of system dynamics,
which are difficult to model owing to the presence of nonlinearities. Further, increased
computational requirements for online learning of such nonlinearities and optimal selection
of design parameters for such model-based controllers is a highly challenging task.

Figure 1. Coaxial rotor prototype [12].

The emergence of model-free control (MFC) has garnered attention as a solution to
overcome the limitations of model-based control approaches [17]. Although research in
MFC is still in the nascent stage, some works on nonlinear control strategies for various in-
dustrial systems have been explored [15,18–30]. In [18,19], novel MFC control schemes were
proposed for quadrotor UAVs using algebraic methods and ultra-local models. However,
the lack of global stability guarantees and challenges in the selection of design parameters
limit the applicability of such schemes. In [20–22], adaptive proportional-derivative (PD)
sliding mode controllers were designed for quadrotor UAVs based on MFC techniques.
The performance of such controllers was susceptible to chattering effects, leading to degra-
dation in control performance and also the introduction of mechanical stress in the UAV.
In the pursuit of robustness, back-stepping techniques coupled with adaptive nonlinear
estimators were investigated in [23,24] for quadrotor and multirotor UAVs. Although
these methods exhibited improved adaptability to unknown dynamics, their complexity
increased due to the utilization of multiple derivatives of reference and measured variables,
rendering them sensitive to measurement noise. Similar other works on MFC techniques
dealing with thrust saturation [25], actuator or sensor failures [15,26,27], and trajectory
tracking [28,29] of UAVs using adaptive, fuzzy, and neural network controllers have been
explored. While such techniques were able to deal with unmodeled dynamics, the compu-
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tational complexity of real-time implementation increased significantly. In summary, it can
be said that the current research on MFC strategies for UAV control offers several control
strategies, each with its own strengths and limitations. However, challenges of global sta-
bility, avoiding singularity in design, enhancing robustness against external disturbances,
and validating these control strategies in real-world applications are open problems.

To address the above challenges, this paper proposes an optimal model-free controller
(OMFC) based on a terminal sliding mode (TSM) estimator for the position and attitude
tracking control of a coaxial rotor UAV. The OMFC-TSM approach overcomes the limita-
tions of model-based control by approximating the nonlinear system function using only
measured input/output data. This approach eliminates the necessity for prior knowledge of
system dynamics or extensive training procedures, rendering it highly suitable for practical
real-world applications. The key contributions of this study are as follows:

i. An innovative model-free control strategy aimed at achieving precise tracking of both
position and attitude for a coaxial rotor is proposed. By removing the requirement for
an intricate dynamic model, our approach bolsters the robustness and flexibility of the
control strategy.

ii. A hybrid controller configuration combining terminal sliding mode estimation with a
model-free controller is proposed for ensuring robustness to external disturbances,
uncertainty in parameters, and unmodeled dynamics. The proposed controller relies
on local measurements and reduces the complexity of implementation.

iii. Global closed-loop stability of the estimator–controller pair is rigorously established
to show finite-time convergence and path tracking of the system.

iv. The primary challenges associated with sliding mode control lie in the convergence
time and chattering phenomena induced by the discontinuous function sgn(.). In this
study, we have tackled these issues by introducing new controller schemes enhanced
with finite-time convergence.

v. The controller parameters are optimized using an accelerated particle swarm opti-
mization (APSO) algorithm, striking a balance between optimal tracking performance
and satisfying the design conditions for closed-loop stability.

Hence, the proposed approach offers significant advantages over the existing works,
and its primary contributions are noteworthy. The distinctive features of this model-free
control solution can be highlighted as follows:

• The prevailing model-based control strategies advocated for multirotor UAVs in [4,31],
hinging on the presumption of either partial or complete knowledge of the aerial
vehicle model for control design. However, this inherent reliance renders them highly
susceptible to unmodeled dynamics and the impact of parameter variations, severely
curtailing their practical applicability. In stark contrast, our proposed approach is
boldly model-free, eliminating the need for any a priori knowledge of system param-
eters or dynamic functions. This groundbreaking feature empowers the approach
to attain exceptional performance, successfully surmounting challenges posed by
nonlinearity and uncertainty in control problems.

• While the existing model-free control (MFC) strategies for UAVs [18,20] showcase good
path tracking performance, they often utilize ultra-local models for robust controllers,
limiting their effectiveness to local stability validation. In contrast, our approach
ensures stability and proves asymptotic convergence of tracking errors to zero for
both individual subsystems and the whole coaxial rotor system, backed by a rigorous
Lyapunov theory proof.

