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Abstract: Unmanned Aerial Vehicles (UAVs), a subset of aerial robots, play crucial roles in vari-
ous domains, such as disaster management, agriculture, and healthcare. Their application proves
invaluable in situations where human intervention poses risks or involves high costs. However,
traditional approaches to UAV path planning struggle in efficiently navigating complex and dynamic
environments, often resulting in suboptimal routes and extended mission durations. This study
seeks to investigate and improve the utilization of meta-heuristic algorithms for optimizing UAV
path planning. Toward this aim, we carried out a systematic review of five major databases focusing
on the period from 2018 to 2022. Following a rigorous two-stage screening process and a thorough
quality appraisal, we selected 68 papers out of the initial 1500 to answer our research questions. Our
findings reveal that hybrid algorithms are the dominant choice, surpassing evolutionary, physics-
based, and swarm-based algorithms, indicating their superior performance and adaptability. Notably,
time optimization takes precedence in mathematical models, reflecting the emphasis on CPU time
efficiency. The prevalence of dynamic environmental types underscores the importance of real-time
considerations in UAV path planning, with three-dimensional (3D) models receiving the most atten-
tion for accuracy in complex trajectories. Additionally, we highlight the trends and focuses of the
UAV path planning optimization research community and several challenges in using meta-heuristic
algorithms for the optimization of UAV path planning. Finally, our analysis further highlights a dual
focus in UAV research, with a significant interest in optimizing single-UAV operations and a growing
recognition of the challenges and potential synergies in multi-UAV systems, alongside a prevalent
emphasis on single-target mission scenarios, but with a notable subset exploring the complexities of
multi-target missions.

Keywords: unmanned aerial vehicles; path planning optimization; meta-heuristic algorithms;
systematic review

1. Introduction

Unmanned Aerial Vehicles (UAVs), commonly known as drones, have revolutionized
various industries and applications, leveraging their ability to fly without a human pilot
onboard. This technological advancement has positioned UAVs as cost-effective, efficient,
and safe solutions across various different sectors, fueling significant interest and innova-
tion [1]. Initially designed for military purposes, UAVs have seamlessly transitioned into
civilian domains [2,3]. Their applications range from military surveillance, reconnaissance,
and combat operations, significantly contributing to reducing human casualties [4], to
civilian applications such as forest-fire monitoring [5], rescue missions [6], agriculture [7],
offshore platform operations [8], traffic management [9], drone delivery [10], medical emer-
gencies [11], tracking operations [12], and tasks relating to smart cities [13,14]. UAVs play a
crucial role in accessing remote or inaccessible areas and serve as pivotal tools in emergency
scenarios, such as disaster rescue operations [15,16].
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As UAVs are increasingly being regarded as autonomous vehicles, capable of making
decisions in line with their programmed autonomy levels, path planning is emerging as a
critical challenge in UAV navigation and control [3]. The expanded applications of UAVs
underscore the importance of path planning optimization in enhancing overall performance
and reducing costs [17–19]. UAVs operate in diverse workspaces, including urban, rural,
and authorized areas, each adhering to specific regulations to prevent entry into prohibited
or restricted flying zones [20–22].

Urban areas pose unique challenges, presenting obstacles like buildings, vehicles,
and elevated structures, increasing collision risks during UAV rotations or maneuvers. In
contrast, rural areas, characterized by lower obstacle density, present fewer collision risks
and reduced potential for damage. High-altitude areas, while having fewer obstacles, de-
mand greater energy consumption for UAVs flying in lower-collision-risk zones. Strategies
for addressing energy consumption challenges include enhancing batteries with chemical
substances or utilizing solar cells [23]. Obstacle and collision avoidance are integral aspects
of UAV path planning, minimizing errors, and optimizing convergence speed, as a faster
convergence speed leads to identifying the global optimum [24]. Achieving the global
optimum allows UAVs to find a shorter path between start and end points, considering time
and energy efficiency. Algorithms play a significant role in optimizing the mathematical
models used for path planning [25].

Optimization, in the context of UAV path planning, involves seeking the most suitable
combination of parameters and variables to meet specific goals related to efficiency, profit,
cost reduction, and more [17–19]. This process entails minimizing or maximizing the
objective function, allowing for the determination of the best possible solution [17,26].
Numerous research works have employed various approaches, such as machine learning,
heuristics, classical techniques, and meta-heuristics, to solve and optimize the mathematical
models for path planning.

Our research focuses on using meta-heuristic algorithms to optimize UAV path plan-
ning for several key reasons. Firstly, meta-heuristic algorithms are straightforward as
they rely on basic concepts often inspired by natural processes like animal behaviors and
evolution [17]. This simplicity makes them accessible to scientists for solving problems
and innovating heuristic algorithms. Secondly, their flexibility enables their application
to diverse problems without requiring extensive algorithm alterations [17,18]. Thirdly,
most meta-heuristic algorithms operate without derivatives, optimizing problems stochas-
tically from random starting points [17,19]. This feature enhances their suitability for
real-world problems and allows for easy cross-domain application. Fourthly, compared
to conventional optimization methods, meta-heuristic algorithms excel at avoiding lo-
cal optima [17–19]. Their stochastic nature enables the extensive exploration of a search
space, preventing stagnation in local solutions. These attributes make meta-heuristic algo-
rithms a compelling choice for tackling complex and uncertain challenges, such as bushfire
disaster assessment.

Based on these reasons, this paper aims to provide a systematic literature review
to classify meta-heuristic algorithms and thus determine which types of meta-heuristic
algorithms are efficient and effective for the optimization of UAV path planning.

Existing Systematic Literature Reviews and the Need for this Study

In examining the existing literature on UAV path planning optimization, three system-
atic review papers were identified, each with its strengths and weaknesses.

The first review [27] focused on autonomous path planning, classifying algorithms
into heuristic and hybrid categories. While it identified common parameters, it failed to
distinguish between heuristic and meta-heuristic algorithms, and its reliance on a single
database, Web of Science, limited the scope of the review. Moreover, the omission of
meta-heuristic algorithm details was a notable drawback.

The second review [28] addressed challenges and future directions but was not dedi-
cated to optimization. Lacking systematic features like keywords and databases, it missed
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the opportunity to explore meta-heuristic algorithms’ nuances. The final review [18] in-
vestigated optimization path planning with meta-heuristic algorithms but overlooked
objective functions and constraints. Its restricted sample size and failure to specify supe-
rior algorithms created gaps in understanding the broader applications of meta-heuristic
approaches. Besides the already mentioned shortcomings, the above-mentioned review
neither considered reviewing the grey literature along with mainstream scholar databases
nor considered the quality appraisal step of systematic review, which is amongst the most
crucial steps in conducting systematic reviews.

Recognizing these deficiencies, our systematic literature review aims to bridge the
gaps left by previous reviews. By incorporating comprehensive categorization, keywords,
and databases, we ensure a thorough exploration of meta-heuristic algorithms for UAV path
planning optimization. Unlike previous reviews, we will dissect algorithm details, consider
heuristic and meta-heuristic distinctions, and delve into the objectives and constraints of
mathematical models. This approach guarantees a more nuanced understanding of the
field, addressing the limitations of existing reviews and paving the way for a more robust
analysis of UAV path planning optimization.

Eventually, we aim to promote systematic literature reviews for the optimization of
UAV path planning using meta-heuristic algorithms in order to cover all the mentioned
needs and deficiencies based on 68 articles spanning five years, from the beginning of 2018
to the end of 2022. Toward this aim, we set four research questions, as provided below:

• RQ1: What types of meta-heuristic algorithms were used the most for optimizing
UAV path planning?

• RQ2: What characteristics are considered as objectives and constraints of mathematical
models for optimizing path planning using meta-heuristic algorithms?

• RQ3: What type of mathematical model was used the most for the optimization of
UAV path planning using meta-heuristic algorithms?

• RQ4: What are the environmental types and dimensions employed for the optimiza-
tion of path planning?

