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Abstract: With the rapid advancement of unmanned aerial vehicles (UAVs) and the Internet of
Things (IoTs), UAV-assisted IoTs has become integral in areas such as wildlife monitoring, disaster
surveillance, and search and rescue operations. However, recent studies have shown that these
systems are vulnerable to adversarial example attacks during data collection and transmission.
These attacks subtly alter input data to trick UAV-based deep learning vision systems, significantly
compromising the reliability and security of IoTs systems. Consequently, various methods have been
developed to identify adversarial examples within model inputs, but they often lack accuracy against
complex attacks like C&W and others. Drawing inspiration from model visualization technology,
we observed that adversarial perturbations markedly alter the attribution maps of clean examples.
This paper introduces a new, effective detection method for UAV vision systems that uses attribution
maps created by model visualization techniques. The method differentiates between genuine and
adversarial examples by extracting their unique attribution maps and then training a classifier on
these maps. Validation experiments on the ImageNet dataset showed that our method achieves an
average detection accuracy of 99.58%, surpassing the state-of-the-art methods.

Keywords: UAVs vision systems; adversarial examples detection; deep learning; attribution map

1. Introduction

The rapid advancement in the fields of unmanned aerial vehicles (UAVs) and synthetic
aperture radar (SAR) has led to significant breakthroughs in remote sensing capabili-
ties [1,2]. The integration of SAR technology with UAVs [1,2] has unlocked the potential
for acquiring high-definition imagery from above, providing a versatile tool for detailed
surveillance and analysis across vast and varied landscapes. Building upon this develop-
ment, these high-resolution SAR images captured by UAVs are revolutionizing the Internet
of Things (IoT) landscape by enriching the spectrum of data available for automated pro-
cessing and interpretation. In the realm of IoTs, UAVs equipped with vision systems have
become pivotal in tasks requiring extensive area coverage with precision, such as moni-
toring wildlife migration patterns in their natural habitats or providing real-time data on
environmental conditions for ecological studies.

Meanwhile, deep neural networks (DNNs) have proven to be particularly effective in
processing the complex data obtained from SAR images [3,4]. Their advanced representa-
tion capabilities facilitate accurate analysis and have been instrumental in the development
of SAR automatic target recognition (SAR-ATR) models [5–8]. By leveraging the com-
putational prowess of DNNs, these models have rapidly gained popularity due to their
efficiency and reliability in identifying and classifying targets in diverse environments.

Although the integration of DNNs into UAV vision systems has markedly improved
their capability to deal with complex data, it has concurrently opened up a vector for a new
type of threat—adversarial attacks [9]. These attacks are executed through the generation
of adversarial examples, which are seemingly normal images that have been meticulously
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modified with imperceptible perturbations. These alterations are calculated and crafted to
exploit the inherent vulnerabilities of DNNs, causing them to misinterpret the image and
make incorrect decisions [10]. The process of its attack implementation is shown in Figure 1.
Such adversarial attacks on UAV vision systems can lead to unpredictable behavior and
severely impact the security of data acquisition and transmission in UAV-assisted IoTs [11].
In scenarios where UAVs are employed for critical missions, such as search and rescue
operations, security surveillance, or precision agriculture, a false classification could lead
to dire outcomes. For instance, an adversarial image could cause a UAV to overlook a lost
hiker it was tasked to locate or misidentify a benign object as a security threat, triggering
unwarranted responses. Moreover, the challenge is exacerbated by the fact that these
perturbations are designed to be imperceptible to human analysts, which means that the
reliability of UAV systems could be compromised without immediate detection. This
underlines the urgency for the research and development of defense strategies that can
detect and neutralize adversarial examples before they impact UAVs.

Figure 1. The implementation process of adversarial example attacks. During UAV data acquisition
and transmission, attackers add subtle perturbations to the data, generating adversarial examples
that can easily mislead the UAV vision system and cause misclassifications.

In order to address this emerging threat, researchers propose two defense strategies:
active and passive defense strategies. Active defense methods increase the robustness of
models against adversarial attacks through techniques like adversarial training [12,13] and
network distillation [14], which are applied during training. In contrast, passive defense
involves detecting and filtering adversarial inputs during model deployment. Our research
focuses on passive defense, aiming to identify features that differentiate adversarial from
clean samples, thereby enabling the detection of adversarial examples and safeguarding
the model from potential attacks.

As a reflection of the ongoing efforts in the deep learning community, there is in-
tensive research on adversarial detection. Numerous passive defense techniques have
been developed to tackle adversarial attacks. Hendrycks and Gimpel [15] proposed three
methods: Reconstruction, PCA, and Softmax, which, while effective against FGSM [9] and
BIM [16] attacks, have limitations in detecting more sophisticated threats. Metzen et al. [17]
developed an adversarial detection network (ADN), which enhances binary detection in
pretrained networks and shows promise against FGSM, DeepFool [18], and BIM attacks but
not against the more challenging C&W [19] attacks. Gong et al. [20] made further attempts
to improve an ADN, yet it remained inadequate for C&W attack detection. Xu et al. [21]
suggested that adversarial example generation is linked to excessive input dimensions and
introduced feature squeezing to identify adversarial instances by contrasting the outputs of
squeezed and original samples. This approach shows potential in detecting C&W attacks,
but its precision still requires enhancement.
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In summary, while the aforementioned methods show efficiency in detecting adversar-
ial attacks, such as FGSM and BIM, they fall short when faced with more potent threats like
the C&W attack.

