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Abstract: Navigating multiple drones autonomously in complex and unpredictable environments,
such as forests, poses a significant challenge typically addressed by wireless communication for
coordination. However, this approach falls short in situations with limited central control or blocked
communications. Addressing this gap, our paper explores the learning of complex behaviors by
multiple drones with limited vision. Drones in a swarm rely on onboard sensors, primarily forward-
facing stereo cameras, for environmental perception and neighbor detection. They learn complex
maneuvers through the imitation of a privileged expert system, which involves finding the optimal
set of neural network parameters to enable the most effective mapping from sensory perception to
control commands. The training process adopts the Dagger algorithm, employing the framework of
centralized training with decentralized execution. Using this technique, drones rapidly learn complex
behaviors, such as avoiding obstacles, coordinating movements, and navigating to specified targets,
all in the absence of wireless communication. This paper details the construction of a distributed multi-
UAV cooperative motion model under limited vision, emphasizing the autonomy of each drone in
achieving coordinated flight and obstacle avoidance. Our methodological approach and experimental
results validate the effectiveness of the proposed vision-based end-to-end controller, paving the way
for more sophisticated applications of multi-UAV systems in intricate, real-world scenarios.

Keywords: perception and autonomy; multi-UAV system; sensor-based control; imitation learning;
end-to-end controller

1. Introduction

The field of Unmanned Aerial Vehicles (UAVs) has seen substantial growth, with
extensive studies conducted on efficient trajectory planners for single UAVs, resulting in
numerous contributions [1–9]. However, decentralized planners for multi-UAV systems
that can handle unknown, obstacle-dense environments remains an open problem. These
planners are vital for controlling UAVs, facilitating conflict avoidance, task completion,
and maintaining coordination and consistency at the group level. These complex systems
encompass multiple interrelated functional aspects, such as communication and perception,
formation and collision avoidance, and control and planning. The interplay and optimiza-
tion of these components are crucial for the system’s overall performance. Research on
autonomous drone swarms, utilizing various navigation methods, including indoor motion
capture [10–12], outdoor navigation using the Global Positioning System (GPS) [13–15], and
vision-based [16–22], has provided significant insights. The current mainstream multi-UAV
systems largely rely on wireless communication networks for information sharing, where
UAVs share the location, speed, direction, and other data. This information forms the basis
for group-coordinated actions, with each UAV planning its next move based on its relative
position in the formation and with adjacent UAVs, thus maintaining a specific formation
and avoiding individual conflicts. However, the use of wireless communication in multi-
UAV systems presents certain drawbacks. The limited bandwidth can lead to network
congestion and data transmission delays with an increase in the number of UAVs [18].
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Furthermore, wireless communication can be susceptible to various forms of interference
and attacks, resulting in data loss and errors. As an alternative, vision technology has
emerged as a powerful supplement due to its large information capacity, good real-time
performance, and resistance to interference.

Vision is indeed the primary sensory modality enabling collective motion in animal
groups [20]. Drawing inspiration from natural biological swarms like bird flocks, vision has
emerged as a potent sensory modality for agents. Due to its high information density, vision
technology has the potential to significantly enhance the autonomy of UAVs. Onboard
cameras present notable advantages over other UAV perception tools in terms of weight,
cost, size, power consumption, and field of view. This trend is further supported by
substantial advancements in computer vision and deep learning [23,24]. Vision inputs
promptly detect shifts in the location or velocity of other drones within their field of
view, bypassing the typical delays associated with wireless communication [18,19,23,24].
Moreover, vision offers environmental data, such as localization and obstacle information,
aiding drones in executing complex maneuvers, including obstacle avoidance [7,8,25–27].

In the domain of multi-UAV systems, vision has been separately employed for per-
ceiving neighboring entities and detecting obstacles, with no instances of its simultaneous
application for both functions. When identifying neighboring entities, UAVs are typically
equipped with omnidirectional cameras to capture global visual information [18,19,23,24].
This approach, while effective, imposes additional burdens in terms of weight and com-
putational power. Intriguingly, certain studies have shown that bird flocks can attain
superior coordination patterns under optimally limited fields of view than those under
global fields of view [19,28]. This insight serves as an inspiration for our research on
multi-UAV cooperation under limited vision.

The conventional control approaches for multi-UAV systems typically utilize either
reactive or planning controllers. Reactive controllers generate commands according to a
set of rules and integrate them, while planning controllers convert the control process into
optimization problems, incorporating elements such as collision avoidance and formation
maintenance as hard or soft constraints [8]. These methodologies represent hierarchical
control strategies, deconstructing the navigation task into multiple subtasks. Each subtask
is individually designed, debugged, and subsequently integrated with the rest.

Despite their ubiquity, these designs pose certain challenges. A key issue is the de-
pendency on interrelated components, which requires each component to perform reliably
and efficiently. Ignoring the interactions among different stages can result in compounded
errors [29]. Additionally, this approach introduces extra delays that could hinder the exe-
cution of high-speed and flexible maneuvers [30]. The complex interdependencies within
these hierarchical control systems often compromise the robustness against environmental
shifts, variations in system parameters, or system failures.

These limitations have sparked increasing interest among researchers to investigate
end-to-end strategies. These strategies aim to create a direct mapping from input to output,
bypassing a sequence of intermediate states or processes [9,31–35]. Such an approach not
only simplifies the complexity of the entire control system but may also improve perfor-
mance and robustness by automatically adapting to various uncertainties and disturbances.