2. Methods

Our research follows Kitchenham’s guidelines for designing and implementing a
systematic literature review [29,30].

2.1. Database and Keywords

In our research, we endeavored to create a comprehensive and unbiased systematic
literature review on the role of meta-heuristic algorithms in optimizing UAV path planning.
To achieve this goal, we conducted searches on five reputable international databases,
including ACM, IEEE, Scopus, ScienceDirect, and Web of Science. To avoid neglecting any
relevant studies, we also considered the grey literature and reviewed the first ten pages of
Google Scholar. Additionally, we performed backward and forward searches within the
selected studies [31]. Importantly, we used various sets of keywords for each database as
part of our search strategy. It should be emphasized that this approach is essential because
each database follows its own guidelines and has its own limitations. For this reason,
Table 1 presents the names of the databases along with the related keywords used to search
for articles in the titles, abstracts, and keywords sections.

2.2. Eligibility Criteria

To ensure that we identified relevant articles for answering our research questions, we
considered some criteria for inclusion and exclusion. The inclusion criteria were set and
used during the search process, such as including material written in the English language,
while the exclusion criteria were mostly defined and adjusted during the screening stages.
Table 2 represents both inclusion and exclusion criteria for our research.
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Table 1. Databases and keyword grouping.

Database Boolean/Phrase

ACM (UAV OR “unmanned aerial vehicle” OR drone) AND (“path planning”) AND (“optimization”)

Web of
Science (UAV OR “unmanned aerial vehicle” OR drone) AND (“path plan *”) AND (“optim *”)

IEEE (UAV OR “unmanned aerial vehicle” OR drone) AND (“path planning”) AND (“optimization”)

Scopus TITLE-ABS-KEY((UAV OR “unmanned aerial vehicle” OR drone) AND (“path planning”) AND (“optimization”))

ScienceDirect (UAV OR “unmanned aerial vehicle” OR drone) AND (“path planning”) AND (“optimization”)

Google
Scholar (UAV OR “unmanned aerial vehicle” OR drone) AND (“path planning”) AND (“optimization”)

Table 2. Eligibility criteria.

Inclusion Criteria

IC1 Articles published between 2018 to 2023

IC2 Articles including conference publications or from peer-reviewed journals

IC3 In English and accessible

IC4 The study revolves around the use/development of optimization methods for UAV path planning

Exclusion criteria

EC1 Studies using other types of algorithms for path planning (e.g., machine learning)

EC2 Articles that do not propose a new method of path planning

EC3 Conference publications that were not part of the main conference (e.g., workshop papers), editorial reports, etc.

EC4 Articles for which more than one version of the study was published in different venues (reporting identical results)

EC5 Articles whose context was not properly in line with objectives and experiments

EC6 Articles suffering from issues in formulations or data collection

2.3. Study Selection

Our systematic literature review consists of three main stages for the article selection
process: identification, screening, and eligibility evaluation. Figure 1 illustrates the entire
process of collecting articles and highlights these three key stages. In the first stage, we
used Zotero, a reference management software, to import identified papers and remove
duplicates and similar searches from various databases. Subsequently, the first screening
was conducted based on appropriate titles and abstracts, considering eligibility criteria. It
is important to note that any articles we were uncertain about were moved to the second
screening. In the second screening, we thoroughly studied and analyzed the full texts of
articles, applying eligibility criteria. Our research was open to and ready to apply any new
exclusion criteria that emerged during the screening process. Fortunately, constructive
discussions between researchers led to unanimous decisions regarding the inclusion or
exclusion of specific papers. To refine the results of the second screening, we adjusted and
applied a quality appraisal step. Specifically, this step included the setting of six criteria
to assess the quality of the studies, including the following examples: (i) Is the objective
and context of research clear? (ii) Does the research adequately delineate the methodology?
(iii) Does the research topic address development and validation of meta-heuristic methods
in relation to path planning? We applied scores of 0, 0.5, and 1 if the quality criterion was
not satisfied, partially satisfied, or fully satisfied, respectively. Accordingly, we categorized
the studies into “low”, “medium”, and “high” quality and excluded “low”-quality studies
from the final set of included articles. In total, 23 studies were excluded, and 68 proceeded
to the information extraction stage.
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Figure 1. Study selection procedure.

2.4. Data Extraction

Following the completion of the primary three stages, a total of 68 papers were
selected based on eligibility criteria and underwent quality assessment. Subsequently, our
research proceeded to the fourth stage, which involved data extraction. This stage was
instrumental in gathering diverse data points suitable for addressing our research questions
and fulfilling our review criteria. Specifically, we sought to extract several items from each
paper, such as title, year, country, publication venue, database, gap addressed, algorithm
proposed or employed, meta-heuristic type, mathematical type, objective (e.g., cost function,
time, energy, path lengths, and collision avoidance), constraints (e.g., angle, altitude, axes,
obstacle, and thread), UAV dimensions (2D/3D/4D) and applications, challenges, and
future directions.

3. Results and Analysis
3.1. Characteristics of the Studies

Table 3 illustrates the list of the final included studies, along with their proposed
algorithms and types meta-heuristics. Furthermore, Figure 2 shows the word cloud of the
included articles’ keywords, highlighting the most frequently used terms, such as “Path”,
“Planning”, “Optimization”, “UAV”, and “Algorithm”.



Drones 2023, 7, 687 6 of 29

Table 3. Overview of the 68 included articles.

Article ID Ref. Title Proposed
Algorithm Meta-Heuristic-Type

1 [32] Three-dimensional UAV cooperative path
planning based on the MP-CGWO algorithm MP-CGWO Hybrid

2 [33] Adaptive path planning method for UAVs in
complex environments APP-PSO Hybrid

3 [34]
Distributed 3-D path planning for multi-UAVs

with full area surveillance based on particle
swarm optimization

mPSO Swarm-based
algorithm

4 [35]
Threat-oriented collaborative path planning of

unmanned reconnaissance mission for the
target group

Improved
NSGA-II Evolutionary algorithm

5 [36] An improved NSGA-II algorithm for UAV path
planning problems

Improved
NSGA-II Evolutionary algorithm

6 [7]
A novel path planning optimization algorithm
based on particle swarm optimization for UAVs

for bird monitoring and repelling
PSO Swarm-based

algorithm

7 [37]
Meteorology-aware path planning for the UAV

based on the
improved intelligent water drops algorithm

IIWD Swarm-based
algorithm

8 [38]
Real time UAV path planning by parallel grey

wolf optimization with align coefficient on
CAN bus

IGWO Swarm-based
algorithm

9 [39]
Crossover recombination-based global-best
brain storm optimization algorithm for UAV

path planning
GBSO-CR Hybrid

10 [17]
Autonomous UAV path planning optimization

using meta-heuristic approach for
pre-disaster assessment

DGBCO Hybrid

11 [40]
Optimized multi-UAV cooperative path

planning under the complex
confrontation environment

IGWO Swarm-based
algorithm

12 [41] Improved bat algorithm for UAV path planning
in three-dimensional space IBA Hybrid

13 [42]
A novel hybrid chaotic aquila optimization

algorithm with simulated annealing for
unmanned aerial vehicles path planning

CAOSA Hybrid

14 [43]
Analysis of parallel genetic algorithm and

parallel particle swarm optimization algorithm
UAV path planning on controller area network

Multi-master
parallel GA Evolutionary algorithm

15 [44]
Path planning of quadrotors in a dynamic

environment using a multi-criteria
multi-verse optimizer

MOMVO Physics-based
techniques

16 [45]
3D global path planning optimization for

cellular-connected UAVs under link
reliability constraint

PSO-GA Hybrid

17 [46]
A new dynamic path planning approach for

unmanned aerial
vehicles

ACO-APF Hybrid
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Table 3. Cont.