Building on this premise, researchers have demonstrated that the adversarial pertur-
bations from C&W attacks tend to be subtler than those from other methods like FGSM
when executed under comparable conditions [22]. As a result, adversarial examples crafted
via C&W attacks are notably more challenging to detect. In this paper, we classify such
finely perturbed instances as strong adversarial examples typified by the C&W attack. In
contrast, examples with more pronounced perturbations, like those from FGSM attacks, are
deemed weak adversarial examples.

Additionally, recent studies have revealed that the convolutional layers in convolu-
tional neural networks (CNNs) inherently function as object detectors, even without explicit
object location supervision. Consequently, visualizing the model by extracting the features
detected by each CNN layer is possible. In this paper, we have expanded upon earlier
versions [23]. We have added a significant amount of more detailed charts, conducted
adversarial detection experiments based on different attribute maps, and further compared
our method with several state-of-the-art approaches. We propose an adversarial detection
method for UAV vision systems based on different attribution maps. The proposed meth-
ods consist of two steps. Firstly, we generate attribution maps for both clear and adversarial
samples using three different types of attribution maps, including class activation mapping
(CAM) [24], guided backpropagation (G-BP) [25], and guided Grad-CAM (GGCAM) [26].
We then tried to train a binary classifier by using the generated attribution maps to de-
tect adversarial samples. Through experiment analysis, there are distinguishing features
between the attribution maps of clear and adversarial samples. In particular, the G-BP
and GGCAM of clear samples have discrimination contour features, but after adversarial
perturbations are added, the contour features are destroyed, showing that the attribution
maps generated by model visualization techniques can effectively distinguish adversarial
samples from clear samples. We conducted experiments on ImageNet, and the results show
that when using three different attribution maps, this method can detect not only weak
adversarial samples, such as FGSM and BIM, but also strong adversarial samples, like
C&W. Among them, the detection success rate achieved using G-BP reached up to 99.58%,
surpassing the state-of-the-art methods.

The main contributions of this paper are as follows:
(1) This paper presents novel model visualization techniques that are introduced for

the first time to detect adversarial examples. Model visualization approaches are employed
to analyze sample features, and we find the attribution maps of adversarial and clear
samples differ considerably. Specifically, the contour features of G-BP and GGCAM are
destroyed when the adversarial perturbations are added.

(2) We propose a novel adversarial detection method for UAV vision systems via
attribution maps. When using different attribute maps, the success rate of adversarial
sample detection can reach more than 90%. Among them, the detection success rate based
on the G-BP map can reach 99.58%, which is 1.68% higher than the state-of-the-art method.

2. Related Works
2.1. Adversarial Attacks

Szegedy et al. [9] first presented the concept of adversarial perturbations. By leverag-
ing gradient information, they skillfully introduced subtle perturbations to original images.
These minor modifications transformed clean samples into adversarial examples. While
often imperceptible to the human eye, these examples can mislead classifiers into mak-
ing incorrect predictions. Based on their operational domain, current research primarily
categorizes adversarial examples into digital and physical attacks.
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Let x ∈ Rd denote a clean image sample, with xadv representing its corresponding
adversarial example. The adversarial perturbations can be represented as an optimiza-
tion problem:

arg max
xadv

J(xadv, y) s.t. ‖xadv − x‖lp ≤ ε (1)

where J(.) denotes the loss function, which measures the error magnitude of the adversarial
example xadv in relation to y, the ground-truth label of x. ||xadv − x||Lp signifies the lp-norm
distance between xadv and x, typically utilizing norms, p = {0, 2, ∞}. ε is a threshold
that restricts the magnitude of the perturbation, implying that the difference between
the adversarial and the original samples should remain within a narrow and explicitly
defined boundary.

Adversarial attacks involve perturbing input images at the pixel level to mislead DNN
predictions. Depending on the knowledge of attackers about the target model, digital
attacks can be categorized into white-box attacks and black-box attacks. In white-box
scenarios, attackers have full access to all information about the target model, enabling
them to effectively exploit model gradients to craft precise perturbations and misguide
model predictions [9,19,27–29]. Conversely, under black-box assumptions, attackers have
no knowledge of the target model and can only query the model to obtain its outputs. Such
attackers often capitalize on the transferability of adversarial examples between different
models [30–33] or reveal the inner structure of the model through repeated queries [34–37].
Sometimes, attackers even combine both approaches for more potent attacks [38].

2.2. Adversarial Example-Detection Technology

Adversarial example-detection technology can be roughly divided into two stages. In
the early stage, researchers mainly explore the difference between adversarial and clear
samples. Hendrycks et al. [15] proposed principal components analysis (PCA) and found
that the variance in the principal components of adversarial examples is usually larger
than that of clean samples. At the same time, they also found that adversarial samples will
emphasize the main components with a lower ranking in PCA abnormality. Therefore, they
combined these two findings to design the adversarial sample detection method based on
PCA, which can detect FGSM and BIM adversarial samples. However, this method is only
effective if the attacker is unaware of the defense strategy. Hendrycks et al. also found
that the Softmax outputs of adversarial and clear samples are different in several types of
attacks, so the adversarial samples can be detected by detecting the Softmax distribution.
However, Softmax distribution is not stable, which generally leads to low confidence in the
prediction, and this method is only applicable to specific attacks. Xu et al. [21] found that
higher-dimensional input features are more vulnerable to adversarial attacks. Therefore,
they proposed the feature squeeze method. The main idea of this method is to squeeze the
dimension of input features by removing unnecessary features. If the L1 norm difference
between the prediction of squeezed and unsqueezed inputs is larger than some threshold,
T, the input is marked as an adversarial sample. Feature squeeze has been shown to detect
FGSM, BIM, DeepFool, and C&W attacks. Based on the assumption that adversarial sam-
ples are not non-adversarial data manifolds, Feinman et al. [39] proposed two adversarial
detection methods: kernel density estimates (KDEs) and Bayesian uncertainty estimates
(BUEs). The purpose of KDEs is to determine whether data are far from the class mani-
fold, and BUEs can detect the data near the regions with low confidence when the KDEs
are invalid.