End-to-end strategies for multi-UAV systems often leverage machine learning or opti-
mization techniques, including reinforcement learning methods such as sac [36], ppo [37],
ddpg [38], etc., as well as imitation learning methods [9,33–35]. Among these, imitation
learning holds particular promise for autonomous flight due to its unique advantages.
It seeks to imitate the behaviors of experts or humans, thereby simplifying the learning
process and optimizing actions based on the environment’s state. This approach requires
fewer sample complexities compared to reinforcement learning and can minimize the
incidence of dangerous behaviors. Imitation learning can be trained through various meth-
ods, including human imitation [33], real-world experiences [34], or simulations [9,35].
Strategies that emulate model predictive control (MPC) controllers have successfully ex-
ecuted extreme acrobatic actions [9]. Additionally, end-to-end methods have facilitated
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high-speed autonomous flight for quadrotors by simulating sample-based motion planning
algorithms [35]. Notably, a fully visual end-to-end method can direct drone swarms using
raw images, simulating clustering algorithms [39].

In this paper, we construct a distributed multi-UAV cooperative motion model for
multi-UAV systems with limited vision, where each drone autonomously maneuvers, en-
abling coordinated flight and obstacle avoidance. Relying solely on onboard forward-facing
cameras for neighbor detection and environmental perception, drones operate without
wireless communication. We introduce an end-to-end controller built with neural networks
to process visual inputs from grayscale and depth image streams, generating velocity
control commands. Utilizing computer vision technology, specifically Yolo-V7 [40] and Mo-
bileNet [41] for aircraft detection and depth image feature extraction, we facilitate a compact
representation for navigation in complex settings. The lightweight design of our policy net-
work allows for high update rate onboard execution on quadrotors. The training involves
an imitation learning approach within a centralized training with decentralized execution
framework (CTDE), where an expert system provides demonstrations for optimal control.
The training, inclusive of demonstration, data collection, and validation, is conducted in a
Gazebo-simulated environment [42], iterating to refine the end-to-end perception-motion
controller and minimize control signal discrepancies through the Dagger algorithm.

This paper’s contributions can be summarized as follows:

1. We develop a motion model for UAVs with limited vision, where no wireless communi-
cation between UAVs is required. Each UAV relies solely on its local onboard camera to
detect neighboring aircraft, sense environmental obstacles, and subsequently execute
cooperative motion, navigating in unknown environments and avoiding obstacles.

2. We propose an end-to-end perceptual motion controller that directly implements sen-
sor measurement to navigation command mapping, demonstrating exceptional gener-
alization capabilities and robustness against perceptual artifacts, such as motion blur.

3. We apply imitation learning within the centralized training with decentralized execu-
tion (CTDE) frameworks to train the end-to-end controller. We construct a privileged
expert system providing high-quality decision behavior data. The Dagger algorithm is
adapted for the training process, facilitating the realization of visual input-to-control
command mapping.

4. We adopt a decentralized control approach in the multi-UAV system, where individual
agents rely exclusively on local data for collective decision making. Each agent is
responsible for its decisions based purely on its own observations and local visual
perception of nearby agents. This decentralization demonstrates superior robustness
to single-point failures and exhibits strong scalability for large swarms.

The remainder of this paper is organized as follows: Section 2 details the proposed
method. The effectiveness of the proposed method is verified by the simulation experiments
in Section 3. Section 4 concludes the paper.

2. Method

In complex environments, each drone operates autonomously, eliminating the need
for wireless communication. These drones rely primarily on onboard frontal binocular
cameras, capable of detecting nearby drones and environmental obstacles, to navigate. Each
drone utilizes an onboard end-to-end controller to control its movement. This controller
guides the drone, modifying its flight path based on the detected environmental conditions
and nearby entities. It adheres to a reference direction derived from a planning algorithm
or user input, aimed at a target point, without directly considering potential conflicts
or collisions.

Figure 1 displays the structure of our system. Our model is tripartite, grounded in
the principles of imitation learning. It consists of an end-to-end controller, a privileged
MPC controller, and a systematic training process. The end-to-end controller, built on a
neural network architecture, serves as the ‘student’ in this context, aiming to learn from
the ‘teacher’—the MPC controller. As the teacher, the MPC controller leverages its access
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to privileged information to provide high-quality demonstrations that guide the learning
process of the end-to-end controller.

Figure 1. Overview of the proposed method: integration of an end-to-end controller, a privileged
MPC controller, and a systematic training process.

The learning process revolves around identifying the optimal set of neural network
parameters that enable an effective mapping from sensory perception to control commands.
This process is facilitated through a method of centralized training with decentralized
execution (CTDE), where the data from all the drones is compiled for the learning phase.
We employ the Dagger algorithm, customized for this context, to train and fine-tune the
neural network parameters. Once optimized, these parameters are individually deployed
to each drone’s end-to-end controller. This iterative process of learning and adaptation
continues until the end-to-end controller achieves the desired proficiency in drone control.

2.1. End-to-End Controller

Each UAV is equipped with an onboard end-to-end controller responsible for sensing,
cooperation, and motion planning. This controller incorporates a modular neural network,
comprising a perception network module, a temporal convolution network module, and a
policy generation network module. The controller accepts onboard sensor data as input
and produces high-level control signals (speed commands) as output, thereby facilitating
the mapping from the onboard sensor input to the high-level control command output. The
end-to-end controller comprises three input branches, grayscale visual input, depth visual
input, and data from inertial measurements (IMU), supplemented by the desired direction.
Each of these inputs is processed by a corresponding perception backbone, followed by
their integration into a temporal convolutional network and a multilayer perceptron for
sequential action generation. This neural network framework is visualized in Figure 2.