Article ID Ref. Title Proposed
Algorithm Meta-Heuristic-Type

18 [47]
Mission-oriented 3D path planning for

high-altitude long-endurance solar-powered
UAVs with optimal energy management

GPM-ACO Hybrid

19 [48]
MVO-based 2-D path planning scheme for

providing quality of service in UAV
environment

MVO Physics-based
techniques

20 [49]
IHSSAO: An Improved Hybrid salp swarm

algorithm and Aquila optimizer for
UAV path planning in complex terrain

IHSSAO Hybrid

21 [50] A novel hybrid particle swarm optimization
algorithm for path planning of UAVs SDPSO Hybrid

22 [51]
Safety-enhanced UAV path planning with

spherical vector-based particle
swarm optimization

Spherical vector-
based with (PSO) Hybrid

23 [52]
Meta-heuristic optimization-based path
planning and tracking of quadcopter for

payload hold-release mission
HHO-GWO Hybrid

24 [53]
Social-class pigeon-inspired optimization and

time stamp segmentation for multi-UAV
cooperative path planning

SCPIO Hybrid

25 [54] Path planning for solar-powered UAV in
urban environment IWOA Swarm-based

algorithm

26 [55]

Multi-UAV optimal mission assignment and
path planning for disaster rescue using

adaptive genetic algorithm and
improved artificial bee colony method

AGA-PSO and
AGA-APFA and
GA + APFA and

GA + PSO

Hybrid

27 [56]

Path planning of UAV for oilfield
inspections in a three-

dimensional dynamic environment with
moving obstacles based on an improved
pigeon-inspired optimization algorithm

PIOFOA Hybrid

28 [57]
Path planning of UAVs under dynamic

environment based on a hierarchical recursive
multi-agent genetic algorithm

HR-MAGA Hybrid

29 [58]
Bypassing or flying above the

obstacles? A novel multi-
objective UAV path planning problem

NSGA-II Evolutionary algorithm

30 [59] Path planning of multiple UAVs with online
changing tasks by an ORPFOA algorithm ORPFOA Swarm-based

algorithm

31 [60]
Cost-effective placement of recharging stations

in drone path planning for surveillance
missions on large farms

BFKSA Hybrid

32 [8]
An intelligent UAV path planning optimization
method for monitoring the risk of unattended

offshore oil platforms
NSGA-II Evolutionary algorithm

33 [61]
Cooperative path planning of UAVs & UGVs

for a persistent surveillance task in
urban environments

EDA-GA Hybrid
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Table 3. Cont.

Article ID Ref. Title Proposed
Algorithm Meta-Heuristic-Type

34 [62]
Collision free 4D path planning for multiple

UAVs based on spatial refined voting
mechanism and PSO approach

SRVM Swarm-based
algorithm

35 [63] UAV path planning for data ferrying with
communication constraints GA Evolutionary algorithm

36 [64]
Adaptive meta-heuristic-based methods for

autonomous robot path planning: sustainable
agricultural applications

I-GWO Swarm-based
algorithm

37 [11] UAVs path planning architecture for effective
medical emergency response in future networks CVRP Hybrid

38 [65]
Quantum behavior-based enhanced fruit fly
optimization algorithm with application to

UAV path planning
QFOA Hybrid

39 [66] A cooperative target search method based on
intelligent water drops algorithm LMIWD Hybrid

40 [67]

Autonomous unmanned aerial vehicles in
search and rescue missions using real-time

cooperative model predictive
control

PSO Swarm-based
algorithm

41 [12]

A grey wolf optimizer using gaussian
estimation of distribution and its application in

the multi-UAV multi-target urban
tracking problem

GEDGWO Hybrid

42 [68]
UAV trajectory planning based on PH curve

improved by particle swarm optimization and
quasi-newton method

PSO and
Quasi–Newton Method Hybrid

43 [69]
On-board real-time trajectory planning for fixed

wing unmanned aerial vehicles in
extreme environments

RTTP base GA Evolutionary algorithm

44 [70]

Grey wolf optimization based sense and avoid
algorithm in a bayesian framework for multiple

UAV path planning in an
uncertain environment

GWO Swarm-based
algorithm

45 [71] Evolutionary collaborative human-UAV search
for escaped criminals HEA Hybrid

46 [72]

A practical methodology for generating
high-resolution 3D models of Open-Pit slopes

using UAVs: flight path planning
and optimization

GA Evolutionary algorithm

47 [73] A new method of solving UAV trajectory
planning under obstacles and multi-constraint PSO Swarm-based

algorithm

48 [74] Synergistic path planning of multi-UAVs for air
pollution detection of ships in ports PSO Swarm-based

algorithm

49 [75] Multi-UAV cooperative path planning with
monitoring privacy preservation OMACO Hybrid

50 [76]
UCAV path planning for avoiding obstacles

using cooperative co-evolution spider
monkey optimization

CESMO Hybrid
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Table 3. Cont.

Article ID Ref. Title Proposed
Algorithm Meta-Heuristic-Type

51 [77]
Parallel cooperative co-evolutionary grey wolf

optimizer for path planning problem of
unmanned aerial vehicles

PCCGWO Hybrid

52 [78]

An accurate UAV 3-D path planning method
for disaster emergency response based on an

improved multi-objective swarm
intelligence algorithm

APPMS Swarm-based
algorithm

53 [5] UAV based spatiotemporal analysis of the
2019–2020 new South Wales bushfires PSO Swarm-based

algorithm

54 [79] Opposite and chaos searching genetic
algorithm based for UAV path planning OCGA Hybrid

55 [80]
Multi-Verse algorithm based approach for
multi-criteria path planning of unmanned

aerial vehicles
MOMVO Physics-based

algorithm

56 [81] Drone delivery multi-agent
routing optimization SA Physics-based

algorithm

57 [82] Design and implementation of distributed path
planning algorithm for a fleet of UAVs PSO Swarm-based

algorithm

58 [83] Adversarial swarm defence using multiple
fixed-wing unmanned aerial vehicles

Adversarial swarm
defense algorithm

Swarm-based
algorithm

59 [84]
Hierarchical task assignment of multiple UAVs

with improved firefly algorithm based on
simulated annealing mechanism

SA-DFA Hybrid

60 [85] UAV path planning method based on modified
white shark optimization MWSO Swarm-based

algorithm

61 [86]
A novel simulated annealing based strategy for

balanced UAV task assignment and
path planning

SJSA Physics-based
algorithm

62 [87]
An improved equilibrium optimizer with

application in unmanned aerial vehicle
path planning

MHEO Hybrid

63 [88]
Optimal energy consumption path planning for
quadrotor UAV transmission tower inspection

based on simulated annealing algorithm
SA Physics-based

algorithm

64 [89] MVO-based path planning scheme with
coordination of UAVs in 3-D environment MVO Physics-based

algorithm

65 [90] Pollution source localization based on
multi-UAV cooperative communication APF-PSO Hybrid

66 [6]
A knee-guided differential evolution algorithm
for unmanned aerial vehicle path planning in

disaster management
DEAKP evolutionary algorithm

67 [91] UAV path planning algorithm based on
improved Harris Hawks optimization

Improved
HHO Hybrid

68 [92]
Long-range path planning using an aircraft

performance model for battery-powered sUAS
equipped with icing protection system

PSO Swarm-based
algorithm
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To specify the year and country with the highest number of contributions, we cate-
gorized the papers accordingly. As shown in Figure 3a,b, the year 2022 had the highest
number of publications, and China had the highest number of articles.

Figure 4 shows the distribution of the papers based on their database and publication
venue. As is apparent, Scopus led with 28 papers, followed by IEEE with 19, ScienceDirect
with 17, Web of Science with 3, and ACM with only 1. When it comes to publication venues,
we found that the majority of the publications were journal articles (n = 59) and only 9 were
conference publications.

To highlight the applications of meta-heuristic algorithms in UAVs, we categorized
them based on their application areas. As Figure 5 shows, 38 articles employed these
techniques in general research in order to extend applications of UAVs with regard to
different aspects. The other application areas include military, medicine, agriculture, etc.