Currently, adversarial detection typically involves decomposing input samples and
analyzing the extracted features to identify adversarial examples. Metzen et al. [17] introduced
an adversary detection network (ADN) to safeguard deep neural networks (DNNs). The
ADN employs a binary detector network appended to a pretrained neural network. This
detector is trained to differentiate between adversarial and genuine samples. Across 10 subsets
of CIFAR10 and ImageNet, the authors successfully trained a highly accurate adversarial
detection network using ADN. In order to enhance the detector’s resilience against new
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attacks, they incorporated the generation of adversarial examples into the ADN training
process. This approach effectively detects FGSM, DeepFool, and BIM attacks. Gong et al. [20]
further refined the ADN method by training a binary classifier that operates independently of
the main classifier. Unlike previous methods that tailor adversarial samples to the detector,
this technique uses adversarial samples generated against the pretrained classifier to augment
the original training dataset, which, in turn, trains the binary classifier. Nevertheless, Carlini
et al. [40] noted that such methods yield a high false-positive rate when confronted with more
potent attacks like the C&W. While these strategies are adept at detecting weaker adversarial
examples, such as those from FGSM and BIM, their detection accuracy decreases against
stronger attacks, exemplified by the C&W.

2.3. Model Visualization Methods

Model visualization techniques play a pivotal role in enhancing the transparency and
interpretability of deep learning models. Marco et al. [41] proposed a method of local
interpretable model agnostic explanations (LIMEs). LIMEs provide a local approximation
of the behavior of models, which can be incredibly insightful when trying to understand
individual predictions. However, its locality and linear approach might not capture the
global complexity of the model. On the other hand, CAM, proposed by Zhou et al. [24],
offers a straightforward mechanism for highlighting influential regions in an image for a
given prediction. Yet, as mentioned, its reliance on model modification and retraining can be
resource-intensive and may not be feasible for all applications. While post-interpretability
methods like LIME and CAM have laid the groundwork, there is a continuous effort to
refine these approaches to minimize their limitations and expand their applicability. In
order to address these concerns, Grad-CAM [26] emerged as a versatile and powerful
tool that extends the capabilities of CAM without the need for structural modifications or
retraining. By utilizing the gradients flowing into the final convolutional layer, Grad-CAM
provides a fine-grained visualization of the areas impacting the model’s decision-making
process. Building on the strengths of Grad-CAM, recent advancements have introduced
more sophisticated techniques that further refine the interpretability of convolutional neural
networks. One such development is Grad-CAM++ [42], an extension that captures the
importance of each feature map for a particular class, allowing for even more detailed
visual explanations.

3. Methodology

In recent years, researchers have studied the interpretability of DNNs from two aspects:
models [43–45] and samples [40,46,47]. This paper approaches the issue of adversarial
example detection from the sampling perspective, utilizing model visualization techniques
to produce attribution maps for both clean and adversarial samples, thereby investigating
their distinguishing features. It is acknowledged that the smaller the perturbations in
adversarial examples, the more challenging they are to detect. Consequently, this study
opts for untargeted attacks to generate adversarial samples, aiming to minimize the pertur-
bations introduced.

Inspired by the study of model interpretability [48], we find a large gap between the
CAM of normal and adversarial samples. So, for example, we select two samples and
transform them into adversarial samples by using the C&W and TPGD [49] methods. Then,
we compare their CAMs, as shown in Figure 2. Normal represents the clear sample and its
corresponding attribution map. The highlighted part contains the most abundant input
information, revealing the causal relationship between model output (classification) and
input. The row of TPGD is the adversarial samples and their corresponding attribution
maps generated by the TPGD method. The highlighted part of the attribution map of
the adversarial sample shows a great change, which has a high degree of differentiation
compared with the attribution map of normal samples. Meanwhile, it also reveals the
causal relationship between model misclassification and perturbation input. Similarly,
the third row presents adversarial samples and their attribution maps created by C&W.
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When compared to TPGD, the differences in attribution maps with C&W are much less
pronounced, confirming the strength of C&W as a white-box attack [22].
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Figure 2. Samples and their corresponding attribution maps (CAMs). (a,b) are the two samples
selected, respectively, where Normal represents the clear samples and their attribution maps, and
TPGD and C&W represent the adversarial samples and their attribution maps generated by the
corresponding attack method.

Figure 2 shows that there is a significant difference between the clear and adversarial
samples by comparing their attribution maps. Which attribution map has the maximum
identification is the key to designing adversarial detection algorithms in this paper. There-
fore, we extracted the CAM, G-BP and GGCAM of the two samples in Figure 2, respectively,
for comparison, as shown in Figure 3.

We have noted that CAMs exhibit limited differentiation for certain attacks, such
as the C&W method. Conversely, guided backpropagation (G-BP) and guided Grad-
CAM (GGCAM) demonstrate higher levels of discrimination: the Normal samples display
distinct contour features in their attribution maps (see Figure 3: Normal), allowing for rough
classification judgments by visual inspection. The introduction of adversarial perturbations,
however, leads to a pronounced disruption of these contours in the clear samples (see
Figure 3: TPGD and C&W), rendering the residual features unintelligible to the human
observer. Hence, the disparities in G-BP and GGCAM between the clean and adversarial
samples could provide a sufficient basis for detecting adversarial instances. Beyond TPGD
and C&W attacks, this study also examines BIM, DeepFool, FGSM, One Pixel, PGD, Square,
and Autoattack, employing a total of seven adversarial sample generation methods. The
resulting attribution maps are depicted in Figure 4.

