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Abstract: Unmanned aerial vehicle (UAV) thermal imagery offers several advantages for environ-
mental monitoring, as it can provide a low-cost, high-resolution, and flexible solution to measure the
temperature of the surface of the land. Limitations related to the maximum load of the drone lead
to the use of lightweight uncooled thermal cameras whose internal components are not stabilized
to a constant temperature. Such cameras suffer from several unwanted effects that contribute to
the increase in temperature measurement error from ±0.5 ◦C in laboratory conditions to ±5 ◦C in
unstable flight conditions. This article describes a post-processing procedure that reduces the above
unwanted effects. It consists of the following steps: (i) devignetting using the single image vignette
correction algorithm, (ii) georeferencing using image metadata, scale-invariant feature transform
(SIFT) stitching, and gradient descent optimisation, and (iii) inter-image temperature consistency
optimisation by minimisation of bias between overlapping thermal images using gradient descent op-
timisation. The solution was tested in several case studies of river areas, where natural water bodies
were used as a reference temperature benchmark. In all tests, the precision of the measurements was
increased. The root mean square error (RMSE) on average was reduced by 39.0% and mean of the
absolute value of errors (MAE) by 40.5%. The proposed algorithm can be called self-calibrating, as in
contrast to other known solutions, it is fully automatic, uses only field data, and does not require
any calibration equipment or additional operator effort. A Python implementation of the solution is
available on GitHub.

Keywords: UAV; thermal images; surface temperature; calibration

1. Introduction

The cost efficiency and flexibility of high-resolution thermal imagery from UAVs
are advantages for environmental monitoring and management. UAV-based thermal
and narrowband multispectral imaging sensors meet the critical requirements of spatial,
spectral, and temporal resolutions for vegetation monitoring [1]. UAVs provide high
spatial resolution and flexibility in data acquisition and sensor fusion, allowing for land
cover classification, change detection, and thematic mapping [2]. Aerial thermography
from low-cost UAVs can be used to generate digital thermographic terrain models, which
find application in the classification of land uses according to their thermal response [3].
Thermal remote sensing has many potential applications in precision agriculture, including
monitoring plant hydration levels, identifying instances of plant diseases, evaluating crop
yield, and analysing plant characteristics [4]. Another area of application is related to
hydrology, where thermal images can be used to locate and quantify discrete thermal
inputs to rivers [5–7].

Limitations related to the maximum load of the UAV as well as cost constraints lead
to the use of mainly lightweight uncooled thermal cameras. This solution has several
shortcomings when measuring temperature under field conditions. Uncooled UAV thermal
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cameras require careful calibration and correction for various factors to obtain accurate
temperature measurements. They suffer from vignette effects, sensor drift, ambient temper-
ature and solar radiation influences, and measurement bias, which can be corrected with
an ambient temperature-dependent radiometric calibration function [8]. Non-radiometric
uncooled thermal cameras are highly sensitive to changes in their internal temperature
and require empirical linear calibration to convert camera digital numbers to temperature
values [9]. Fluctuations in the temperature of the focal plane array (FPA) detector, wind,
and irradiance can affect temperature measurements, and adequate settings of camera gain
and offset are crucial to obtaining reliable results [10]. Uncooled thermal cameras also suffer
from thermal-drift-induced nonuniformity or vignetting [11]. The above factors contribute
to the deterioration of the camera’s accuracy from ±0.5 ◦C in laboratory conditions to
±5 ◦C in unstable UAV flight conditions [9].

The literature provides a number of solutions to reduce this problem. To minimise
measurement errors in UAV thermal cameras, it is suggested that the camera is warmed
up for 15–40 min before starting the actual measurement [9,11]. There are also several
methods to eliminate unwanted phenomenon outcomes with calibration under controlled
conditions. For example, calibration algorithm based on neural networks can be used to
increase measurement accuracy [12]. Vignetting reduction can be achieved using reference
images of a homogeneous target [11]. Ambient temperature-dependent radiometric cali-
bration function can be used to correct for sensor drift, ambient temperature influences,
measurement bias, and vignette effects [8]. Stabilization of the camera response and fixed
pattern nose removal can be achieved with advanced radiometric calibration [13]. The
disadvantage of calibration-based methods is that they require non-standard equipment
and the extra effort needed to collect calibration data. A correction based only on the
field data collected by the UAV system would be favoured. Such an approach can be
referred to as self-calibration (a term that originated from the field of photogrammetry,
where it is defined as a process that “uses the information present in images taken from
an un-calibrated camera to determine its calibration parameters” [14]). Such a method
for bias correction using redundant data from overlapping areas of aerial thermal images
has been proposed [15]. It is based on mathematical modelling of the metric of “variation
of digital number per second”. Unfortunately, despite good results, the authors did not
provide a specific explanation, formula, or sample source code illustrating the calculation
of this metric. Also, since this method leverages the rate of digital number variation, it
requires precise timing of the image acquisition achieved with a custom drone attachment.
Often by default, the time information available in the image metadata is provided with the
precision of a second, which is not sufficient for rate of digital number variation calculation,
as during the flight, successive photos are taken even as often as about every 1 s.