Finally, we also investigated whether the focus of the reviewed articles leaned toward
single or multiple Unmanned Aerial Vehicles (UAVs), as well as the scope of their mission
objectives—single-target or multi-target scenarios. Figure 6 illustrates the distribution of
research emphasis among the included 68 articles. Among these articles, 36 delved into the
intricacies of single-UAV operations, underscoring a substantial interest in optimizing the
performance of individual UAVs. Complementing this, 32 articles specifically targeted the
domain of multi-UAV systems, reflecting a growing recognition of the potential synergies
and challenges posed by collaborative UAV efforts.

Moreover, our investigation extended to discerning the prevailing research trends con-
cerning mission objectives. The majority of the studies, precisely 52 out of 68, concentrated
on single-target scenarios, highlighting a prevalent focus on refining UAV capabilities for
singular mission objectives. In contrast, a noteworthy subset of 16 articles was dedicated
to the complexities of and advancements in multi-target missions, shedding light on the
evolving landscape, where UAVs are increasingly employed for diverse and simultaneous
objectives. This nuanced exploration of UAV configurations and mission scopes provides a
comprehensive overview of the diverse trajectories that contemporary research is taking in
the realm of unmanned aerial systems. Figure 6 demonstrates a comparison of UAV type(s)
and UAV destination(s).
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3.2. Type of Meta-heuristic Algorithms

RQ1: What types of meta-heuristic algorithms were used the most for optimizing UAV
path planning?

The predominance of hybrid-type methods in the optimization of UAV path plan-
ning, as observed in 33 out of the 68 reviewed articles, underscores the popularity and
effectiveness of combining diverse algorithms to enhance performance. This inclination
towards hybrid methods suggests a recognition among researchers of the need to harness
the strengths of multiple algorithms and mitigate their individual limitations. Swarm-
based algorithms emerge as the second most utilized category, with 19 articles adopting
these nature-inspired approaches for UAV path planning optimization. The swarm-based
paradigm, often drawing inspiration from collective behavior in nature, proves to be a
compelling choice for addressing complex path planning scenarios. On the other hand,
evolutionary algorithms and physics-based algorithms are less frequently employed, fea-
turing in nine and seven articles, respectively. This relative underutilization may stem from
the specialized nature of or computational demands associated with these algorithmic ap-
proaches. In Section 4, a comprehensive analysis of the reviewed articles delves deeper into
the specific characteristics and outcomes for each meta-heuristic algorithm type, providing
valuable insights into the nuanced landscape of UAV path planning optimization strategies.
Table 4 was prepared to demonstrate the classification of the 68 selected articles based on
meta-heuristic algorithms.

Table 4. Classification of the 68 included articles based on meta-heuristic algorithms.

Algorithm-Type Number of Articles Article ID of Table 3

Swarm-based algorithm 19 3, 6, 7, 8, 11, 25, 30, 34, 36, 40, 44, 47,
48, 52, 53, 57, 58, 60, 68

Evolutionary algorithm 9 4, 5, 14, 29, 32, 35, 43, 46, 66

Physics-based algorithm 7 15, 19, 55, 56, 61, 63,64

Hybrid 33
1, 2, 9, 10, 12, 13, 16, 17, 18, 20, 21,

22, 23, 24, 26, 27,28, 31, 33, 37, 38, 39,
41, 42, 45, 49, 50, 51, 54, 59, 62, 65, 67

3.3. Objectives and Constraints

RQ2: What characteristics are considered as objectives and constraints of mathematical
models for optimizing path planning via meta-heuristic algorithms?

The second research question unveils a comprehensive understanding of the objec-
tives and constraints governing mathematical models for optimizing UAV path planning
through the use of meta-heuristic algorithms. The identified objectives, elucidated in
Table 5, shed light on the multifaceted considerations researchers undertake in their quest
for effective path planning solutions. Optimal path length or distance, a paramount con-
cern, centers around minimizing the spatial gap between source and destination while
ensuring collision-free navigation. Time optimization emerges as the most frequently
pursued objective, with 65 instances prioritizing the efficient utilization of CPU time. Con-
versely, energy considerations, arising from the conflict between optimal path length and
energy consumption, are relatively less prevalent, featuring in 36 instances among the
68 articles. The nuanced balance between optimal path length, shorter time, and faster
velocity takes precedence in many instances, often relegating the optimization of cost to a
secondary consideration.
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Table 5. Papers introducing the common objectives of mathematical models for optimizing path
planning for UAV.

Objectives Number of Articles Article ID in Table 3

Path length/distance 62

1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32,
33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,

62, 63, 64, 65, 66, 67, 68

Time 65

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 31,
32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59,

60, 61, 62, 63, 64, 65, 66, 67, 67, 68

Energy 36
1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 23,
25, 26, 27, 29, 30, 31, 34, 35, 36, 42, 43, 46, 48,

50, 56, 58, 62, 63, 67, 68

Cost 54

1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19,
20, 21, 22, 24, 25, 26, 27, 28, 30, 31, 34, 35, 36,
37, 38, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 53,

54, 55, 56, 57, 58, 59, 62, 64, 65, 66, 67, 68

Collision avoidance 51

1, 2, 3, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 19, 20,
22, 23, 24, 25, 27, 28,29, 30, 32, 33, 34, 36, 39,
40, 41, 43, 44, 47, 48, 49, 50, 51, 52, 53, 54, 55,

56, 57, 58, 60, 63, 64, 65, 66, 67, 68

Notably, the critical aspect of collision avoidance, integral for ensuring the safety of
UAVs during path planning, is addressed in 51 out of the 68 articles. This emphasis reflects
the acknowledgment of collision avoidance as a fundamental mechanism for enabling
UAVs to detect and evade obstacles, thereby preventing damage and ensuring secure
flight. However, it is noteworthy that 17 articles chose to bypass collision avoidance
considerations, opting for theoretical or simplified models with fewer challenges and less
complexity in terms of obstacles. This strategic decision in model creation underscores the
varied approaches taken by researchers in balancing realism and computational simplicity
in the realm of UAV path planning optimization.

Concerning the specific constraints of mathematical equations in the optimization of
UAV path planning, seven prominent categories, detailed in Table 6, delineate the crucial
considerations guiding the development of these equations. Angle, the first constraint,
encapsulates the degree of landing, takeoff, and flight at varying heights, with a direct
impact on fuel consumption. UAV axes, denoted by the roll, pitch, and yaw axes, assume a
pivotal role in imposing climbing and descending angle constraints during path planning.
Altitude emerges as a significant constraint linked to drone safety, navigating the delicate
balance between the risk of collision at low altitudes and increased energy consumption at
higher altitudes. Risk, the fourth category, encompasses the safety of UAV flight, along with
considerations of collision probability, mission completion, and timely arrival at a given
destination. Threat, a crucial constraint in military scenarios, introduces the probability of
missile attacks and dangers posed by obstacles or hazardous situations like bushfires.

Obstacle, a special category influencing collision avoidance, distinguishes between
dynamic obstacles, such as moving vehicles, and static obstacles like trees or mountains.
Velocity, the final constraint, directly correlates with the type of UAV application, affecting
fuel consumption and playing a pivotal role in flight safety and collision prevention,
particularly in military contexts. This comprehensive exploration of constraints enriches
our understanding of the intricate considerations involved in formulating mathematical
models for UAV path planning optimization using meta-heuristic algorithms.
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Table 6. The common constraints in the 68 included articles.