Figure 4 shows the comparison of attribution maps between nine adversarial samples
and clear samples, among which OnePixel modified one pixel point, and AutoAttack is
the adversarial sample generation method, which integrates APGD [50], APGDT [50],
FAB [51], and Square [52]. At the same time, we use the L2 norm, respectively, to calculate
the difference between the clear and adversarial samples.
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Figure 3. Samples and their corresponding three attribution maps (CAM, G-BP, and GGCAM).
(a,b) are the two samples selected, respectively, where Normal represents the clear samples and their
attribution maps, and TPGD and C&W represent the adversarial samples and their attribution maps
generated by the corresponding attack method.

A
u

to
A

tt
a
ck

L2 norm: 10.31 L2 norm: 61.97 L2 norm: 39.05 L2 norm: 31.62L2 norm: 6.27 L2 norm: 82.06 L2 norm: 37.78L2 norm: 40.59

A
u

to
A

tt
a
ck

L2 norm: 10.31 L2 norm: 61.97 L2 norm: 39.05 L2 norm: 31.62L2 norm: 6.27 L2 norm: 82.06 L2 norm: 37.78L2 norm: 40.59

S
q

u
ar

e

L2 norm: 10.31 L2 norm: 61.97 L2 norm: 39.05 L2 norm: 36.62L2 norm: 12.63 L2 norm: 89.94 L2 norm: 37.31L2 norm: 40.61

S
q

u
ar

e

L2 norm: 10.31 L2 norm: 61.97 L2 norm: 39.05 L2 norm: 36.62L2 norm: 12.63 L2 norm: 89.94 L2 norm: 37.31L2 norm: 40.61

O
n

eP
ix

el

L2 norm: 9.02 L2 norm: 61.10 L2 norm: 39.04 L2 norm: 36.75L2 norm: 4.14 L2 norm: 90.33 L2 norm: 37.22L2 norm: 40.71

O
n

eP
ix

el

L2 norm: 9.02 L2 norm: 61.10 L2 norm: 39.04 L2 norm: 36.75L2 norm: 4.14 L2 norm: 90.33 L2 norm: 37.22L2 norm: 40.71

P
G

D

L2 norm: 10.32 L2 norm: 70.31 L2 norm: 39.98 L2 norm: 31.31L2 norm: 6.14 L2 norm: 84.66 L2 norm: 36.54L2 norm: 40.02

P
G

D

L2 norm: 10.32 L2 norm: 70.31 L2 norm: 39.98 L2 norm: 31.31L2 norm: 6.14 L2 norm: 84.66 L2 norm: 36.54L2 norm: 40.02

D
ee

p
F

o
o

l

L2 norm: 10.31 L2 norm: 61.97 L2 norm: 39.05 L2 norm: 36.62L2 norm: 3.96 L2 norm: 90.02 L2 norm: 37.52L2 norm: 40.80

D
ee

p
F

o
o

l

L2 norm: 10.31 L2 norm: 61.97 L2 norm: 39.05 L2 norm: 36.62L2 norm: 3.96 L2 norm: 90.02 L2 norm: 37.52L2 norm: 40.80

F
G

S
M

L2 norm: 11.63 L2 norm: 61.40 L2 norm: 39.64 L2 norm: 36.94L2 norm: 8.66 L2 norm: 87.44 L2 norm: 40.71L2 norm: 42.34

F
G

S
M

L2 norm: 11.63 L2 norm: 61.40 L2 norm: 39.64 L2 norm: 36.94L2 norm: 8.66 L2 norm: 87.44 L2 norm: 40.71L2 norm: 42.34

B
IM

L2 norm: 10.41 L2 norm: 74.05 L2 norm: 39.76 L2 norm: 37.77L2 norm: 6.35 L2 norm: 94.73 L2 norm: 41.02L2 norm: 42.10

B
IM

L2 norm: 10.41 L2 norm: 74.05 L2 norm: 39.76 L2 norm: 37.77L2 norm: 6.35 L2 norm: 94.73 L2 norm: 41.02L2 norm: 42.10

C
&

W

L2 norm: 10.31 L2 norm: 61.97 L2 norm: 39.05 L2 norm: 36.62L2 norm: 3.96 L2 norm: 89.65 L2 norm: 38.43L2 norm: 41.62

C
&

W

L2 norm: 10.31 L2 norm: 61.97 L2 norm: 39.05 L2 norm: 36.62L2 norm: 3.96 L2 norm: 89.65 L2 norm: 38.43L2 norm: 41.62

T
P

G
D

L2 norm: 10.45 L2 norm: 88.11 L2 norm: 41.10 L2 norm: 39.53L2 norm: 6.36 L2 norm: 113.26 L2 norm: 37.78L2 norm: 40.59

G-BP GGCAM GGCAMG-BPCAM CAM

N
o

rm
al

Input InputG-BP GGCAM GGCAMG-BPCAM CAM

N
o

rm
al

Input Input

(a) (b)

A
u

to
A

tt
a
ck

L2 norm: 10.31 L2 norm: 61.97 L2 norm: 39.05 L2 norm: 31.62L2 norm: 6.27 L2 norm: 82.06 L2 norm: 37.78L2 norm: 40.59