The controller’s input data encompass depth images d ∈ R540×540 and grayscale
images d ∈ R900×450 obtained via the frontal binocular camera, the UAV velocity v ∈ R3,
the acceleration a ∈ R3 and attitude data q ∈ R9 gathered by the IMU, and the intended
flight direction ω ∈ R3. Each type of input data is processed separately by the three
perceptual branch networks. The resulting sequence of intermediate states is then fed into
the temporal convolutional neural network to extract temporal features. These intermediate
quantities are subsequently input into the control network for further processing. The
final output is a set of advanced control signals (velocity commands) directed to the flight
controller to manage the UAV’s motion.
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Figure 2. Network architecture of end-to-end controller. The visuomotor policy core takes camera
observations, IMU data, and desired direction as inputs to generate commands.

In the first branch of the neural network, the input is sourced from grayscale image
streams d ∈ R900×450. These streams are produced by the front-facing camera of the UAV
at a consistent sampling rate of 10 Hz, as illustrated in Figure 3a. The individual frames
are channeled into an object detection layer, which employs the YOLOv7-tiny architecture.
This architecture, having been pre-trained on our unique image dataset, is expertly fine-
tuned to excel at the singular task of drone detection. The backbone of this system yields a
four-dimensional feature vector [x, y, size_x, size_y] for each drone identified in the image,
encapsulating the object’s spatial coordinates [x, y] on the image, along with the dimensions
of the detection box [size_x, size_y]. Subsequent to this detection process, the feature
vector undergoes a dimension expansion by one tensor level, preparing it for input into
a 2D convolutional neural network. This network comprises four hidden layers, each
equipped with a distinct set of filters (32, 64, 128, 128), and is punctuated with LeakyReLU
activation layers, fostering nonlinearity within the system. The processed data are then
relayed through globalAveragePooling2D, which aids in reducing the spatial dimensions
of the feature maps, while retaining their salient characteristics. The culmination of this
branch sees the processed signals mapped onto a 128-dimensional feature vector via a fully
connected layer, encapsulating a comprehensive representation of the identified drone’s
features in the image.

(a) (b)

Figure 3. Sample image from camera. (a) Sample image from a front grayscale camera. (b) Sample
image from a front depth camera.

In the second branch of our neural network, we utilize a depth image stream d ∈ R540×540

as the input. This stream is generated by the drone’s front-facing stereo camera at a
sampling frequency of 10 Hz, as depicted in Figure 3b. Each depth image frame undergoes
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processing via a pre-existing MobileNet architecture, the purpose of which is to extract
salient features from the depth image data. Subsequent to this extraction, the features
are input into a 1D convolutional network. This network is composed of four hidden
layers, each armed with filters (128, 64, 64, 64). Interleaved among these convolutional
layers are LeakyReLU activation layers, designed to introduce nonlinearity and promote
efficient learning. The final stage of this branch involves mapping the processed signals to a
128-dimensional feature vector. This transformation is achieved through a fully connected
layer, bringing together the complex, multilayered information into a compact, yet richly
informative, feature representation.

In the third branch of the neural network structure, the UAV’s onboard inertial mea-
surement unit (IMU) is leveraged, sampled at an impressive frequency of 100 Hz. This
sampling encapsulates the UAV’s current speed v ∈ R3, the attitude information repre-
sented by the rotation matrix q ∈ R9, and a reference motion direction ω ∈ R3. It should be
noted that the reference direction is a relatively crude estimate, which does not consider
environmental influences. In the context of this research, it is defined as the unit direction
vector extending from the UAV’s present position toward the target point. This rich stream
of information is processed through a five-layer perception network, fitted with filters
(128, 64, 64, 64, 32), and interspersed with LeakyReLU activation layers. The culmination
of this process sees the signals mapped onto a 128-dimensional feature vector, achieved via
a fully connected layer.

The feature vectors outputted from the three diverse branches are concatenated and
fed into a temporal convolution network, maintaining a time-stream of T = 1 s. This net-
work employs a causal convolution, which is ideally suited for sequence models, facilitating
the prediction of the state yt using previously observed states x1, . . . , xt. The fundamental
unit of our network is a residual module known as TemporalBlock [43]. Each Temporal-
Block comprises a dilated causal convolution layer, a norm layer, a ReLU layer, and a
dropout layer. The dilated causal convolution layer, which is an enhanced convolution
methodology featuring gaps, serves to increase the receptive field. This layer introduces a
hyperparameter, the dilation rate, which we have set to 2. The entire temporal convolution
network is arranged into five layers, a configuration that supports our aim of optimizing
the processing and predictive capabilities of the temporal convolution network.

Subsequently, the inputs from each branch are integrated and processed through a
multilayer perceptron. This perceptron encompasses four hidden layers, each equipped
with filters (128, 64, 64, 64). The processed signals are then mapped onto a three-dimensional
feature vector via a fully connected layer, signifying the desired speed v ∈ R3.

To maintain UAV stability and prevent abrupt movements from sudden speed changes,
we impose a maximum speed limit vmax. This is achieved by normalizing the network’s
output using a hyperbolic tangent (tanh) function to the range of [−1, 1], which is subse-
quently scaled to meet vmax. This method is commonly used for managing network outputs
to ensure controlled and safe UAV speeds.

Additionally, we establish a maximum acceleration threshold amax to regulate the
changes in speed. We calculate the acceleration from the difference between the current
command and the UAV’s velocity state. If the acceleration’s magnitude exceeds amax, it is
normalized and scaled to this limit. After adjusting the acceleration, we then recompute the
speed to ensure it aligns with these safe operational parameters. This process is essential
for maintaining stable and safe acceleration, a critical factor given the UAV’s field-of-view
limitations and the necessity for controlled directional movement.