Constraint Items Number of Articles Article ID in Table 3

Angle 41
1, 2, 3, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 20, 21, 22,
23, 24, 25, 28, 31, 32, 34, 38, 39, 40, 41, 43, 44,

46, 47, 50, 51, 52, 55, 58, 62, 63, 66, 67, 68

UAV’s axes 33
1, 6, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22,
23, 25, 30, 33, 34, 38, 41, 44, 47, 49, 50, 51, 53,

55, 61, 65, 66, 68

Altitude 40
1, 2, 5, 6, 7, 8, 9, 11, 12,13, 14, 15, 16, 18, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,

38, 40, 41, 43, 46, 47, 52, 62, 66, 67, 68

Risk 11 3, 5, 7, 9, 29, 32, 34, 36, 38, 44, 66

Threat 34
1, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 17, 19, 20, 21, 22,
24, 26, 32, 34, 38, 41, 42, 44, 47, 50, 51, 52, 54,

55, 60, 62, 66, 67

Obstacle 39
1, 2, 5, 9, 10, 12, 13, 15, 16, 17, 19, 21, 22, 23, 24,
25, 27, 29, 30, 33, 34, 36, 41, 42, 43, 44, 47, 50,

51, 53, 54, 55, 56, 60, 62, 64, 65, 66, 67

Velocity 42
1, 2, 3, 4, 6, 7, 8, 11, 12, 14, 15, 16, 18, 19, 21, 22,
23, 24, 25, 27, 29, 31, 34, 38, 39, 40, 41, 42, 43,
45, 46, 47, 48, 49, 50, 56, 57, 58, 59, 60, 65, 58

3.4. Mathematical Types

RQ3: What type of mathematical model was used the most for the optimization UAV
path planning using meta-heuristic algorithms?

The investigation into mathematical models for UAV path planning optimization
via meta-heuristic algorithms sheds light on the dynamic interplay between linear and
nonlinear approaches. Linear models, characterized by simplicity and direct relationships
between variables, are preferred for tasks in straightforward environments, yielding shorter
path lengths and reduced CPU time. These models, tailored for basic path planning scenar-
ios, assume a linear approximation of UAV movement, suitable for relatively uncomplicated
environments.

On the other hand, nonlinear models emerge as a more prevalent choice, with
43 articles opting for their utilization in the optimization of UAV path planning. The
complexity inherent in UAV path planning tasks, involving factors such as wind speed,
obstacles, and diverse landscapes, necessitates the sophistication offered by nonlinear
models. The superior accuracy of nonlinear models becomes particularly evident when
dealing with intricate maneuvers, curves, and complex trajectories.

The choice between linear and nonlinear models is intricately tied to the specific
requirements of a UAV’s mission and the desired level of accuracy. The prevalence of
nonlinear models in the literature attests to their efficacy in capturing the nuances and
challenges associated with UAV path planning, providing a comprehensive understanding
of the mathematical modeling landscape within the realm of meta-heuristic algorithms.
Table 7 classifies the 68 articles based on linear and nonlinear mathematical types.
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Table 7. Mathematical type.

Mathematical Type Number of Articles Article ID in Table 3

Linear 25 4, 10, 14, 28, 29, 30, 32, 33, 35, 36, 37, 39, 43, 44,
45, 46, 48, 50, 51, 53, 56, 61, 63, 64, 66

Nonlinear 43
1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 26, 27, 31, 34, 38, 40, 41, 42,
47, 49, 52, 54, 55, 57, 58, 59, 60, 62, 65, 67, 68

3.5. Environmental Types

RQ4: What are the environmental types and dimensions employed for the optimization
of path planning?

The exploration of environmental considerations in optimizing UAV path planning
using meta-heuristic algorithms unveils a nuanced landscape characterized by diverse
types and dimensions. According to Table 8, three primary environmental types take
center stage in the literature: dynamic (n = 37), static (n = 26), and both dynamic and
static (n = 5). The prevalence of dynamic environments, accounting for the majority of
cases, underscores the emphasis on real-time adaptability in UAV path planning scenarios.
The integration of dynamic characteristics and parameters caters to the evolving nature
of operational landscapes, enhancing the responsiveness of path planning algorithms to
unforeseen changes.

Table 8. Environment type.

Environment Type Number of Articles Article ID in Table 3

Dynamic 37
1, 2, 3, 5, 6, 8, 9, 14, 15, 18, 19, 21, 23, 24, 25, 27,
28, 34, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 53,

56, 57, 58, 60, 64, 65, 68

Static 26 4, 11,12, 13, 20, 22, 26, 29, 30, 31, 32, 33, 35, 36,
38, 39, 49, 51, 52, 54, 59, 61, 62, 63, 66, 67

Dynamic and Static 5 7, 10, 16, 17, 55

Regarding the environmental dimension of mathematical models for UAV path plan-
ning, researchers have employed two-dimensional (2D), three-dimensional (3D), and, in-
triguingly, four-dimensional (4D) frameworks. Table 9 presents the distribution, revealing
that 43 studies focus on 3D environments, 19 studies delve into 2D scenarios, and 5 studies
simultaneously address the intricacies of both 2D and 3D environments. Remarkably, a
singular study pioneered the exploration of 4D environments, pushing the boundaries of
conventional spatial considerations.

Table 9. Environment dimension.

Environment Dimension Number of Articles Article ID in Table 3

2D 19 4, 7, 10, 17, 19, 25, 31, 35, 37, 39, 40, 42, 48,
49, 50, 53, 56, 58, 59

3D 43

1, 2, 6, 8, 9, 11, 12, 13, 14, 15, 16, 18, 20, 21,
22, 23, 24, 26, 27, 28, 29, 30, 32, 33, 36, 38, 41,
43, 44, 45, 46, 47, 52, 55, 60, 61, 62, 63, 64, 65,

66, 67, 68

2D and 3D 5 3, 5, 51, 54, 57

4D 1 34
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The dominance of 3D environmental modeling aligns with the complexity inherent
in UAV path planning tasks, where three-dimensional spatial awareness is crucial for
maneuvering through dynamic landscapes. The inclusion of 2D environments, while less
prevalent, suggests a focus on scenarios with simplified spatial constraints. The nascent
exploration of 4D environments reflects an emerging trend, signaling a push toward
incorporating time as a dynamic dimension in UAV path planning optimization.

In summary, these findings underscore the multifaceted nature of UAV path planning
optimization, where adaptability to real-time changes and innovative modeling dimensions
play pivotal roles in enhancing the effectiveness of meta-heuristic algorithms.

4. Discussion

Regarding the first research question, the majority of the articles investigated em-
ployed hybrid-type methods, with swarm-based algorithms and evolutionary algorithms
also being widely applied for optimizing UAV path planning. Physics-based algorithms
were also utilized but to a lesser extent.

In the realm of physics-based algorithms, the corresponding approaches draw inspi-
ration from natural processes and physical laws to tackle complex problems [93]. They
prove effective in handling high-dimensional models and nonlinear equations, generat-
ing multiple solutions, and minimizing fitness functions. However, a drawback is their
longer running time compared to other algorithm types. Many studies expressed dissatis-
faction with standalone physics-based algorithms due to their insufficient runtimes [27].
For instance, Jarray et al. [44] simulated three-dimensional cooperative path planning for
quadrotors using Multi-Verse Optimization (MOMVO), which was compared with other
algorithms. MOMVO proved superior in shortening the path length for multi-UAVs to
multi targets but not with respect to the aspect of time. Similarly, Kumar et al. [48] proposed
an MVO-based algorithm for two-dimensional dynamic environment UAV path planning,
effectively minimizing collisions and threats. Wu et al. [88] focused on simulated annealing
in order to optimize energy consumption for UAV transmission tower inspection, achieving
a significant decrease in energy consumption. Jain et al. [89] compared MVO with GSO
and BBO for optimizing UAV path planning with obstacle avoidance, finding MVO to be
superior in optimizing path costs. These examples illustrate the versatility and effectiveness
of physics-based algorithms, especially when employed for optimization approaches. It is
notable that seven articles out of the sixty-eight selected papers embraced physics-based
algorithms, making them the least popular type in our selection of the literature.