S
q

u
ar

e

L2 norm: 10.31 L2 norm: 61.97 L2 norm: 39.05 L2 norm: 36.62L2 norm: 12.63 L2 norm: 89.94 L2 norm: 37.31L2 norm: 40.61

O
n

eP
ix

el

L2 norm: 9.02 L2 norm: 61.10 L2 norm: 39.04 L2 norm: 36.75L2 norm: 4.14 L2 norm: 90.33 L2 norm: 37.22L2 norm: 40.71

P
G

D

L2 norm: 10.32 L2 norm: 70.31 L2 norm: 39.98 L2 norm: 31.31L2 norm: 6.14 L2 norm: 84.66 L2 norm: 36.54L2 norm: 40.02

D
ee

p
F

o
o

l

L2 norm: 10.31 L2 norm: 61.97 L2 norm: 39.05 L2 norm: 36.62L2 norm: 3.96 L2 norm: 90.02 L2 norm: 37.52L2 norm: 40.80

F
G

S
M

L2 norm: 11.63 L2 norm: 61.40 L2 norm: 39.64 L2 norm: 36.94L2 norm: 8.66 L2 norm: 87.44 L2 norm: 40.71L2 norm: 42.34

B
IM

L2 norm: 10.41 L2 norm: 74.05 L2 norm: 39.76 L2 norm: 37.77L2 norm: 6.35 L2 norm: 94.73 L2 norm: 41.02L2 norm: 42.10

C
&

W

L2 norm: 10.31 L2 norm: 61.97 L2 norm: 39.05 L2 norm: 36.62L2 norm: 3.96 L2 norm: 89.65 L2 norm: 38.43L2 norm: 41.62

T
P

G
D

L2 norm: 10.45 L2 norm: 88.11 L2 norm: 41.10 L2 norm: 39.53L2 norm: 6.36 L2 norm: 113.26 L2 norm: 37.78L2 norm: 40.59

G-BP GGCAM GGCAMG-BPCAM CAM

N
o

rm
al

Input Input

(a) (b)

Figure 4. Multiple adversarial samples and their corresponding attribution maps (CAM, G-BP, and
GGCAM). (a,b) are the two samples selected, respectively, where Normal represents the clear samples and
their attribution maps. The rest are the adversarial samples and their corresponding attribution maps.
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The analysis reveals that the attribution maps for the adversarial samples exhibit
discernible alterations following the introduction of adversarial perturbations when com-
pared to clear samples. Notably, the attribution maps measured using the L2 norm in
CAM display the most pronounced differences, characterized by brighter colors and more
significant pixel value variations. In contrast, the variations between G-BP and GGCAM
are even more apparent, with the contour features of clear samples experiencing substantial
disruption. Consequently, the attribution maps generated by CAM, G-BP, and GGCAM
demonstrate effective capabilities in identifying adversarial samples.

4. The Proposed Method

The proposed detection method (via attribution maps) can be divided into two parts.
The first part is the generation of attribution maps, generating the clear and adversarial
samples and turning them into attribution maps through visualization techniques. The
second part involves training a binary classifier by using the generated attribution maps to
detect adversarial samples. The structure of the two parts is shown in Figure 5.
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Figure 5. The proposed adversarial detection framework based on attribution maps.

4.1. The Generation of an Attribution Map

For the first part, we mainly generate the attribution maps of clear and adversarial
samples via model visualization technology. Since the CAM method needs to modify the
model, Grad-CAM (obtained by improving CAM) does not need to modify the model.
Therefore, all the CAMs mentioned in this paper adopt the Grad-CAM method. The
following steps outline the specific procedure:

Step 1: In order to compute the gradient of the classification score yc for class c with
respect to the feature ak in the convolutional layer, we calculate the partial derivative ∂yc

∂Ak .
Next, the backpropagation gradient is set to the global average in order to obtain the weight
of the feature map, denoted as αc

k. As is shown in Equation (2), Z represents the size of the
feature Ak.

αc
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
ij

(2)

Step 2: Once the weight, αc
k, of the feature map has been computed, it is utilized to

weigh and combine the feature map activations. This process results in the generation of
the activation mapping Lc for the class c. The combination of the feature map activations is
performed according to Equation (3).

Lc = ∑
k

αc
k Ak (3)

Step 3: In order to focus solely on the features that positively contribute to class c
and disregard negative information that might be associated with other classes, ReLU is
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applied to calculate Lc. This results in the generation of the class activation mapping Lc
CAM

(Equation (4)), which highlights the regions in the input that strongly activate class c.

Lc
CAM = ReLU(∑

k
αc

k Ak) (4)

Step 4: The primary distinction between backpropagation and DeconvNet lies in how
they handle nonlinearity through the ReLU function. In backpropagation, the threshold
value selected during the ReLU operation is based on the feature value of the forward trans-
mission. This is represented by Equation (5), where f l

I denotes the input to the ReLU layer.
The output of the hidden layer, denoted as f out, serves as the threshold value determined
by the backpropagation method, as shown in Equation (6). On the other hand, DeconvNet
employs the gradient value as the threshold, as depicted in Equation (7). By using the
gradient value, DeconvNet adopts a different approach to determining the threshold during
the ReLU operation. G-BP, which combines backpropagation and DeconvNet, effectively
visualizes the features learned at higher levels of the neural network. By using Equation (8),
we obtain G-BP.

f l+1
i = ReLU( f l

i ) = max( f l
i , 0) (5)

Rl
i = Rl+1

i · ( f l
i > 0), Rl+1

i =
∂ f out

∂ f l+1
i

(6)

Rl
i = Rl+1

i · (Rl+1
i > 0) (7)

Rl
G−BPi

= Rl+1
i · (Rl+1

i > 0) · ( f l
i ) (8)

Step 5: The attribution maps of CAM are expanded using linear interpolation, employ-
ing interpolation functions with two variables. This process aims to upsample the CAM
to match the size of the input sample. Subsequently, the dot product of G-BP and CAM is
computed. This calculation is demonstrated in Equation (9), where B denotes the operation
of bilinear interpolation. By performing the bilinear interpolation and dot product of G-BP
and CAM, GGCAM is obtained.