2.2. Privileged Expert

In our imitation learning framework, the end-to-end controller obtains high-quality
decision-making behavior data from a privileged expert. Within a simulated environment,
this expert is capable of ‘cheating’ by accessing privileged information, enhancing the
demonstration quality. This includes access to its own ground-truth state (position p ∈ R3,
velocity v ∈ R3, and acceleration a ∈ R3), as well as the ground-truth data of neighboring
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agents and obstacle details (pobs ∈ R3). A nonlinear model predictive control (NMPC)
algorithm serves as this expert system.

The term FOVi(t) is used to denote the field of view of agent i at time t. This field is
visualized as a sector characterized by parameters ω (the angular width) and R (the range).
The agent is situated at the center of this sector, with its symmetry axis aligning with the
drone’s forward direction, or line of sight (LOS). The sector’s left and right boundaries
form an angle of ω/2 with the drone’s LOS. During flight, the drone can acquire status
information about neighboring drones within its field of view (FOV).

As indicated in Figure 4, Ni(t) signifies the set of neighboring drones for drone i at
time t. To be included in this set, the neighbors must be within the drone’s potential field
and must not be obstructed by any obstacles. The neighbor set can be mathematically
expressed as follows:

Ni(t) = {j|pj(t) ∈ FOVi(t), j = 1, . . . , N}

=
{

j
∣∣∣‖pj(t)− pi(t)‖ ≤ R ∧

〈
pij(t), Li(t)

〉
≤ ω/2∧ f (pij(t)−Ol) < 0, j = 1, . . . , N

}
(1)

Here, pij is the vector pointing from drone i to drone j, Li(t) represents the LOS
direction of the drone i, 〈pij, (Li)〉 signifies the angle between the two vectors, d2

ij denotes
the Euclidean distance between drone i and drone j, and f (·) determines whether an
obstacle blocks the line segment formed by the two positions.

Figure 4. Illustration of agent potential fields: agent i considers agent j as a neighbor, and drone k is
not deemed a neighbor to agent i due to obstacle interference.

During flight, the drone’s LOS direction corresponds with its direction of motion,
ensuring that the LOS is always directed toward the drone’s path of motion. The drone
can swing laterally during its flight in a random manner to expand its field of view while
maintaining its primary focus forward, thereby dynamically extending its field of view
to the sides. This pattern of movement increases the probability of neighboring drones
entering its potential field. A random factor ε, which follows a normal distribution G(µ, σ2),
is added to the LOS direction to further enhance the chances of neighboring drones entering
the drone’s field of view from the sides.

Li(t) = tan−1
(

vy

vx

)
+ ε (2)

Planning for drones is conducted in a lower-dimensional planar output space, defined
as x = [p, v] = [px, py, pz, vx, vy, vz] ∈ R6, which includes the drone position p, velocity
v, and line acceleration a as the control vector u. X(t) ∈ R6NP is defined as sequence of
predicted states x(t + l|t) for a future time period l ∈ {1, . . . , P}, and U(t) ∈ R3NP is the
sequence of predicted controls u(t + l|t) for the future time period l ∈ {1, . . . , P− 1}.



Drones 2023, 7, 704 8 of 21

Assuming the drones obey a second-order discrete linear system, the dynamics of the
drone under the MPC control system can be expressed as [12]:

x(t + 1) = A(t)x(t) + B(t)u(t) + C(t)u(t− 1) (3)

Here, A, B, and C are constant matrices. x and u are referred to the world coordi-
nate system.

For the drone i at moment t, various terms are defined, such as the separation term
Jsep,i(t), the migration term Jmig,i(t), and the control term Ju,i(t).

The separation term for drone i at moment t is defined as follows:

Jsep,i(t) =
P

∑
l=0

∑
j∈Ni

wsep

|Ni|
(‖pj(t + l|t)− pi(t + l|t)‖2 − d2

ref)
2 (4)

This term combines the effects of aggregation and repulsion forces, allowing the drone
to maintain a suitable distance dref with neighboring drones, where j ∈ Ni denotes the
neighboring agents of drone i, and Ni represents the number of neighbors.

The migration term for drone i at moment t is defined as follows:

Jmig,i(t) =
P

∑
l=1

wmig

(
‖v(t + l|t)− v∗(t + l|t)‖2

)
(5)

v∗(t + l|t) = vref

(
goal − p(t + l|t)
|goal − p(t + l|t)|

)
(6)

This term combines the effects of direction and velocity magnitude to move the drone
toward the target point at the desired velocity. Here, the velocity direction only encodes
the long-term target of the UAV, not its collision-free path.

The control term is defined as follows.

Ju,i(t) =
P−1

∑
l=1

wu

(
‖u(t + l|t)‖2

)
(7)

In this case, wsep, wmig, wu are the constant weights associated with the cost func-
tion terms.

To prevent collisions between UAVs and their neighbors or obstacles, the cost function
incorporates two sets of constraints:

dij(t + 1|t)2 ≥ d2
agent-safety, j ∈ Ni (8)

dim(t + l|t)2 ≥ d2
obs-safety, m ∈ {1, . . . , M} (9)

Here, dagent-safety is the safety distance between two UAVs and dobs-safety is the distance
between the UAV and an obstacle.

In summary, the whole non-convex optimization problem for drone i can be expressed
as follows:

min
X(k),U(k)

(
Jsep,i(t) + Jmig,i(t) + Ju,i(t)

)
(10)



Drones 2023, 7, 704 9 of 21

Subject to x(t + l + 1|t) = Ax(t + l|t) + Bu(t + l|t),
x(t|t) = x(t),

vmin ≤ v(t + l|t) ≤ vmax,

umin ≤ u(t + l|t) ≤ umax,

dij(t + 1|t)2 ≥ d2
agent-safety,

dim(t + l|t)2 ≥ d2
obs-safety,

l ∈ {1, . . . , P}, j ∈ Ni.