• In [26,32], the authors proposed advanced model-free control (MFC) using adaptive
intelligent networks for quadrotor UAVs. These controllers employ neural networks or
fuzzy systems to approximate uncertainties due to unmodeled dynamics, parameter
variations, and disturbances. However, their design parameters are randomly selected
and require expert knowledge. In contrast, this paper introduces a simple structure
for nonlinear estimator and utilizes the SMC technique to develop a robust and
straightforward model-free controller.
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• In the realm of UAV control design, exemplified by works like [15,24–29], crucial
design parameters surface, demanding meticulous selection. Indeed, these parameters
have been chosen through a laborious trial-and-error process, targeting stabilization
requirements. However, this conventional approach falters in achieving optimal
performance, imposing substantial constraints on proposed methodologies. Hence,
we suppose the selection of design parameters for the proposed controller, framing it
as an optimization challenge with the goal of improving the performance. Harnessing
the metaheuristic APSO, we employ an optimization approach to pinpoint the optimal
values for control parameters.

The paper is structured as follows: Section 2 presents an overview of the dynamic
model of the coaxial rotor UAV used for simulation purposes and formulates the problem
statement. In Section 3, we provide an explanation of the OMFC-TSM controller’s design,
encompassing details on the TSM estimator, APSO parameter optimization, and an ex-
amination of stability. Section 4 provides a comparative analysis of the OMFC-TSM with
other controllers through numerical simulations. Finally, Section 5 concludes the paper and
outlines potential avenues for future research.

2. Coaxial Rotor Helicopter Modelling

To accurately capture the behavior of the coaxial rotor helicopter, its translatory
dynamics about the x, y, and z axes along with the rotational dynamics along the roll,
pitch, and yaw axes are modeled. This modeling approach is crucial for achieving stability,
maneuverability, and reliable controllability of the helicopter during various flight tasks
and operational scenarios.

The motion of the coaxial rotor in a three-dimensional space is analyzed by introducing
two coordinate systems: E(xe, ye, ze) and B(xb, yb, zb), which are represented by the Earth
frame and the body frame, respectively. The body frame aligns with the coaxial rotor’s
center of gravity, while the Earth frame serves as the stable reference frame. An illustration
of the coaxial rotor helicopter with the frames of reference is presented in Figure 2.

Figure 2. Coaxial rotor vehicle configuration [4].

The position and orientation of the coaxial rotor in the Earth frame are denoted as
P = [x, y, z]T , and η = [φ, θ, ψ]T , respectively. These angles, φ, θ, and ψ, represent the
roll, pitch, and yaw rotations around the x, y, and z axes, respectively. The coaxial rotor’s
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position and rotation are governed through the control of thrust T and the application
of three control torques (τφ, τθ , τψ). These control inputs empower the coaxial rotor to
execute desired position and attitude changes. The transformation between the Earth
frame E(xe ,ye ,ze) and the body frame B(xb ,yb ,zb)

is elucidated by means of a rotation matrix,
capturing the relationship between these two coordinate systems and provided as [4,33]

R =

cosθcosψ sinφsinθcosψ − cosφsinψ cosφinθcosψ + sinφsinψ

cosθsinψ sinφsinθsinψ + cosφcosψ cosφsinθsinψ − sinφcosψ

−sinθ sinφcosθ cosφcosθ

 (1)

Using Newton–Euler formulation, the dynamic model with neglecting the external
disturbances can be described as [34]{

mP̈ = RT −mg(0, 0, 1)T

Jη̈ = ΨT
η τ − C(η, η̇)η̇

(2)

where m denotes the vehicle mass, g is the gravitational acceleration, and the symmetric
and positive definite matrix containing the inertia parameters Ix, Iy, and Iz is denoted as
J. The term C(η, η̇) represents the Coriolis term, which accounts for the coupling effects
between the rotational and translational motions of the vehicle [35]. Finally, Ψη represents
the Euler parameter, which is provided by

Ψη =

1 0 −sθ

0 cφ sφcθ

0 −sφ cφcθ

 (3)

The thrust T is generated by the two rotors and can be expressed in terms of the rotor
angular speeds Ω1 and Ω2, along with the swash-plate incidence angles δcx and δcy. The
expression for thrust is defined as follows

T =

Tx
Ty
Tz

 =

 −kβ sin δcy cos δcxΩ2
2

−kβ sin δcxΩ2
2

kαΩ2
1 + kβ cos δcx cos δcyΩ2

2

 (4)

where kα and kβ are positive coefficients related to rotor aerodynamics. The torque vector τ
is produced due to the separation between the center of mass and the rotor hubs and can
be represented as

τ =

τφ

τθ

τψ

 =

 −dkβ sin δcxΩ2
2

dkβ sin δcy cos δcxΩ2
2

γ1Ω2
1 − γ2Ω2

2

 (5)

where γ1 and γ2 denote the positive yaw aerodynamic coefficients and d is the distance
between the center of gravity and the center of rotation of the lower rotor.