Lc
GGCAM = Rl

G−BPi
· B(Lc

CAM) (9)

4.2. Adversarial Detection Classifier

The task of detecting adversarial samples in UAV-assisted operations demands clas-
sifiers that are not only precise but also efficient, considering the UAV constraints on
energy, computation, communication, and storage. In the context of UAVs, the models used
for such tasks must be optimized for performance while operating within these resource
limitations. EfficientNet-B0 [53] stands out as a good choice for UAV vision systems due
to its automated model optimization and compound scaling, which allow it to excel in
environments where computational resources are at a premium. Its architectural design,
consisting of a sequence of mobile inverted bottleneck convolutions (MBConv), convolution
layers (Conv), a global average pooling layer (Pooling), and a classification layer (FC), has
been tailored for efficiency without compromising accuracy (Table 1). This configuration
ensures that high-level performance is maintained even when computational resources are
constrained. In contrast to EfficientNet-B0, the widely recognized ResNet50 [54] model
serves as a general benchmark to evaluate performance in adversarial detection. While it is
a more computationally intensive model known for its deep residual learning framework
that eases the training of networks, it offers a comparison point to EfficientNet-B0 in terms
of robustness and accuracy. The inclusion of ResNet50 in our comparative analysis provides
a broader perspective on how different models perform under the stringent operational
conditions of UAVs, allowing us to assess the trade-offs between computational demand
and detection capability.
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Table 1. EfficientNet-B0 baseline network.

Stage Operator Resolution Channels Layers

1 Conv33× 3 224× 224 32 1
2 MBConv1, k3× 3 112× 112 16 1
3 MBConv6, k3× 3 112× 112 24 2
4 MBConv6, k5× 5 56× 56 40 2
5 MBConv6, k3× 3 28× 28 80 3
6 MBConv6, k5× 5 14× 14 112 3
7 MBConv6, k5× 5 14× 14 192 4
8 MBConv6, k3× 3 7× 7 320 1
9 Conv1 ∗ 1&Pooling&FC 7× 7 1280 1

We train our model using a dataset comprising the attribution maps of both adversarial
and normal samples. Throughout the training process, we follow the training method-
ologies and parameter selections, as delineated by Tan et al. [53] for EfficientNet-B0 and
He et al. [54] for ResNet50. Our objective is to enable the model to distinguish between
these two categories effectively, thereby achieving robust classification performance.

5. Experiment

In this section, we set up three experiments: (1) EfficientNet-B0 as the detector, which
verifies the effectiveness of attribution maps. We compare which of the three attribute maps
is most suitable for detecting adversarial samples. (2) ResNet50 as the detector, further
illustrating that when we choose different classifiers, the attribution maps can also obtain
good accuracy. (3) Comparisons with state-of-the-art methods. The experimental part
selects the ImageNet validation set as the dataset. Adversarial samples are generated by
five attacks, including C&W, BIM, FGSM, PGD, and AutoAttack (APGD, APGDT, FAB, and
Square). The code in this paper is implemented via the PyTorch deep learning framework,
and we use the TorchAttacks library to generate the adversarial samples.

5.1. Dataset and Models

ImageNet [55] consists of over 1.2 million images across 1000 diverse categories. It is
widely used for benchmarking machine learning models in visual object recognition due to
its variety of classes and high volume of data. In the context of UAVs, leveraging ImageNet
can significantly aid in developing robust object classification algorithms, which are critical
for UAV autonomous navigation and operational tasks, such as surveillance or search and
rescue. Utilizing ImageNet for adversarial sample detection in UAV data transmission and
output processing is crucial because it represents a broad spectrum of real-world scenarios
that UAVs may encounter. In this paper, due to the extensive size of the ImageNet dataset,
only the verification set consisting of 50,000 images was utilized as the data source.

We selected EfficientNet-B0 and ResNet50 as our classifier models and trained them
using the attribution maps of adversarial and normal samples. For EfficientNet-B0, we
follow the scaling method proposed by Tan et al. [53]. Additionally, we employ the same
RMSprop optimizer with a decay of 0.9 and a momentum of 0.9, alongside a learning rate
warm-up and exponential decay, as suggested by Tan et al. [53]. As for ResNet50, following
the research of He et al. [54], we utilized a batch normalization momentum of 0.1 and a
standard cross-entropy loss function. The model was trained using SGD with momentum,
with an initial learning rate set as recommended, which was adjusted following a cosine
decay schedule.

5.1.1. Training Sets and Validation Sets

We selected the first 40,000 images in the ImagNet validation set as the normal class.
By using the C&W method, these samples were also transformed into adversarial samples
and used as an adversarial sample class (not every normal sample can be converted into
an adversarial sample). In the training, we selected 20% of the data as the verification
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set through random sampling, and the remaining 80% of the data was used for training.
Table 2 shows the training set and verification set.

Table 2. Training set and validation set.