Another important aspect of the problem is the lack of specific details of algorithms
used for processing of thermal images. The user has to rely on the producer’s closed-source
Thermal SDK (software development kit) library for allowing to make corrections to the
measurement by taking into account air humidity, target emissivity, or flight altitude. It is
not known what exact processes are represented in this algorithm. Moreover, significant
shortcomings of using SDK were noticed while conducting this study: (i) the maximum
flight altitude acceptable by the library is 25 m, which is too low for most flights covering
large areas, (ii) the library returns errors for some humidity values (most often for a
relative humidity of about 60%), and (iii) for a given frame, it is possible to select only
one emissivity (it is not possible to set different emissivities for different objects in the
same photo). However, most of the UAV-dedicated cameras are susceptible to adverse
phenomena typical of uncooled thermal cameras (bias, vignette effect).

The above-mentioned issues can be addressed by investigating redundant data from
overlapping areas of the images. It is desirable that the temperature difference between all
pairs of overlapping images be as small as possible. This is a minimisation problem that can
be solved with any optimisation method. This work focuses on the use of gradient descent,
which is an optimisation algorithm commonly used in machine learning. However, beyond
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its main application in machine learning, gradient descent can be used to optimise any
differentiable objective function.

Gradient descent works by iteratively updating a set of parameters in the direction of
the steepest descent of a cost function. The algorithm computes the gradient of the cost
function with respect to the parameters and then updates the parameters by taking a step
in the direction of the negative gradient. The learning rate parameter determines the size
of the step, and it is usually set to a small value to avoid overshooting the minimum of
the cost function. The algorithm continues to iterate until the cost function converges to a
minimum or a stopping criterion is met. With the popularity of machine learning, gradient
descent has become more accessible thanks to the development of software libraries that
accelerate the algorithm by using the GPU (graphical processing unit). This work will use
the gradient descent ADAM optimisation method [16].

The aim of this work is to develop a method for post-processing of aerial thermal
imagery that reduces the effects of undesirable phenomena occurring in uncooled thermal
cameras without the use of non-standard equipment, such as reference black bodies or
custom UAV attachments, and without access to raw thermal sensor data. The method
consists of four steps (see Figure 1).

Figure 1. A block diagram of proposed self-calibration method consisting of the precision enhance-
ment steps (solid box) and optional accuracy enhancement step (dashed box).

The following steps are responsible for:

• Devignetting—reduction of temperature pixel bias within each single picture caused
by non-uniform temperature of the thermal sensor;

• Georeferencing—assigning the consistent coordinate system for the whole picture set
based on EXIF (exchangeable image file format) metadata and characteristic keypoints
identified on each picture;

• Inter-image temperature consistency optimisation—reduction of average temperature
difference in the same areas recorded on different pictures;

• Landmark referencing—minimising the temperature offset of the whole thermal mo-
saic based on ground-based reference points.

The first three steps are dedicated to precision enhancement and can be used inde-
pendently of the last one. The purpose of the last step is to improve the accuracy of the
thermal map by eliminating the difference between the temperature of a selected point
obtained from the thermal camera and the ground truth temperature measured directly on
the surface. It is recommended to perform at least three reference measurements [9,17].

Achieving this goal is important, as the use of thermal imaging cameras is becoming
widespread but proven post-processing methods are lacking.

2. Materials and Methods
2.1. Data

The thermal pictures were collected by the DJI Matrice 300 RTK drone system equipped
with a Zenmuse H20T multicamera sensor that contains the thermal camera. Photos were
captured from an altitude of 50 m with the side and front overlapping with a factor of
80%. The emissivity value of 0.95 was used based on a series of laboratory experiments
performed in controlled conditions using the same thermal camera that was applied in the
field. Data used in this study were collected from several areas in southern Poland:
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• Area around about 500 m of the Kocinka stream stretch near Grodzisko village
(50.8715 N, 18.9661 E);

• Area around about 350 m of the Kocinka stream stretch near Rybna village (50.9371 N,
19.1134 E);

• Area around about 160 m of the Sudół stream stretch near Kraków city (50.0999 N,
19.9027 E).