Utilizing Equations (2)–(5), we can derive the coaxial rotor model in the Earth frame
E(xe, ye, ze) as follows [31]

ẍ =
(cφsθ cψ+sφsψ)(kαΩ2

1+kβ cos δcx cos δcyΩ2
2)

m

ÿ =
(cφsθ sψ−sφcψ)(kαΩ2

1+kβ cos δcx cos δcyΩ2
2)

m

z̈ =
(cφcθ)(kαΩ2

1+kβ cos δcx cos δcyΩ2
2)

m − g

φ̈ =
Iy−Iz

Ix
θ̇ψ̇− dkβ sin δcxΩ2

2
Ix

θ̈ = Iz−Ix
Iy

φ̇ψ̇ +
dkβ sin δcy cos δcxΩ2

2
Iy

ψ̈ =
Ix−Iy

Iz
φ̇θ̇ +

γ1Ω2
1−γ2Ω2

2
Iz

(6)
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Remark 1. From a practical standpoint, it is assumed that the swash-plate incidence angles δcx
and δcy are small. Under such assumptions, the nonlinear components can be approximated as
cos δcx ≈ cos δcy ≈ 1 and sin δcx ≈ δcx, sin δcy ≈ δcy [4]. Consequently, the lateral effects
induced by Tx and Ty in Equation (4) can be considered insignificant when compared to the primary
thrust component Tz.

Control over these parameters is achieved by utilizing input signals Ω1, Ω2, δcx, and
δcy, which can be obtained by applying an inverse transformation to Equations (4) and (5)
and under Remark 1. The expressions for the input signals are as follows:

Ω2
1 =

γ2Tz−kβτψ

kαγ2+kβγ1
,

Ω2
2 =

γ1Tz−kατψ

kαγ2+kβγ1
,

δcx = − τφ

dkβΩ2
2
,

δcy = τθ

dkβΩ2
2
.

(7)

To ensure the controllability of the system, it is necessary to impose bounds on the
Euler angles. Specifically, the roll angle φ, the pitch angle θ, and the yaw angle ψ should
satisfy the following conditions: |φ| < π

2 , |θ| < π
2 , and |ψ| < π. These bounds restrict

the range of motion for the Euler angles and ensure that the system remains within a
controllable region. By imposing these constraints, the system can be effectively controlled
while maintaining the stability and maneuverability of the coaxial rotor vehicle.

Control Oriented Model Development

The developed coaxial rotor model in Equation (6) consists of two sets of intercon-
nected nonlinear subsystems: (a) the position dynamics along x, y, and z axes and (b) the
rotational dynamics along the φ, θ, and ψ angles. Each subsystem can be further categorized
into three subsystems to represent the dynamics along each individual axis. The position
dynamics can be represented as an under-actuated subsystem because it relies solely on
the force Tz for control. Control over the coaxial rotor’s rotational motion is achieved
through the application of three torques, τφ, τθ , and τψ. These inputs directly influence the
orientation rates of the coaxial rotor. However, these inputs cannot directly influence the
angular positions, leading to an under-actuated scenario.

To address this under-actuated nature, three virtual inputs, namely ux, uy, and uz, are
introduced. These virtual inputs serve the purpose of controlling the position of the coaxial
rotor. By appropriately assigning values to ux, uy, and uz, the desired position coordinates
can be regulated despite the limitations of the available control inputs. These virtual inputs
are chosen as (

ux, uy, uz
)T

= TzR(0, 0, 1)T − g(0, 0, 1)T (8)

The coaxial position and orientation, represented by yi ∈ x, y, z, φ, θ, ψ, are selected as
the outputs to be controlled. The desired position coordinates xd, yd, zd, and the desired
yaw angle ψd are considered as inputs to the control system. Furthermore, we determine
the desired angles φd and θd, along with the desired magnitude of the force vector Tz, by
utilizing Equation (9) based on the position subsystems group, as shown below: [12]