The proposed NMPC controller operates at a sampling frequency of 10 Hz with a
prediction horizon of 2 s, which is divided into 20 intervals of 0.1 s each. We employ
Casadi [44] to solve the NMPC problem, utilizing its formulation for a Nonlinear Program-
ming (NLP) task.

The NMPC optimizes the open-loop control problem over a receding horizon of
20 time steps. The control command utilized for the training process, aexp

i,t = πexpert(si,t),
is derived from the second velocity in this optimized sequence. This command provides
high-quality demonstrations for the end-to-end controller’s learning process, ensuring
effective training and accurate emulation of the expert policy.

2.3. Training Process

During the training process, we employ a centralized training with decentralized
execution (CTDE) strategy, combined with the Dagger (dataset aggregation) algorithm, to
train the student policy (end-to-end controller). Our primary objective was to establish
an effective mapping from sensory inputs to control commands, thereby emulating the
actions of a privileged expert policy and optimizing the neural network parameters. CTDE
operates in two phases: execution and training.

In the execution phase (online and decentralized), each agent independently executes
the policy based on local observations. For example, in the kth flight of drone i at time
t, the expert system generates control commands aexp

i,t from privileged information si,t,
while the student policy, using real-world observations oi,t, produces astd

i,t . These data,
consisting of observations oi,t and student-generated commands astd

i,t , are compiled into a
training dataset.

In the training phase (offline and centralized), we aggregate these data to train a
unified neural network. The Adam optimization algorithm is used to minimize the action
discrepancy between the expert and student policies. The student system aims to match
the expert policy’s performance, guided by the following loss function:

πθ = min
π̂

Eo,s∼ρ(π)

[
‖aexp

i,t − π̂(oi,t)‖
]

(11)

To counteract the behavioral drift and enhance the state-space coverage during train-
ing, the Dagger strategy is implemented [45] (Algorithm 1). This iterative method enables
agents to gather additional data under the current policy while retaining expert labels.
These new data, combined with the original dataset, form an aggregated dataset, thus ex-
plaining the term dataset aggregation. The agent’s policy is then retrained on this enlarged
dataset, with the process repeated for numerous iterations.
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Algorithm 1: Dagger for multi-UAV flocking control
Input: Expert policy πexpert, iterations N Initialize: Empty Dataset D ← ∅,
policy πθ

Obtain initial expert dataset Dexpert from environment using πexpert
Set D ← Dexpert for episode k = 1, 2, . . . do

Train policy πθ on dataset D using Adam algorithm by minimizing the loss in
Equation (11)
Initialize an empty dataset Di for the current iteration Di ← ∅

for step t = 1, 2, . . . do
for drone i = 1, 2, 3 in parallel do

Obtain local observation oi,t and privileged information si,t
Determine student action astd

i,t by executing πθ under oi,t

Determine expert action aexp
i,t by executing πexpert under si,t

if |astd
i,t − aexp

i,t | < ξ then
Execute action astd

i,t
else

Execute action aexp
i,t

end
Store state-action pair (oi,t, aexp

i,t ) into Di
Update next local observation oi,t+1 and privileged information si,t+1
end

end
Aggregate datasets D ← D ∪ Di

end
Output: Trained policy network πθ

The pseudocode represents the algorithm utilized for multi-UAV imitation learning.
The algorithm is iterated for a defined number of cycles N, each involving a training phase
and an execution phase. During the initialization, the expert policy is utilized to generate
an initial dataset Dexpert, which is then assigned to the main dataset D. The policy under
consideration, denoted as πθ , is initially empty. In each iteration, the policy πθ is trained
on the accumulated dataset D. For every time step (from t = 0 to T), each drone detects its
local observations oi,t and receives privileged information si,t. It then uses πθ to determine
its action astd

i,t and the expert policy πexpert to define the reference action aexp
i,t . A decision

mechanism is put in place to decide between the student action and the expert action to
avoid collision under immature student policy. If the difference between the two proposed
actions is less than a predefined threshold ξ and the execution of the student action does
not lead to a predicted collision, the student action is implemented. Otherwise, the expert
action is chosen. Every selected action and corresponding state are then recorded and
aggregated into the dataset Di for the current iteration. After processing all time steps,
the dataset Di is merged into the main dataset D. The process is repeated for the defined
number of iterations N. At the end of these cycles, the final, trained policy πθ is obtained,
which can be shared for the UAVs’ collective learning and actions. This Dagger algorithm is
noteworthy for its capacity to aggregate data from both student and expert policies, helping
the learning model to effectively generalize and improve over multiple iterations.

3. Experiments and Results

In this section, we meticulously evaluate the effectiveness of our proposed method con-
cerning formation control and obstacle avoidance during multi-UAV operations, leveraging
the Gazebo simulation environment. This robust platform renders a realistic simulation
milieu mirroring the physical attributes of real-world robotics. We delve into the assess-
ment of the learned vision-based swarm controller, juxtaposing its performance against a
privileged expert controller and selected benchmark algorithms. This comparative insight
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underscores various dimensions of our proposed system solution’s performance potential.
Moreover, we furnish quantitative assessments across several pertinent metrics for each
application scenario.