In the realm of evolutionary algorithms for UAV path planning, the focus is on generating
optimal paths based on cost, travel distance, and reliability cost. These algorithms employ
a process of randomly generating practical solutions in the first generation, followed by
the selection of feasible solutions to determine their fitness. Evolutionary algorithms,
while effective in generating optimal solutions through iteration processes [94,95], may
face challenges such as long iterations leading to premature convergence and suboptimal
results. Among the nine articles in this category, Chen et al. [35] utilized a fast search
genetic algorithm (FSGA) and a non-dominated sorting genetic algorithm (NSGA-II) for
military missions, demonstrating the efficiency of these algorithms in optimizing path
planning models. Similarly, Wang et al. [36] employed an improved NSGA-II to optimize
multi-objective UAV path planning in dynamic environments, showcasing its ability to
overcome local optimum risks. In other studies, such as those conducted by Golabi et al. [58],
Wang et al. [8], Jamshidi et al. [43], Joseph et al. [63], Schellenberg et al. [69], Battulwar
et al. [72], and Yu et al. [6], evolutionary algorithms like NSGA-II and GA were utilized to
optimize UAV path planning in various scenarios, ranging from collision avoidance and
monitoring volcanic ash to disaster management. These examples highlight the versatility
and effectiveness of evolutionary algorithms in addressing diverse challenges within UAV
path planning. It is necessary to state that nine articles in our selected subset of the literature
are of an evolutionary type.
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Swarm-based algorithms, drawing inspiration from patterns observed in nature, such as
those relating to ants, bird colonies, and schools of fish, demonstrate a unique problem-
solving approach by combining the behaviors of simple individuals [96–98]. These al-
gorithms, characterized by global modes and robust solutions, excel in solving complex
problems, with a focus on optimizing path planning in three-dimensional environments
regarding premature convergence and greater running time [99]. This research accounts for
19 articles out of the 68 included, showcasing the versatility of swarm-based algorithms. In
the examined articles, Ahmed et al. [34] optimized PSO with the Bresenham algorithm for
three-dimensional path planning, demonstrating mPSO’s superiority in terms of coverage
speed, fitness, and runtime. Other studies, such as those conducted by Mesquita and Gas-
par [7], Duan et al. [37], Jamshidi et al. [38], Xu et al. [40], Wu et al. [54], Li et al. [59], Yang
et al. [62], Kiani et al. [64], Andrade et al. [67], Radmanesh et al. [70], Shao et al. [73], Shen
et al. [74], Wan et al. [78], Ullah et al. [5], Belkadi et al. [82], Choi et al. [83], Zhang et al. [85],
and Hovenburg et al. [92], applied various swarm-based algorithms like PSO, IIWD, IGWO,
IWOA, ORPFOA, SRVM, I-GWO, EX-GWO, GWO, and MWSO in scenarios ranging from
surveillance and monitoring to environmental optimization. These examples highlight the
adaptability and effectiveness of swarm-based algorithms in addressing diverse challenges
within the field of UAV path planning.

In the realm of UAV path planning, hybrid algorithms emerge as a dominant trend,
surpassing the use of traditional single-meta-heuristic algorithms. A total of 33 articles out
of the 68 selected papers embraced hybrid algorithms, making them the most popular type
of study in our selection of the literature. The essence of hybridization lies in combining two
or more algorithms to address the weaknesses inherent in using a single algorithm. Notably,
our research defines one rule for a hybrid algorithm: at least one of the algorithms in the
hybrid approach must be of the meta-heuristic type. Examining specific examples, Yang
et al. [32] developed Multi-population chaotic Grey Wolf Optimization (MP-CGWO) as a
hybrid algorithm for cooperative UAV path planning, showcasing its superiority over GWO,
PSO, and DE in terms of efficiency and search accuracy. Ma and Chen [33] applied the
Adaptive Path Planning Particle Swarm Optimization (APP-PSO) for collision avoidance
in complex environments, outperforming several other PSO variants. Zhou et al. [39]
developed a hybrid algorithm, which they called Global-best Brainstorm Optimization
and Crossover Recombination (GBSO-CR), in order to optimize paths in three-dimensional
threat situations. The results showed that GBSO-CR outperformed its competitors due to
faster convergence and safer economical solutions. The diversity of hybrid approaches
is evident in studies such as those conducted by Qadir et al. [17], Zhou et al. [41], Wang
et al. [47], FU et al. [90], Ait-Saadi et al. [42], Behjati et al. [45], and many others, each
addressing unique challenges in UAV path planning through innovative combinations
of algorithms.

These examples collectively demonstrate the effectiveness of hybrid algorithms in
overcoming various challenges, from collision avoidance and threat situations to real-time
dynamic environments. The hybridization approach allows researchers to harness the
strengths of different algorithms, leading to improved optimization results and more robust
solutions in the context of UAV path planning.

Regarding the second research question, our exploration of the mathematical models
for UAV path planning identified five common objectives guiding researchers. The pre-
dominant focus lies in time optimization, evident in 65 instances where researchers aimed
to enhance the efficiency of the utilization of CPU time. Conversely, energy considerations
are relatively less frequent, with only 36 instances recognizing the complex relationship
between achieving an optimal path length and fuel-consumption. For instance, Zhang
et al. [91] stated that the maximum path length should be less than the required amount of
fuel in order to overcome the challenge regarding the relationship between path length and
fuel consumption. In other words, the fuel parameter had a fixed role, without any changes,
in ameliorating the impact of fuel in UAV flight. Then, a hybrid algorithm (SSHHO) was
employed to optimize the UAV model. Finally, the obtained results demonstrated that



Drones 2023, 7, 687 20 of 29

SSHHO outperformed other algorithms in terms of reducing cost, time, and shortening
length by considering a fixed amount of fuel when compared with HHO, PSO, SCA,
and WOA [91].

Concerning the specific constraints of mathematical equations in the optimization of
UAV path planning, we found seven common categories. As outlined in Table 6, angle,
UAV axes, altitude, risk, threat, obstacle, and velocity emerge as the main constraints
considered during the development of mathematical equations for UAV path planning.
These constraints play pivotal roles in shaping the trajectory and safety of UAV flights.
For instance, angle constraints influence fuel consumption during takeoff, landing, and
changes in altitude, while UAV axes dictate climbing and descending angles. Altitude
constraints contribute to drone safety, balancing the risks of collision and energy con-
sumption. For example, Wang et al. [47] focused on optimizing a nonlinear path planning
model with regard to the complexity of the relationship between high-altitude flight and
energy consumption. Their aim was to enhance the efficiency of UAV missions through
solar-battery integration.

Velocity constraints, influenced by the type of UAV application, impact flight effi-
ciency and fuel consumption, emphasizing the delicate balance between speed and energy
optimization, especially in military contexts. These constraints collectively shape the corre-
sponding mathematical models, ensuring the accuracy and safety of UAV path planning
through the use of meta-heuristic algorithms. The consideration of risk in constraints is
associated with the safety of a UAV’s flight, in which the probability of collision, mission
completion, and timely arrival at the chosen destination are assessed. Obstacle constraints
are integral to path planning, addressing collision avoidance with both dynamic and static
obstacles. Threat constraints, particularly significant in military scenarios, encompass
the likelihood of attacks and the need to navigate hazardous situations. For instance,
Zheng et al. [68] optimized UAV trajectories through the PH Curve method to address
the constraints of threats including obstacles and radars. They applied Particle Swarm
Optimization and the Quasi-Newton Method to increase convergence speed and solution
quality. Despite these efforts, it was determined that the rate of accuracy and safety would
change, but no algorithms could guarantee UAV safety in the presence of obstacles.

With regard to the third research question, we investigated the nature of mathematical
models employed in UAV path planning, discerning a clear dichotomy between linear and
nonlinear formulations. The choice between these models hinges on the intricacies of the
task and the specific demands of the application. Linear models, marked by their simplicity
and assumption of a direct relationship between variables, are favored in less-complex
environments, facilitating shorter path lengths and reduced CPU time. These models are
typically deployed for basic path planning tasks, especially when a UAV’s movement can
be linearly approximated. For example, Wang et al. [8] designed a UAV path model for
monitoring the risk of unattended offshore oil platforms using NSGA-II. The obtained
results demonstrated that the multi-objective linear mathematical model was successful in
shortening path length and time.