Tz
φd
θd

 =


√

u2
x + u2

y + (uz + g)2

sin−1[ 1
Tz
(ux sin ψd − uy cos ψd)]

sin−1[ 1
Tz cos φd

(ux cos ψd + uy sin ψd)]

 (9)

This equation establishes a connection between the desired position and orientation
values, with ux, uy, and uz corresponding to the x, y, and z subsystems, respectively.
Incorporating Eqations (8) and (9) and taking into consideration external disturbances
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that may influence the coaxial model, like wind, as well as the unmodeled nonlinearities
represented by hi(t), the dynamic model presented in (9) can be expressed as follows:{

ẋi1 = xi2,
ẋi2 = fi(X ) + biui(t) + hi(t), i ∈ {x, y, z, φ, θ, ψ}

(10)

where X = [xx1, xx2, . . . , xψ1, xψ2]
T = [x, ẋ, y, ẏ, z, ż, φ, φ̇, θ, θ̇, ψ, ψ̇]T is the total state vector

of the coaxial rotor and can denoted as xi = [xi1, xi2]
T ∈ R2, where xi1 and xi2 represent the

local state vector of each subsystem. The control input for each subsystem is represented
by ui ∈ ux, uy, uz, uφ, uθ , uψ. Moreover, fi(X ) and bi correspond to the nonlinear dynamic
functions and the control input gains, respectively. In order to create a controller with
a straightforward structure, minimizing computational complexity for ease of real-time
implementation, we suggest a mathematical manipulation of the dynamic model (6) that
is illustrated in Equations (11)–(13). This manipulation aims to yield a single nonlinear
function, denoted as Ψi(X , t), for each subsystem i, which encompasses both the dynamic
nonlinearities and external disturbances.

By left-multiplying the second equation of (10) by b−1
i , we can express it as

b−1
i ẋi2 = b−1

i fi(X ) + b−1
i hi(t) + ui(t) (11)

Adding ẋi2 − b−1
i ẋi2 to both sides yields

ẋi2 = Ψi(X , t) + ui(t) (12)

where the total nonlinear dynamic function with disturbances Ψi(X , t) takes the following
expression

Ψi(X , t) = (1− b−1
i )ẋi2 + b−1

i fi(X ) + b−1
i hi(t) (13)

A simplified dynamic model was derived in (13). This model aims to facilitate the
implementation of a controller that is both straightforward and uncomplicated. Moreover,
our goal was to showcase the efficacy of our control strategy in addressing a range of
challenges, encompassing unknown dynamics, uncertainties, and disturbances collectively
denoted as Ψi(X , t).

Consequently, the coaxial model (10) can be reformulated using the following adjusted
state equations 

ẋi1 = xi2,
ẋi2 = Ψi(X , t) + ui(t),
yi = xi1.

(14)

In the context of a coaxial rotor system described by Equation (14), the aim is now to
design a control law ui using the proposed optimal model-free scheme and achieve precise
tracking of desired paths for both position and attitude variables (yi).

3. Robust Nonlinear Controller

In this section, a model-free controller for the path-tracking task while ensuring
performance optimization, stability, and robust control is proposed. The main objectives
can be summarized as follows:

• Develop a direct control structure based on local measurements, eliminating the need
for prior knowledge of the system’s dynamic model.

• Ensure that the proposed control strategy drives the tracking error to finite-time
convergence in the closed-loop system in the presence of disturbances.

• Enhance the performance of the controller by incorporating a metaheuristic algorithm
to optimize the control parameters and improve robustness.
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To address these objectives, a model-free control approach based on terminal sliding
mode is now proposed. The above discussion covers aspects of the optimization design in
the closed-loop illustrated in Figure 3.

Figure 3. Optimization of the proposed OMFC-TSM.

3.1. Model-Free Control Based on Terminal Sliding Mode

The design of the model-free control strategy is discussed in this section. First, we
establish some lemmas to be used for stability analysis.

Lemma 1 ((Cauchy–Schwarz inequality) [36]). For any αn ∈ < with n = 1, 2, . . . , m and
0 < ε ≤ 1, then

(|α1|+ |α2|+ · · · |αn|)ε ≤ |α1|ε + |α2|ε + · · · |αn|ε

Lemma 2 ([37]). A Lyapunov function that verifies the following inequality V̇ +λ1V +λ2Vγ ≤ 0,
where λ1 > 0, λ2 > 0, and 0 < γ < 1 are scalars, implies the existence of finite-time stability. The
settling time can be expressed as

t f ≤ t0 +
1

λ1(1− γ)
ln

λ1V1−γ(t0) + λ2

λ2

where t0 is an initial time.