To verify the proposed algorithm’s functionality, we devised a simulated cityscape
within the Gazebo environment (as shown in Figure 5). This simulation presents two
complex scenarios for evaluation: (1) collective navigation in a street environment; (2) col-
lective navigation through a forest. The Gazebo simulator, when used in synergy with
the Betaflight firmware, provides state estimation and control, while the Robot Operating
System (ROS) facilitates node communication. All the simulations are carried out within
the Gazebo environment, with the trajectories displayed in Rviz, a three-dimensional visual-
ization tool commonly employed in robotics research. Our experimental swarm comprises
five quadrotor drones. Each drone is equipped with two simulated cameras: a grayscale
camera and a stereo camera. The grayscale camera records 720 × 540 grayscale images at
a rate of 20 frames per second, while the stereo camera captures 224 × 224 depth images,
also at a frame rate of 20 Hz. These cameras, in conjunction with an onboard end-to-end
controller built on TensorFlow, act on decentralized and onboard controlling of the drone.

Figure 5. Illustration of the Gazebo simulation environment showcasing three scenarios: collective
navigation in a street; formation navigation in a forest.

Our findings reveal that the proposed controller demonstrates considerable robustness,
emerging as a viable alternative to communication-based systems, wherein the positional
data of other agents are shared among the group members. This finding suggests the
potential of our approach for enabling autonomous multi-UAV operations in complex
real-world scenarios.

3.1. Collective Navigation in a Street

We explore a scenario wherein multi-UAVs are required to execute tasks parallel to
real-world applications such as patrolling, courier services, and rescue operations, all
maintaining their formation, avoiding inner-collision, and navigating along designated
routes, akin to flying along a street (Figure 6). These applications are emblematic of tasks
that demand a high level of coordination, precision, and adaptability.
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Figure 6. Detailed presentation of the Gazebo simulation environment: (a) aerial view of the Gazebo
simulation space; (b) snapshot of multiple UAVs navigating a street; (c) real-time grayscale camera
view from one of the participating drones; and (d) real-time depth camera perspective from one of
the drones in flight.

Prior to each experimental flight, the UAVs are positioned approximately 2.5 m apart
from each other (refer to the ‘Start Point’ in Figure 6a). Subsequently, all the drones are
instructed to take off simultaneously and ascend to a prescribed altitude of 5 m. Once the
drones reach the desired height, we engage the proposed onboard end-to-end controller
that assumes decentralized control of their motion and orientation. This algorithm serves to
replicate the collective and coordinated behavior observed in natural flocks, thus permitting
the drones to maintain formation and navigate complex environments with minimal
human intervention.

Each drone is programmed with an identical list of migration points to guide their
path. These migration points function as interim destinations for the drones and ensure
they follow a predetermined route. The algorithm switches to the next migration point
as soon as an agent enters within an acceptance radius racc = 3 m from the current point,
thereby ensuring continuous movement and a seamless navigation process.

Figure 6b illustrates a moment captured during the multi-drone flight. Figure 6c
provides a real-time perspective from one of the drones in flight (marked by a pentagram
in Figure 6). This perspective is captured using the YOLO-v7 algorithm, which identifies
neighboring drones as indicated by the red bounding boxes. In contrast, the depth camera,
as shown in Figure 6d, records the spatial relationships between the objects within its field
of view, providing valuable data for assessing the drone’s surrounding environment and
for potential collision avoidance.

Figure 7a,b display the 2D aerial view of the multi-UAV trajectories as they navigate
a street environment, controlled by expert and student policies, respectively, within the
Rviz. By mimicking expert policy, the vision-only system successfully controls drones to
sequentially navigate through three predetermined points, all the while avoiding internal
collisions and preserving a cohesive formation.
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(a) Expert (b) Student

Figure 7. Two-dimensional aerial view of multiple UAV trajectories as they navigate through three
target points in a street scenario: (a) controlled by a privileged expert policy utilizing the NMPC
algorithm; and (b) guided by the proposed vision-limited policy.

These simulation results highlight the proposed vision-limited end-to-end controller’s
adaptability and efficiency in managing intricate scenarios. The centralized training with
centralized execution, coupled with the Dagger algorithm, proves effective in enhancing
the student system’s ability to understand and replicate the expert system’s control strategy.

Figure 8 provides a comprehensive comparative analysis between the expert and
student policies in the street navigation scenario. Throughout the flight, both policies
ensure that all agents avoid internal collisions, consistently maintaining a distance that
exceeds the safety threshold.

(a) Inner-distance (expert) (b) Average speed (expert)

(c) Inner-distance (student) (d) Average speed (student)

Figure 8. Comparative analysis of simulation experiment outputs from privileged expert algorithm
and vision-based policies: (a,c) inner-agent average distance (solid line) and range (shaded region),
and (b,d) average speed (solid line) and range (shaded region).
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The performance of the expert, depicted in Figure 8a,b, establishes a standard for
both stability and efficiency. Figure 8a shows the inner-agent distances to be stable, with
relatively minor deviations from the mean, signifying a cohesive UAV formation within
the structured street environment. The velocity profile of the expert policy, presented in
Figure 8b, is marked by its uniformity, reflecting a smooth and synchronized movement
with minimal velocity variations.

Correspondingly, the student policy outcomes, as displayed in Figure 8c,d, demon-
strate a close alignment with the expert’s performance, underlining the success of the
imitation learning process. Figure 8c confirms that the student UAVs aptly replicate the
expert’s stable formation, keeping the inter-UAV distances within a secure and uniform
range. Similarly, Figure 8d indicates that the student UAVs uphold a consistent average
speed, paralleling the expert’s steady velocity pattern. These observations underscore the
student system’s proficiency in navigating predictably and effectively in an environment
with fewer complexities, such as urban streets.

3.2. Formation Navigation through Forest

We present an experiment designed to demonstrate fully autonomous swarm naviga-
tion in an environment with high obstacle density, mimicking a forest. The overarching aim
is to enable the swarm of drones to navigate through the simulated forest while maintaining
a consistent formation. This experiment is designed to demonstrate swarm navigation with
full autonomy in a highly dense wild. The swarm should fly through the forests while
staying in formation.