Attack Type Class Number

C&W

Training
Normal 32,000

Adv 17,616

Validation
Normal 8000

Adv 4403

In training, we selected 20% of the data in the training set as the verification set through
random sampling, and the remaining 80% of the data was used for training. Table 2 shows
the training set and verification set.

Finally, our training set contained 32,000 normal samples and 17,616 adversarial samples,
and the verification set contained 8000 normal samples and 4403 adversarial samples.

5.1.2. Test Sets

We selected the remaining 10,000 images in the ImagNet validation set as the normal
class, and these 10,000 images were converted into five types of adversarial samples by
using the C&W, BIM, FGSM, PGD, and AutoAttack methods, which were used as the
adversarial samples in the test set. AutoAttack integrates the APGD, APGDT, FAB, and
Square attack methods. Table 3 shows the test sets.

Table 3. Test set.

Type Class Number

Test set

Normal 10,000
C&W 4977
BIM 9825

FGSM 9193
PGD 9823

AutoAttack 9562

5.2. Performance Metrics

The effectiveness of the method is assessed using four key metrics: true-negative (TN),
true-positive (TP), false-positive (FP), and false-negative (FN). These metrics provide
insights into the classification performance. When the positive class in the test dataset
is correctly classified as a positive class, it is considered as TP. TN is achieved when a
negative class is accurately predicted as a negative class. FN occurs when a positive class
is mistakenly classified as a negative class. Conversely, FP happens when a negative class
is incorrectly predicted as a positive class. In this paper, the evaluation criteria for the
effectiveness of the method are based on the combination of precision (Equation (10)), recall
(Equation (11)), and accuracy (Equation (12)).

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

Accuracy =
TP + TN

TP + FN + FP + TN
(12)
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5.3. Experiments Using EfficientNet-B0

As shown in Table 4, the results show that all three attribution maps (CAM, GGCAM,
and G-BP) can effectively detect adversarial samples. The average accuracy of CAM is
94.06%, and in comparison with other attribution maps, CAM is lower than GGCAM and G-
BP in terms of recall rate, precision, and accuracy. The results show that the difference in the
CAM between the normal and adversarial samples is smaller than the other two attribute
maps, which contradicts the calculation of the L2 norm. This indicates that calculating the
difference in the attribute maps by using the L2 norm is not suitable. The average accuracy
of GGCAM is 99.38%, which is higher than that of CAM by 5.32%. G-BP has the best effect,
with an average accuracy of 99.56%, 0.18% higher than GGCAM. Therefore, the detection
of C&W, BIM, FGSM, PGD, and AutoAttack can be realized well via G-BP.

Table 4. Experiments using EfficientNet-B0. We highlight the highest values achieved in each
performance metric category in bold.

Type Number

EfficientNet-B0

CAM GGCAM G-BP

Recall Precision Accuracy Recall Precision Accuracy Recall Precision Accuracy

Normal 10,000 94.40% 95.61% 93.37% 99.36% 99.79% 99.43% 99.64% 99.77% 99.61%

C&W 4977 91.30% 89.03% 93.40% 99.58% 98.73% 99.43% 99.54% 99.28% 99.60%

BIM 9825 94.44% 94.31% 94.42% 99.57% 99.35% 99.47% 99.59% 99.63% 99.64%

FGSM 9193 95.28% 93.99% 94.82% 98.64% 99.30% 99.02% 98.91% 99.61% 99.29%

PGD 9823 94.37% 94.30% 94.39% 99.65% 99.35% 99.51% 99.60% 99.63% 99.62%

AutoAttack 9562 93.60% 94.11% 94.01% 99.51% 99.33% 99.43% 99.55% 99.62% 99.60%

Average Accuracy 94.06% 99.38% 99.56%

5.4. Experiments Using ResNe50

As shown in Table 5, the detection model is replaced by ResNe50. The results of this
experiment are similar to the experiments using EfficientNet-B0. The average accuracy of
CAM is 93.03%, which is lower than that of GGCAM and G-BP in terms of recall, precision,
and accuracy. When compared with the EfficientNet-B0 used in Experiment 1, the accuracy
of CAM decreases by 1.03%, whereas that of GGCAM only decreases by 0.014%. Therefore,
using CAM for adversarial sample detection is not stable compared to GGCAM. Meanwhile,
all the evaluation indexes of G-BP are higher than CAM and GGCAM. The average accuracy
is almost the same as in Experiment 1, even increasing by 0.02%. Therefore, G-BP is better
adapted to the detection of adversarial samples.

Table 5. Experiments using ResNe50. We highlight the highest values achieved in each performance
metric category in bold.

Type Number

ResNe50

CAM GGCAM G-BP

Recall Precision Accuracy Recall Precision Accuracy Recall Precision Accuracy

Normal 10000 94.21% 95.20% 92.96% 99.47% 99.64% 99.41% 99.63% 99.92% 99.70%

C&W 4977 90.46% 88.60% 92.96% 99.28% 98.94% 99.41% 99.84% 99.26% 99.70%

BIM 9825 91.80% 93.97% 93.01% 99.44% 99.46% 99.45% 99.62% 99.62% 99.63%

FGSM 9193 92.05% 93.60% 93.17% 98.06% 99.42% 98.80% 99.11% 99.60% 99.38%

PGD 9823 91.99% 93.98% 93.11% 98.97% 99.46% 99.22% 99.16% 99.62% 99.40%

AutoAttack 9562 91.68% 93.80% 92.97% 98.82% 99.44% 99.16% 99.70% 99.61% 99.66%

Average Accuracy 93.03% 99.24% 99.58%
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5.5. Comparisons with State-of-the-Art Methods

Our detection approach was benchmarked against the leading state-of-the-art adver-
sarial detection methods, including kernel density (KD) [39], local intrinsic dimensionality
(LID) [56], Mahalanobis distance (MD) [57], LiBRe [58], S-N [59], and EPS-N [59]. By ad-
hering to the experimental protocols established by Zhang et al. [59], our implementation
employs the ResNet50 architecture as the foundation for our detector. As indicated in
Table 6, our proposed methods exhibit robust performance, surpassing other approaches in
average detection success rate across various attack vectors.