The tracking error and its derivatives for the attitude and position path tracking of the
coaxial rotor UAV can be defined as

ei = yid − yi
ėi = ẏid − ẋi1
ëi = ÿid − ẋi2

(15)

where ẏid and ÿid represent the first and second derivatives of yid, respectively, and their
values are assumed to be smooth, known, and bounded. By substituting Equation (15) into
Equation (14), the dynamics of the coaxial rotor can be characterized by the tracking error
equations as follows

ëi − ÿid + Ψi(X , t) + ui(t) = 0 (16)

From Equation (16), it ensures that the tracking errors converge to zero when a control
law is defined in the following form

ui(t) = ÿid + KPiei + KDi ėi −Ψi(X , t) (17)

Here, KPi > 0 and KDi > 0 are user-selected controller gains aimed at ensuring the
closed-loop stability, as described by the following error equation

KPiei + KDi ėi + ëi = 0 (18)
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Thus, the tracking errors can converge to zero through linear control provided that the
nonlinear function Ψi(X , t) is well-defined. However, inaccurate model information may
cause instability and tracking failure. To overcome this drawback, we propose to develop
a nonlinear estimation based on terminal sliding mode to approximate the value of the
nonlinear function Ψi(X , t) as

Ψ̂i(X , t) = −ΓiSi − βisgn(Si)− εiS
λi/ci
i (19)

where Γi, βi, and εi are design parameters to be adjusted to control the weighting of the
tracking error in relation to the sliding surface convergence. Additionally, βi > ‖Ψi‖, where
‖.‖ represents the 1-norm. λi and ci are positive odd integers (λi < ci), and Si denotes the
sliding surface, which can be defined as

Si = eiv − xi2 (20)

with eiv being a modified tracking error and its dynamic equation provided as

ėiv = −ΓiSi − βisgn(Si)− εiS
λi/ci
i − ui(t) (21)

The time derivative of (21) is

Ṡi = ėiv − ẋi2

= −ΓiSi − βisgn(Si)− εiS
λi/ci
i − ui(t)− ẋi2

= −ΓiSi − βisgn(Si)− εiS
λi/ci
i −Ψi(X , t)︸ ︷︷ ︸

Ψ̃i=Ψ̂i−Ψi

(22)

where Ψ̃i is the estimation error. Using the estimation of Ψi(X , t), a model-free control-
based terminal sliding mode (MFC-TSM) can be proposed as

ui(t) = ÿid + KPiei + KDi ėi − Ψ̂i(X , t) (23)

The proposed control strategy, as defined in Equation (23), offers a simplified math-
ematical structure that eliminates the need for complex calculations by utilizing local
measurements. This design choice enhances the computational efficiency of the controller.
The control structure, depicted in Figure 4, visualizes the components and interactions of
the proposed controller. The stability analysis of the proposed controller is provided below,
ensuring the robustness and reliability of the control system.

Figure 4. Structure of MFC-TSM.

Theorem 1. By considering the dynamic model (13) with the proposed control law in (23) and the
estimation term in (19), it can be demonstrated that the position and attitude tracking errors ei of
the coaxial rotor converge to zero, leading to asymptotic stability of the closed-loop system.
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Proof. A Lyapunov candidate function V is defined as

V = ∑
i∈{x,y,z,ϕ,θ,ψ}

Vi (24)

where Vi is the subsystem stability function, with

Vi =
1
2

S2
i (25)

The time derivative of the Lyapunov function V can be provided as

V̇i = SiṠi (26)

By substituting (22) into (25), V̇i becomes

V̇i = Si(−ΓiSi − βisgn(Si)− εiS
λi/ci
i −Ψi(X , t))

= −ΓiS2
i − βiSisgn(Si)− εiS

(λi+ci)/ci
i −Ψi(X , t)Si

≤ −ΓiS2
i − βi‖Si‖−εiS

(λi+ci)/ci
i + ‖Ψi(X , t)‖‖Si‖

≤ −ΓiS2
i − εiS

(λi+ci)/ci
i

(27)

Using Lemma 2, V̇ can be expressed as:

V̇i ≤ −2ΓiVi − 2(λi+ci)/2ci)εiV(λi+ci)/2ci) (28)

From (28), (24), and Lemma 2, it can thus be deduced that the proposed MFC-TSM
controller ensures finite-time convergence [38]. Thus, the stability of the coaxial rotor
closed-loop system is guaranteed and the variables ei, ėi, and ui are bounded with respect
to the design parameters Γi, βi, εi, λi, and ci.