On the other hand, nonlinear models step into the forefront when addressing the
challenges posed by factors such as wind speed, obstacles, and complex environments.
The complexity of UAV path planning originates from maneuvers, curves, angles, and the
UAV’s axes. In tackling the mentioned complexities, nonlinear models outperform other
models. Our exploration revealed 43 articles opting for nonlinear mathematical models
compared to 25 articles employing linear counterparts. This inclination toward nonlinear
formulations underscores the recognition of the complex and dynamic nature inherent in
UAV path planning scenarios. For example, Wang et al. [47] optimized a nonlinear UAV
path model by using a hybrid of ACO and GMP. Their research focused on enhancing the
efficiency of UAVs by using solar energy at high-altitude and in long endurance missions.
It is notable that flying at high altitude consumes more energy. This is why solar-battery
integration offers a promising solution for managing energy requirements.
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With regard to the fourth research question, our investigation into the environmen-
tal considerations in UAV path planning revealed three primary environmental types:
dynamic, static, and a combination of dynamic and static. The prevalence of dynamic
environments indicates a strong inclination towards incorporating real-time parameters
in UAV path planning models. For instance, Jamshidi et al. [38] designed a multi-master
structure in order to optimize UAV path planning in a real-time, dynamic environment
for a CAN bus. To tackle the complexity of real time, the parallel GWO was employed to
reduce computational time.

Furthermore, the environmental dimensions of mathematical models for UAV path
planning vary, with most studies focusing on three-dimensional (3D) environments and
fewer addressing two- (2D) and four-dimensional (4D) scenarios. For example, Joseph
et al. [63] worked on energy-efficient data ferrying in relation to time-sensitive applications
in a two-dimensional complex environment for the offline mode of UAV path planning.
They utilized genetic algorithms to obtain near-optimal solutions, ensuring faster pro-
cessing times. Also as an example regarding 3D scenarios, Yang et al. [32] developed a
three-dimensional cooperative UAV path planning model employing MP-CGWO to op-
timize the model and enhance accuracy. As an example for 4D, Yang et al. [62] designed
devised a four-dimensional dynamic collision-free path planning approach for UAVs by
employing PSO to address local optima resulting from low convergence speeds. To this
end, a Spatial Refined Voting Mechanism was utilized to handle local optima attributed
to the low convergence speed. Unfortunately, five-dimensional research for UAV path
planning based on meta-heuristic algorithms was not found, while five-dimensional UAV
path planning was developed using a heuristic method [100].

These findings highlight the significance of dynamic characteristics in preparing UAV
path planning models for real-world, real-time situations, and the predominant focus on
3D environments underlines the importance of capturing spatial intricacies for accurate
and effective path planning.

4.1. Trends and Focuses of the UAV Path Planning Optimization Research Community

To highlight how the focus of the UAV path planning optimization research community
has evolved over time, we developed a heatmap showing the relationship between the
employed algorithm types and the objectives of mathematical models for optimizing path
planning in relation to the publication year of the included articles.

As Figure 7a illustrates, swarm-based algorithms dominated initially, but a shift
occurred towards a more diverse landscape. Evolutionary algorithms maintained a steady
presence, while physics-based algorithms peaked in 2020 and subsequently declined.
Hybrid algorithms, combining different approaches (e.g., machine learning), surged and
became the predominant category by 2022. This suggests a dynamic shift in research focus,
highlighting a growing interest in hybrid approaches that combine different algorithmic
strategies to achieve enhanced performance.

Furthermore, as Figure 7b shows, in 2018 and 2019, a predominant focus on path
length and time optimization was evident, with a gradual expansion into energy and cost
considerations. By 2020, there was a substantial increase in attention to energy optimization,
suggesting a growing awareness of efficiency in path planning algorithms. The trend
continued in 2021 and 2022, with a notable rise in collision avoidance objectives, indicating
an increased emphasis on safety in path planning. This evolution underscores a shift
from the early concentration on basic metrics like path length and time towards a more
comprehensive optimization strategy that integrates considerations of energy, cost, and
collision avoidance to achieve enhanced performance and safety.
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4.2. Challenges for Optimizing UAV Path Planning using Meta-Heuristic Algorithms

Through an extensive exploration of the optimization of UAV path planning using
meta-heuristic algorithms, our literature review has unveiled several inherent challenges.
Surprisingly, the most prevalent challenges, encountered in 21 out of the 68 articles, include
the issues of being trapped in local optima and facing challenges regarding convergence
speed. The entrapment in local optima, attributed to low convergence speed, emerges as a
recurring obstacle when employing meta-heuristic algorithms for UAV path planning opti-
mization. Our in-depth examination of the articles allows us to delineate these challenges
and provide a concise overview, complemented by relevant studies for each challenge:
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• Challenge of Longer Running Time—identified in articles [33,39,41,90], particularly
when considering real-time applications [38,43,67].

• Challenge of Searching Collision-Free Paths—noted in studies [5,34], along with the
challenge of reaching targets when obstacles obstruct the path [46,58], and addressing
collisions resulting from path conflicts and overlaps [66].

• Challenges of Optimal Path Battery or Fuel Consumption—explored in arti-
cles [7,47,81,92], as well as challenges associated with achieving an optimal path
with higher costs [17] and longer distances [5,17].

• Challenge of Reducing Accuracy, Safety, and Robustness—discussed in stud-
ies [62,89], emphasizing the importance of addressing accuracy, safety, and ro-
bustness concerns [45,56,68].

• Challenge of Generating the Best and Feasible Solutions—Acknowledged in arti-
cles [42,86], recognizing the need for both optimal and achievable solutions.

• Challenge of Tackling Complexity and Large Amounts of Computation—explored
in research [50,68], highlighting the intricacies associated with handling complexity
and substantial computational loads [57,84].

• Challenge of UAV Path Model Simulation in Dynamic Environments—identified
as a distinct challenge in one article [67].

• Challenge of Coordinating and Constraining Manipulation—highlighted in a
study [53], emphasizing the difficulty of manipulating coordination and constraints.

• Challenge of Applying Wireless Communication and Large Coverage Area on the
Optimal Path—recognized in various articles [45,63], illustrating the complexity asso-
ciated with integrating wireless communication and expansive coverage considera-
tions into the optimization of a UAV’s path.

5. Conclusions and Future Direction

In conclusion, our comprehensive literature review on optimizing UAV path planning
through meta-heuristic algorithms reveals significant insights into the current state of
research and the challenges that persist within the field. Over the past five years, UAVs
have garnered increased attention, particularly in military and civilian applications. Our
systematic review, covering articles published from the beginning of 2018 until the end
of 2022, focused on categorizing meta-heuristic algorithms into four types: evolutionary,
physics-based, swarm-based, and hybrid.

Upon analyzing the selected 68 articles, we found that hybrid algorithms emerged
as the dominant choice, surpassing other types, such as evolutionary, physics-based, and
swarm-based algorithms. The preference for hybrid algorithms indicates their superior
performance and adaptability in optimizing UAV path planning. The mathematical models
employed in UAV path planning predominantly target five common objectives: optimal
path length, time, energy, cost, and collision avoidance. Notably, time optimization takes
precedence, reflecting the emphasis on CPU time efficiency. Energy considerations, how-
ever, are less frequent due to conflicts with optimal path length. Collision avoidance,
a crucial safety mechanism, is sometimes neglected in theoretical or simplified models,
presenting a challenge in ensuring realistic simulations. The choice between linear and
nonlinear mathematical models depends on the complexity of the task and specific mission
requirements. Nonlinear models, favored by researchers, prove essential for addressing
factors like wind speed, obstacles, and varying landscapes. Linear models, while generating
less complexity, are suitable for basic path planning tasks in simpler environments. Our
findings indicate the prevalence of dynamic environmental types, emphasizing the impor-
tance of real-time considerations in UAV path planning. Three-dimensional (3D) models
receive the most attention, aligning with the need for accuracy in complex trajectories.
The diversity in environmental types and dimensions reflects the versatility required in
optimizing UAV path planning.