Table 6. Comparisons with State-of-the-Art methods. We have highlighted the two sets of data with
the highest detection success rates in bold.

Methods
Attacks

Average Accuracy
FGSM C&W BIM PGD

KD 70.99% 94.13% 97.97% 97.20% 93.19%
LID 89.12% 95.28% 98.08% 97.50% 95.82%
MD 87.86% 96.09% 98.35% 97.73% 95.18%

LiBRe 98.89% 90.39% 92.69% 95.30% 87.24%
S-N 98.28% 89.69% 72.08% 89.74% 87.45%

EPS-N 99.87% 99.78% 92.15% 99.78% 97.90%
CAM(ours) 93.17% 92.96% 93.01% 93.11% 93.03%
GGCAM(ours) 98.80% 99.41% 99.45% 99.22% 99.24%
G-BP(ours) 99.38% 99.70% 99.63% 99.62% 99.58%

5.6. Discussion

The proposed method based on attribution maps can effectively detect C&W, BIM,
FGSM, PGD, and other attacks. The average detection accuracy of G-BP can reach 99.58%,
indicating that the attribute maps can distinguish clear samples from adversarial samples.
We choose the attribution maps as the distinguishing features. This method is feasible and
independent of the choice of classifiers.

Further analyzing our approach, we focus on error examples in detecting C&W attacks
under the Efficientnet-B0 model. In the case of misclassified normal samples (Figure 6),
we observe two types of errors. Samples (a) and (b) have relatively clear contours, but the
model fails to recognize these features (the highlighted part is not on the contour feature),
leading to incorrect classification. Conversely, samples (c) and (d), with fuzzy contours, are
also misclassified. This suggests that the model does not consistently extract contour fea-
tures, leading to the misidentification of these samples as adversarial examples. Improving
the steady extraction of contour features in samples will be our focus in future work.

For misclassified adversarial examples (Figure 7), again, we notice two scenarios. In
cases (a) and (c), the object’s contour almost disappears due to adversarial perturbations.
The model’s regions of interest are not focused on areas with significant gradient changes.
This type of error may be attributed to an issue within the model itself. In cases (b) and (d),
the partial contours remain visible despite increased adversarial perturbations. A human
observer can distinguish objects like a bench or the alphabet. The model focuses on areas
with rich contoured features, leading to the misclassification of these adversarial samples as
normal. This indicates that the adversarial perturbations added during example generation
are not always sufficient.

Our analysis identifies two main issues. The first concerns the stability of contour
feature extraction in a small number of samples. As shown in Figure 6c,d, these normal
samples’ contour information is not fully captured in the attribution maps. This suggests
that our method may struggle with consistently extracting contour features, especially
from samples with limited instances. The second issue arises in classes with a small
number of samples. Despite the adversarial perturbations, the contour features are not
completely disrupted. Figure 7b,d show that only parts of the contours are affected by
the perturbations. The remaining intact contour information can lead to misclassification.
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This underscores the challenge of effectively disrupting the contour features in adversarial
samples, particularly in classes with fewer instances.

(a) (b) (c) (d)(a) (b) (c) (d)

Figure 6. Four normal samples (a–d) which have been misclassified and their corresponding CAMs.

(a) (b) (c) (d)(a) (b) (c) (d)

Figure 7. Four adversarial samples (a–d) that have been misclassified and their corresponding CAMs.

6. Limitation

While the proposed method—leveraging model visualization technology to generate
attribution maps—offers an innovative approach for detecting adversarial examples in
UAV vision systems, it also presents certain limitations that warrant further investigation.
A primary limitation of our approach lies in the inherent instability of attention-based
model visualization methods when extracting features from images. Despite their intuitive
appeal and ease of implementation, these methods can sometimes yield inconsistent feature
attributions, which may lead to the unreliable detection of adversarial examples. This is
particularly problematic in scenarios where decisive image features are subtle or subject to
variations in environmental conditions, such as lighting or occlusion.

In order to address this, future work will need to focus on enhancing the stability and
consistency of feature extraction within attention mechanisms. This could involve developing
more robust attention models that are less sensitive to input perturbations or integrating sup-
plemental techniques that can corroborate and refine the attention-driven feature mappings.
Ensuring stable feature extraction is crucial for the dependable deployment of UAV vision
systems, where the accuracy of real-time adversarial example detection is paramount.
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7. Conclusions

We present a novel method for detecting strong adversarial samples in UAV vision sys-
tems using attribution maps. The inclusion of adversarial perturbations causes significant
changes in the attribution maps of the samples. By extracting and training a binary classifier
on these attribution maps, we can effectively detect multiple types of adversarial attacks.
The experimental results demonstrate the superiority of our method. Specifically, our
proposed method achieves a detection success rate of 99.58% based on G-BP, surpassing the
state-of-the-art methods. Additionally, this method provides the advantage of convenience
without requiring modifications to the protected model during the data-input process. It
is capable of operating on lightweight models while maintaining high performance. In
resource-constrained environments, it serves as an effective safeguard for UAV-assisted
IoTs during data collection and transmission processes against adversarial attacks.
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