The use of the discontinuous function sgn(.) in the control law induces chattering,
causing vibrations in the system. To mitigate this effect, various methods have been
proposed in the literature [39–41]. In our study, we adopt a tan sigmoid function as an
alternative to the sign function to reduce chattering.

The performance of the system in the tracking path task is highly dependent on the
optimal selection of the design parameters, namely KPi, KDi, Γi, βi, and εi, as indicated in
Equations (19) and (23). To achieve maximum performance, an automated tuning method
is proposed in the form of an accelerated particle swarm optimization (APSO) algorithm.

3.2. Optimization of Control Parameters

In this section, the optimization of the control parameters using APSO (adaptive parti-
cle swarm optimization) [42] is discussed. It is important to note that the proposed control
law in Equations (19) and (23) becomes optimal when the parameters KPi, KDi, Γi, βi, εi can
be selected optimally and it needs to satisfy stability criteria (28).

To describe the procedure of the particle swarm optimization (PSO) algorithm, we
define ρµ(t) ∈ KPi, KDi, Γi, βi, εi as the position vector and vµ(t) as the velocity vector of
particle µ. The updated velocity vector vµ(t + 1) is determined based on the current global
best value G = min J

(
ρµ(t)

)
as follows [42]

vµ(t + 1) = wvµ(t) + γt(ε− 1/2) + C1r1

(
ρ∗µ − ρµ(t)

)
+ C2r2

(
G− ρµ(t)

)
(29)

Here, ε ∈ [0, 1] represents a random variable. The cognition decreasing function is
defined as γt = γ0e−λt, where γ0 = 0.5 and 0 < λ < 1. The inertia weight is denoted by w,
while C1 and C2 represent the cognition learning and social learning factors, respectively.
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Additionally, r1, r2 ∈ [0, 1] are generated random numbers. The new position is then
computed as

ρµ(t + 1) = ρµ(t) + vµ(t + 1) (30)

Below is the step-by-step procedure for employing the APSO to obtain the optimal
parameters for the proposed control law:
Step 1: Initialize the following parameters:

• Population size: The number of swarms in the population.
• Number of iterations: The maximum number of iterations the algorithm will perform.
• Step size t: The step size is used for generating new parameter values during pollina-

tion operations.

These parameters are crucial for controlling the behavior of the APSO and must be
appropriately set to ensure effective optimization.
Step 2: Generate the initial feasible solutions according to the search space set from experi-
ence, with the same size as the dimensional problem. For each initial solution, compute
mean absolute error (MAE), which is used as the fitness function and denoted by Ji,
as follows:

Ji =
∑N

j=1 (ei)

N
(31)

Here, jth is a sampling time, and N is the sample size.

Proposition 1. Based on the observation from Equation (6) that the position subsystems have the
same dimensions as the rotation subsystems, we propose to introduce two global objective functions
during the optimization process. These objective functions are designed to optimize the performance
of both the position and rotation subsystems simultaneously.

For the position objective function, denoted as Jp, we consider the summation of
individual objective terms Ji for each position component (x, y, and z) divided by 3 to ensure
a balanced contribution. Mathematically, it can be expressed as Jp = ∑

i∈{x,y,z}
Ji/3. Similarly,

for the rotation objective function, denoted as Jr, we consider the sum of individual objective
terms Ji for each rotation component (φ, θ, and ψ) divided by 3. It can be formulated as
Jr = ∑

i∈{φ,θ,ψ}
Ji/3.

Step 3: Update the velocity and position of each particle using the APSO algorithm. This
involves adjusting the control parameters based on the particle’s previous position, velocity,
and its best-known position and the best-known position in the entire swarm.
Step 4: Repeat steps 2 and 3 for a predefined number of iterations or until a convergence
criterion is met. Once the optimization process is complete, the control parameters of the
particle with the best fitness are considered as the tuned proposed parameters.

It is important to note that the success of the tuning depends on the characteristics of
the system being controlled. Additionally, the search space should be well taken to avoid
instability or undesirable behavior in the control system during the tuning process.

4. Results and Discussion

The performance of the proposed OMFC-TSM scheme for the coaxial rotor was evalu-
ated by numerical simulations on the Matlab/Simulink platform. The simulations were
carried out for various reference signals provided for the path-tracking task. The initial
states for the estimator were selected as y0

i = 0 for i ∈ x, y, z, φ, θ, ψ. The physical parame-
ters of the coaxial rotor used in the simulations can be found in Table 1 [4]. To optimize
the designed controller, the APSO algorithm was configured with a swarm size of n = 10,
cognitive parameter C1 = 2, social parameter C2 = 2, and inertia weight w = 2. The
optimization process was iterated for a total of 100 iterations, allowing the algorithm to
converge and find optimal controller parameters.
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Table 1. Parameters of the coaxial rotor.