The simulated forest is constructed within a rectangular region, denoted as R(l, w),
with a width w of 75 m and a length l of 49 m. We populate this area with cylindrical
obstacles, each with a radius of 1 m. These cylinders are methodically placed at regular
intervals—7 m apart in the X direction and 10 m apart in the Y direction. As shown
in Figure 9, this arrangement results in a highly dense simulated forest, emulating the
challenging conditions of real-world woodland navigation.

Figure 9. Detailed illustration of the Gazebo simulation environment: (a) aerial view of the Gazebo
simulation environment, populated with 49 uniformly distributed cylinders of 1m radius, spanning
an area of roughly (49 m× 75 m); and (b) side view of the Gazebo simulation environment, exhibiting
the drone formation after takeoff.

The swarm consists of five drones, which are initially arrayed in an orderly formation
at the edge of the simulated forest (Figure 9b), with a lateral and longitudinal separation of
2 m between each drone. Throughout the course of the experiment, the swarm is tasked
with reaching three designated target points in sequence and subsequently returning to
the starting position. All the while, the drones must successfully avoid the obstacles and
maintain an optimal formation to prevent dispersion.

Figure 10 illustrates the trajectories of the multi-UAVs navigating the forest under the
control of expert (Figure 10a) and student policies (Figure 10b) within Rviz. Remarkably
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akin to the privileged expert system, the student policies successfully govern the drones,
enabling sequential navigation through three target points, evading intra-collision and
obstacles, and preserving a unified formation.

(a) 3D Aerial View (Expert) (b) 3D Aerial View (Student)

Figure 10. Visualization of multi-UAV trajectories navigating through a forest scenario in Rviz:
(a) represents trajectories under the expert system (privileged NMPC algorithm), and (b) demon-
strates trajectories guided by the student system (end-to-end sensorimotor controller).

In Figure 11, we present an analysis of both the expert and student policies maneuver-
ing through a forest. The comparative performance between the expert (Figure 11a–c) and
student (Figure 11d–f) systems indicates minimal discrepancies, showcasing the successful
replication of the flight strategies. Notably, the inter-UAV distances during the flight, as
shown in Figure 11a,d, consistently exceed the safety margins, ensuring collision avoidance
throughout the experiment.

(a) Inner_distance (Expert) (b) Obstacle_distance (Expert) (c) Average speed (Expert)

(d) Inner_distance (Student) (e) Obstacle_distance (Student) (f) Average speed (Student)

Figure 11. Comparative analysis of simulation outputs between the expert (privileged NMPC
controller) and student (end-to-end sensorimotor controller) policies: (a,d) inner-agent average
separation (solid line) and dispersion (shaded region); (b,e) minimum distance between agents and
obstacles (solid line) and range (shaded region); and (c,f) average speed (solid line) and variation
(shaded region).

The expert policy, depicted in Figure 11a through Figure 11c, benchmarks the ma-
neuverability within this complex terrain. Figure 11a illustrates the maintenance of stable
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inter-drone distances, reflecting a controlled formation among the UAVs. Figure 11b further
highlights the expert UAVs’ proficiency in navigating around obstacles, maintaining a safe
buffer that underscores their sophisticated obstacle-avoidance capabilities.

Mirroring these results, the student policy outcomes in Figure 11d–f demonstrate the
policy’s adaptability to the intricacies of the forest environment. Figure 11d shows the
student UAVs’ consistent adherence to formation protocols, while Figure 11e provides
evidence of the successful emulation of the expert’s obstacle-avoidance tactics, with the
UAVs safely navigating around obstructions. The velocity trends, depicted in Figure 11f,
reveal adaptive speed control, with the UAVs decelerating in dense obstacle regions and
accelerating in open areas to maintain an optimal pace.

The analytical outcomes of Figure 11 attest to the student policy’s ability to closely
mimic the expert’s advanced navigational strategies. The data demonstrate that even
within the multifaceted forest environment, the student UAVs display a level of intelligent
behavior that affirms the robustness of the imitation learning framework employed. This
paves the way for future research into autonomous UAV operations in similarly complex
and unpredictable settings.

3.3. Comparative Analysis

In order to compare the performance difference between our method and other bench-
mark algorithms, we define the performance metrics and conduct a relevant analysis. The
benchmark algorithms are those such as sac [36], ppo [37], and ddpg [38]. We assessed
the performance of the five policies in the pre-established scenario, ensuring that the envi-
ronmental settings remained consistent with those during training. Each test comprised
20 episodes.

3.3.1. Performance Metrics

For a quantitative appraisal of our approach, we delineate the subsequent perfor-
mance metrics:

1. Obstacle-Avoidance Index: This metric quantifies the nearest distance between the
UAVs and any obstacle encountered during an episode, as expressed by:

dobs
min = min(Dobs) (12)

where

Dobs = {d | d = min
k∈∀obs

dobs
i (t), i = 1, 2, . . . , N,

t = 1, . . . , T}
(13)

2. Conflict-Avoidance Index: This metric signifies the closest proximity between any
two UAVs throughout an episode:

duav
min = min(Duav) (14)

where

Duav = {d
∣∣ d = dij(t), i, j = 1, 2, . . . , N,

t = 1, . . . , T}
(15)

and dij(t) is the distance between UAV i and UAV j at time t.
3. Group Index: This metric epitomizes the average distance among the UAVs through-

out an episode:

dg =
1
T

1
N

1
|Ni|

T

∑
t=1

N

∑
i=1

∑
j∈Ni

dij(t) (16)
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Ni represents the neighbor set of aircraft i.
4. Order Index: This metric evaluates the consistency in alignment within the for-

mation. A score of 1 denotes impeccable alignment, while a score of 0 indicates
opposing directions:

φorder =
1
T

1
N

1
|Ni|

T

∑
t=0

N

∑
i=1

∑
j∈Ni

vi(t) · vj(t)
‖vi(t)‖‖vj(t)‖

(17)

5. Average Speed: This metric represents the mean velocity of the UAVs throughout
an episode:

V =
1
T

1
N

T

∑
t=1

N

∑
i=1

vi(t) (18)

3.3.2. Performance Analysis

The analysis of the data, as presented in Table 1 and illustrated in Figure 12, reveals a
comparative evaluation of the average and standard deviation of the performance metrics
across different methods. A noteworthy observation from the analysis is that our proposed
method significantly surpasses the performance metrics of the other three benchmark
algorithms (sac [36], ppo [37], and ddpg [38]), highlighting the superior efficacy of our
method over alternative strategies. This superior performance is not merely confined
to a comparison with benchmark algorithms, but it extends to a close alignment with
the metrics directed by the expert policy, underscoring the potent capability of imitation
learning within this framework.

In this setting, the expert, equipped with privileged information, demonstrates be-
haviors that are mimicked by learners using local vision. This mechanism empowers the
learners with a nuanced comprehension of their environment, enabling them to adeptly
navigate through it. Particularly, our agent proficiently leveraged the training dataset
furnished by the expert, crafting a strategy that endeavors to mirror expert-like behaviors
with a high degree of fidelity. This embodiment of imitation is pivotal as it bridges the
knowledge gap, allowing the student policy to closely emulate the expert policy’s per-
formance metrics. Such a replication is indicative of not just the method’s competency
but its potential for robust application in more complex or dynamic scenarios. Through a
meticulous analysis and comparison, the efficacy and potential superiority of our method
in navigating UAVs autonomously in complex scenarios have been substantiated.

Table 1. Comparative analysis: our method versus state-of-the-art baseline algorithms.

Scenario Method dobs
min(m) duav

min(m) dg(m) φorder V(m/s) Success Rate

Street

Expert \\ 1.477± 0.014 2.102± 0.020 0.991± 0.009 2.016± 0.018 1
Student \\ 1.479± 0.020 2.100± 0.020 0.993± 0.007 2.015± 0.018 1

SAC \\ 1.350± 0.075 1.924± 0.065 0.850± 0.015 1.900± 0.024 1
DDPG \\ 1.300± 0.080 1.913± 0.074 0.824± 0.020 1.850± 0.028 0.95
PPO \\ 1.200± 0.085 1.898± 0.081 0.819± 0.017 1.750± 0.035 0.85

Forest

Expert 1.847± 0.082 1.354± 0.074 2.406± 0.031 0.949± 0.006 1.756± 0.016 1
Student 1.843± 0.079 1.359± 0.071 2.411± 0.028 0.952± 0.007 1.759± 0.014 1

SAC 1.679± 0.098 1.254± 0.098 2.230± 0.075 0.842± 0.021 1.652± 0.028 1
DDPG 1.541± 0.106 1.211± 0.101 2.214± 0.078 0.829± 0.019 1.614± 0.031 0.90
PPO 1.556± 0.112 1.228± 0.114 2.065± 0.084 0.814± 0.025 1.641± 0.037 0.80
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(a) Street (b) Forest

Figure 12. Performance comparison of our method versus state-of-the-art baseline algorithms in
street and forest environments: a bar chart analysis.

4. Conclusions

The remarkable progress made in the autonomous flight of multiple drones in intricate,
uncharted settings, such as forests, is significantly notable. However, these advancements
typically lean on wireless communication for coordination, presenting challenges in envi-
ronments where communication may be hindered or unavailable. This paper has therefore
embarked on a thorough investigation of the autonomous learning of complex behaviors by
multiple drones under limited vision, devoid of central control and communication. In our
research, we have pioneered a distributed motion model for multi-UAV cooperative move-
ment under vision constraints. This model facilitates an autonomous control mechanism
where each drone independently directs its own motion while achieving collective coordi-
nation and obstacle avoidance. This collective intelligent behavior relies solely on onboard
forward-facing cameras, facilitating the detection and tracking of neighboring drones and
sensing environmental obstacles. Additionally, this paper introduced an innovative end-to-
end controller developed with neural networks, which effectively translates visual inputs
into control commands. To enhance the performance of this controller, we capitalized on
modern computer vision technology, utilizing Yolo-V7 for drone detection and MobileNet
for depth image feature extraction. To ensure robust navigation in complex environments,
we designed the policy network to be extremely lightweight, enabling onboard execution
on the quadrotor at high frequencies. To train the end-to-end controller, we employed an
imitation learning mechanism. In this structure, the privileged expert system provides
optimal control commands based on comprehensive environmental representations and
perfect quadrotor state knowledge. These data are then used to train the student system
to produce similar control commands, thus achieving efficient and effective autonomous
behavior. The approach presented in this paper not only offers a model for cooperative mo-
tion of UAVs under limited vision but also a robust end-to-end controller that directly maps
sensor measurements to navigation commands. Moreover, our application of imitation
learning proves effective and dynamically adaptable, revealing potential for ’intelligent’ be-
havior. To summarize, the decentralized control approach we have adopted demonstrates
superior robustness against single-point failures and strong scalability to large swarms,
while the imitation learning mechanism displays dynamic adaptability. Therefore, this
study provides an essential foundation for further exploration and development in the
realm of multi-UAV autonomous flight within complex and unknown environments. Our
future work will aim at validating these approaches in real-world scenarios and enhancing
the controller’s performance in increasingly complex environments.
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