Finally, our review exposes several challenges in applying meta-heuristic algorithms
to UAV path planning. Becoming stuck in local optima and convergence speed emerged as
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the most frequent challenges, emphasizing the need for addressing algorithmic limitations.
The challenges ranged from longer running times to collision-free path searching, optimal
path battery or fuel consumption, and tackling complexity and large computation amounts.
Additionally, the heatmap analysis with regard to publication year and employed algorithm
types revealed a dynamic shift in the UAV path planning optimization research commu-
nity, with hybrid algorithms becoming the predominant category by 2022, showcasing a
growing interest in combining different algorithmic strategies for enhanced performance.
Furthermore, regarding the objectives of mathematical models for optimizing path plan-
ning, we found that there has been a shift from early concentration on basic metrics like
path length and time towards a more comprehensive optimization strategy that integrates
considerations of energy, cost, and collision avoidance to facilitate enhanced performance
and safety.

In terms of future directions, our literature review provides a comprehensive roadmap
for advancing the optimization of UAV path planning through meta-heuristic algorithms.
One pivotal avenue involves the enhancement of UAV path planning by incorporating
Quality of Service (QoS) metrics to measure and optimize performance. By establishing
specific criteria for path planning quality, researchers can tailor solutions to meet stringent
performance standards, ensuring the efficiency and reliability of UAV operations.

Another critical focus is the exploration of cooperative UAV path planning strategies
tailored for multi-target scenarios in dynamic environments with real-time requirements.
This approach acknowledges the complexities of real-world applications and encourages
the development of collaborative algorithms that enable UAVs to navigate seamlessly
through dynamic landscapes, adapting in real time to varying targets and environmental
conditions. Additionally, the integration of hybrid algorithms takes center stage, offering
a promising solution with which to empower UAV path models, overcoming challenges
related to time, cost, and battery optimization while facilitating real-time implementation.
These future directions collectively aim to propel the field toward more sophisticated,
adaptive, and efficient UAV path planning solutions that align with the demands of con-
temporary applications.
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Abbreviations

Acronyms Definitions
UAV Unmanned Aerial Vehicle
PSO Particle Swarm Optimization
GWO Grey Wolf Optimization
GA Genetic Algorithm
APF Artificial Potential Field
NSGA-II Non-dominated Sorting Genetic Algorithm
MP-CGWO Multi-Population Chaotic Grey Wolf Optimization
APP-PSO Adaptive Path Planning Particle Swarm Optimization
mPSO Modified Particle Swarm Optimization
Improved
NSGA-II

Improved Non-dominated Sorting Genetic Algorithm

IIWD Improved Intelligent Water Drop
IGWO Improved Grey Wolf Optimization
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GBSO-CR Global-best Brain Storm Optimization based on Crossover Recombination
DGBCO Dynamic Group-Based Cooperative Optimization
IBA Improved Bat Algorithm
CAOSA Chaotic Aquila Optimization Algorithm with Simulated Annealing
Multi-master
parallel GA

Multi-Master Parallel Genetic Algorithm

MOMVO Multi-Objective Multi-Verse Optimization
PSO-GA Hybrid of Particle Swarm Optimization with Genetic Algorithm
ACO-APF Ant Colony Optimization with Artificial potential field
GPM-ACO Hybrid of Gauss pseudospectral method with Ant Colony Optimization
MVO Multi-Verse Optimization
IHSSAO Improved Hybrid Salp Swarm Algorithm and Aquila Optimizer
SDPSO Hybrid Particle Swarm Optimization based on Strategy
SPSO Spherical vector-based Particle Swarm Optimization
HHO-GWO Harris Hawk Optimization –Grey Wolf Optimization
SCPIO Social-Class Pigeon-Inspired Optimization
IWOA Improved Whale Optimization Algorithm
AGA Adaptive Genetic Algorithm
APFA Artificial potential field Algorithm

PIOFOA
Hybrid of Improved Pigeon-inspired Optimization with Fruit fly Optimization
Algorithm

HR-MAGA Hierarchical Recursive Multi-Agent Genetic Algorithm
ORPFOA Improved Fruit fly Optimization Algorithm (named ORPFOA)
BFKSA Back-and-Forth-k-opt Simulated Annealing Approach (BFKSA)

EDA-GA
Hybrid algorithm integrating the Estimation of Distribution Algorithm (EDA)
and the Genetic Algorithm (GA)

SRVM Spatial Refined Voting Mechanism
I-GWO Incremental Gray Wolf Optimization
CVRP capacitated Vehicle Routing Problem
EX-GWO Expanded Gray Wolf Optimization
QFOA Quantum Behavior-Based Enhanced Fruit Fly Optimization Algorithm

LMIWD
Lost-water-drop (WDs that are trapped in map dead-ends)-based multiple
swarms (multiswarm) IWD which called (LMIWD) algorithm

GEDGWO Grey Wolf Optimizer using Gaussian Estimation of Distribution
RTTP Real Time Trajectory Planner
HEA Hybrid Evolutionary Algorithm
OMACO Overdue-aware Multiple Ant Colony Optimization

CESMO
Cooperative co-Evolution (CE)-based Spider Monkey Optimization (SMO)
algorithm, named CESMO

PCCGWO Parallel Cooperative Coevolutionary Grey Wolf Optimizer
APPMS Enhanced multi-objective Swarm Intelligence Algorithmis called (APPMS).
OCGA Opposite and Chaos Searching Genetic Algorithm
SA-DFA Discrete firefly algorithm with simulated annealing
MWSO Modified White Shark Optimization
SJSA Swap-and-Judge Simulated Annealing
MHEO Multiple population Hybrid Equilibrium Optimizer
SA Simulated Annealing
DEAKP Differential Evolution Algorithm based on the Knee Point
Improved
HHO

Improved Harris Hawks Optimization
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96. Saka, M.P.; Doğan, E.; Aydogdu, I. Analysis of swarm intelligence–based algorithms for constrained optimization. In Swarm
Intelligence and Bio-Inspired Computation; Elsevier: Amsterdam, The Netherlands, 2013; pp. 25–48.

97. Game, P.S.; Vaze, D.V. Bio-inspired Optimization: Meta-heuristic algorithms for optimization. arXiv 2020, arXiv:2003.11637.
98. Yang, X.-S. Swarm-based meta-heuristic algorithms and no-free-lunch theorems. In Theory and New Applications of Swarm

Intelligence; IntechOpen: London, UK, 2012.
99. Ab Wahab, M.N.; Nefti-Meziani, S.; Atyabi, A. A comprehensive review of swarm optimization algorithms. PLoS ONE 2015, 10,

e0122827. [CrossRef] [PubMed]
100. Rudnick-Cohen, E.; Azarm, S.; Herrmann, J.W. Planning unmanned aerial system (uas) takeoff trajectories to minimize third-

party risk. In Proceedings of the 2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA,
11–14 June 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/s20174769
https://www.ncbi.nlm.nih.gov/pubmed/32846950
https://doi.org/10.3390/s21051814
https://www.ncbi.nlm.nih.gov/pubmed/33807751
https://doi.org/10.3390/en15218036
https://doi.org/10.1016/j.jocs.2019.07.003
https://doi.org/10.1109/ACCESS.2019.2900475
https://doi.org/10.3390/s22145232
https://www.ncbi.nlm.nih.gov/pubmed/35890912
https://doi.org/10.1109/JMASS.2020.3003833
https://doi.org/10.1162/evco.1993.1.1.1
https://doi.org/10.1371/journal.pone.0122827
https://www.ncbi.nlm.nih.gov/pubmed/25992655

	Introduction 
	Methods 
	Database and Keywords 
	Eligibility Criteria 
	Study Selection 
	Data Extraction 

	Results and Analysis 
	Characteristics of the Studies 
	Type of Meta-heuristic Algorithms 
	Objectives and Constraints 
	Mathematical Types 
	Environmental Types 

	Discussion 
	Trends and Focuses of the UAV Path Planning Optimization Research Community 
	Challenges for Optimizing UAV Path Planning using Meta-Heuristic Algorithms 

	Conclusions and Future Direction 
	References