Parameters Value

g 9.81 m/s2

d 0.0676 m
m 0.41 kg
Ix 1.383 × 10−3 kg.m2

Iy 1.383 × 10−3 kg.m2

Iz 2.72 × 10−4 kg.m2

kα 3.683 × 10−5 N/rad2s2

kβ 3.776 × 10−5 N/rad2s2

γ1 1.476 × 10−6 N.m/rad2s2

γ2 1.326 × 10−6 N.m/rad2s2

4.1. APSO-Based Parameter Tuning

In this study, the coaxial rotor model with the proposed controller was simulated for
100 iterations to achieve statistically reliable outcomes from the accelerated particle swarm
optimization (APSO) algorithm. The main objective was to optimize the parameters of the
proposed controller by minimizing the cost function J, while adhering to the stability con-
dition, within the bounded search space µi ∈ [µmini , µmaxi ]. To ensure robust optimization
results, the optimization algorithm relies on generating random initial values during its
operation.

Figure 5 presents the convergence behavior of the optimization process for the position
and rotation subsystems.

Figure 5. (a) Convergence curve of the position objective function; (b) convergence curve of the
rotation objective function.

The graph illustrates the progress of the cost function J over the iterations, demon-
strating the improvement achieved by the APSO algorithm in finding the optimal solution.
The best iteration provides valuable insights into the convergence behavior and represents
the statistical outcome of the optimization process. Figure 5 clearly demonstrates the effec-
tiveness of the accelerated particle swarm optimization (APSO) algorithm in fine-tuning
the parameters of the proposed controller. The convergence rate is very high, as evidenced
by the achieved minimized values of Jp = 0.9675 m and Jr = 0.0194 rad within a mere
100 iterations. This highlights the exceptional performance of the APSO algorithm in
efficiently addressing the optimization problem associated with the controller design. The
optimized parameter values obtained through the optimization process are presented in
Table 2.
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Table 2. Optimized parameters of OMFC-TSM obtained via APSO.

ith Controller Parameter Value

KP KD Γ β ε

x 9.451 3.183 3.968 1.159 2.174
y 10.135 2.642 2.154 0.947 2.691
z 13.267 4.548 4.957 2.153 1.983
φ 5.642 1.846 1.679 0.187 1.872
θ 3.946 1.751 1.781 0.924 1.781
ψ 4.873 1.976 2.115 1.542 1.1371

To show the effectiveness of the proposed APSO-based optimally tuned OMFC-TSM,
comparison studies with two OMFC-TSM controllers without any optimal tuning were
carried out for square path defined as

yxd =

{
0 m f or 20 s < t < 35 s
else 2 m

yyd =

{
2 m f or 10 s < t < 30 s
else 0 m

{
yzd = 3 m
yψd = 0 rad

To ensure the boundedness of all closed-loop system signals, the desired trajectory
was filtered in order to make it smooth. The gains of such controllers were arbitrarily
selected but ensured convergence and stability. The 3D-path-tracking comparison results
for such conditions are presented in Figure 6. The maximum values of the tracking error
Max|ej|, j = x, y, z for all three controllers show that the proposed APSO-based optimally
tuned OMFC-TSM outperforms the other two non-optimal controllers.
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Figure 6. Comparison of proposed OMF-TSM design with arbitrarily tuned controllers (Set 1 and Set
2); Max(|.|) is the maximum of absolute value function.

These optimized parameters play a crucial role in significantly enhancing the perfor-
mance of the proposed controller, resulting in improved trajectory tracking accuracy and
system stability. The successful optimization process further reinforces the effectiveness
and reliability of the proposed approach in addressing the trajectory tracking issue for the
coaxial rotor system.

4.2. Performance Evaluation of APSO-Tuned OMFC-TSM Controller

The performance of the proposed APSO-tuned OMFC-TSM controller was then eval-
uated in the presence of external disturbances. The disturbances hj affecting each of the
translational axes are selected as random bounded disturbances reflecting real flying sce-
narios in which wind speed remains unpredictable and presented in Figure 7. Further,
the selection of disturbance profiles is aimed at encompassing the primary nonlinearities
affecting the coaxial system.
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Figure 7. External disturbances hj, j = x, y, z [30].

The desired trajectory for the path tracking problem was defined as
yxd = 4sin(t)m
yyd = 4cos(t)m
yzd = 1m
yψd = 1rad

The attitude tracking performance of the proposed OMFC-TSM controller under the
effect of disturbances is shown in Figure 8. It can be seen that, although initial oscillations
are observed owing to the presence of wind disturbances, the proposed controller ensures
convergence of tracking error and maintains stability.
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Figure 8. Coaxial rotor attitude tracking response. (a) Roll (φ) subsystem response; (b) yaw (ψ)
subsystem response; (c) pitch (θ) subsystem response.

The control inputs Ω1, Ω2, δcx, δcy generated by the OMFC-TSM controller for stabi-
lizing the attitude and position subsystem in the presence of disturbances are shown in
Figure 9.
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Figure 9. Coaxial rotor control signals using OMFC-TSM. (a) Control signals δcx and δcx; (b) control
signals Ω1 and Ω2.



Drones 2023, 7, 706 15 of 18

To evaluate the robustness of the design approach, the OMFC-TSM has been compared
with two well-known approaches; the PID controller and TDEC controller were designed
according to [43,44]. The 3D trajectory tracking performance of all the controllers is shown
in Figure 10.
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Figure 10. 3D coaxial rotor trajectory tracking under wind effect.

It can be seen in Figure 10 that the TDEC and PID can track the desired path under
the disturbances, but the best trajectory tracking can only be achieved with MFC-TSM.
The PID controller exhibits bad tracking performance. Meanwhile, Figure 9 illustrates the
behavior of the control inputs, indicating the success of the designed controller approach in
achieving the desired trajectory despite the presence of external disturbances. The behavior
of the sliding manifolds, depicted in Figure 11, aligns with expectations, demonstrating con-
vergence to zero for all sliding manifolds. It is evident that, while all states asymptotically
approach their desired values, the associated sliding manifolds also converge to zero. This
observation serves to test and validate Equations (20)–(22). Furthermore, the simulation
results demonstrate that incorporating continuous functions into the controller design effec-
tively reduces chattering, mitigating its detrimental effects on systems. This improvement
is valuable for practical applications, while retaining the finite-time convergence feature.
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To provide a comprehensive evaluation of the proposed controllers, a detailed quan-
titative comparison was conducted for both the position and attitude subsystems. This
comparison aimed to assess the performance using widely recognized criteria, includ-
ing mean absolute error (MAE), root mean square error (RMSE), and maximum abso-
lute error (MaxAE). The results of the comparison are summarized in Table 3, which
reveals that the proposed approach outperforms the other techniques for both position and
rotational subsystems.

Table 3. RMSE and MaxAE performance indexes.

Criterion Controller

PID TDEC OMFC-TSM

MAE Position System 0.2589 0.1062 0.0351
Rotation System 0.0012 6.35 × 10−4 5 × 10−4

RMSE Position System 0.5075 0.2921 0.1740
Rotation System 0.0199 0.0129 0.0129

MaxAE Position System 1.4115 1.0207 0.0788
Rotation System 0.0048 0.0028 0.0030

The proposed OMFC-TSM control approach thus achieves high performance, as
evidenced by the quantitative results, offers advantages of model-free design and reduced
complexity, and can be easily implemented in real-time trajectory tracking control of coaxial
rotor UAVs.

5. Conclusions

This paper presents a robust model-free controller for trajectory tracking of a coaxial
rotor, addressing the limitations of model-based approaches. By combining model-free
control (MFC) and terminal sliding mode (TSM) control, the proposed method effectively
estimates the unknown dynamic functions of the coaxial rotor. The control design is
validated using the Lyapunov theory, ensuring the stability of the system. The control
parameters are tuned through an optimization problem solved by an accelerated particle
swarm optimization (APSO) algorithm, optimizing tracking performance while maintain-
ing stability. One of the key advantages of the proposed approach is its simplicity, with a
relatively simple control structure and low-complexity design conditions. This simplicity,
along with the model-free and smooth control signals, enhances its applicability in real-
time coaxial rotor systems. The effectiveness of the proposed approach is demonstrated
through comparative analysis with other existing methods. Our upcoming efforts will
concentrate on implementing and validating the proposed control strategy in actual coaxial
rotor applications. This will offer valuable insights into its performance and robustness in
practical scenarios. Additionally, we are interested in addressing the issue of control signal
saturation, which has the potential to cause instability and chattering.
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