The water temperature of the rivers was measured using a thermocouple along their
course in each case. The results were constant for the entire section and did not depend on
chainage. Table 1 provides details of the locations, dates, conditions of the surveys, and
measured river water temperatures.

Table 1. Details of the surveys carried out.

Alias Location Time Conditions Water Temperature

A Kocinka, Rybna 15 December 2021 12:20 Fog, snow cover 4.6 ◦C

B Kocinka, Rybna 18 January 2022 14:55 Snow cover, total cloud cover 2.6 ◦C

C Kocinka, Rybna 25 March 2022 07:30 No cloud cover 5.6 ◦C

D Sudół, Kraków 20 December 2022 11:20 Moderate cloud cover 2.0 ◦C

E Kocinka, Grodzisko 11 January 2023 11:00 No cloud cover 4.2 ◦C

2.2. Algorithm
2.2.1. Devignetting

The correction of the vignette effect was conducted using the “single image” method [18].
“Single image“ means that the algorithm tries to model the correction of the vignette effect
only on the basis of the currently processed image and does not have any auxiliary data
available (e.g., an image of a homogeneous target with a clearly visible vignette effect).
It was implemented by translating the MATLAB code available at https://github.com/
GUOYI1/Vignetting_corrector (accessed on 18 June 2023) into Python. Several changes
have been made to adapt the algorithm to work with thermal images. Standard images are
represented with floating point values from 0 to 1 or integers from 0 to 255. The original
implementation of the algorithm assumed this data format, so it had to be modified to work
on unconstrained float values. Thermal image values can also be negative. The vignette
correction algorithm works on logarithms of pixel values, so temperatures were converted
to Kelvins in order to avoid the logarithm of 0. The vignette correction algorithm tends
to increase the brightness of the photo. For standard photos, this is not an issue, but for
thermal images, where increasing the brightness will result in a bias in the temperature
reading, this cannot be accepted. It has been assumed that images with vignette effect
occurrence contain more accurate temperatures in their central part. Therefore, the central
part of the photo before correction has been used as a reference level for the photo obtained
after applying the vignette correction algorithm. The bias is compensated for by subtracting
the average difference between the central areas of the images before and after vignette
correction. While the vignette effect mainly affects the edge part of the image, the central
area size is defined as a rectangle with sides twice smaller than the whole image.

2.2.2. Georeferencing

The georeferencing algorithm is largely based on the aerial photo stitching solution
proposed by Luna Yue Huang [19]. Modifications in the proposed method consists of
direct georeferencing to the universal transverse mercator (UTM) coordinate system. The
georeferencing of images can be done by any method or software that best suits the nature
of the image set. It is important that georeferencing results in information about the
overlapping areas between all pairs of images. It is not possible to precisely georeference a
single photo showing a non-orthographic view, but the following georeferencing method
proved sufficiently accurate for the proposed temperature calibration method.

https://github.com/GUOYI1/Vignetting_corrector
https://github.com/GUOYI1/Vignetting_corrector
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The first part of the georeferencing procedure is initial georeferencing of images based
on EXIF metadata. These contain information about the geographic coordinates, yaw, and
altitude of the drone camera at the time the image was taken. This information, along with
the angle of the field of view taken from the camera specifications, allows the estimation
of an affine transformation parameters of translation (vx, vy), scale (sx, sy), and counter
clockwise rotation (θ) that allows to embed the image in a UTM coordinate system. This is
not an accurate estimation, due to the low accuracy of the UAV’s GPS geolocation and high
sensitivity to the shift of the camera viewing area under the influence of wind gusts. In this
estimation, the scale sx and sy parameters are equal and the shear (cx, cy) coefficients are 0.
The elimination of shear parameters from the procedure was possible because the camera
is equipped with the gimbal system controlling the nadir position of the camera during the
flight. The transformation parameters allow to obtain the transformation matrix A based
on Equation (1).

A =

cos θ − sin θ vx
sin θ cos θ vy

0 0 1

·
sx cx 0

cy sy 0
0 0 1


=

sx cos θ − cy sin θ cx cos θ − sy sin θ vx
cy cos θ + sx sin θ sy cos θ − cx sin θ vy

0 0 1

 (1)

Based on the initial georeferencing, pairs of overlapping images are found in the set. To
ensure that all possible pairs are found even when errors in the initial georeferencing may
indicate a lack of overlapping, footprints are expanded (buffered) by a dilation operation by
the given padding value. Each pair of images is aligned and a relative transformation matrix
AR is found by a well-established in the field of image vision stitching method: (i) finding
corresponding points (so called keypoints) in both images using scale-invariant feature
transform (SIFT) [20], (ii) matching keypoints using fast approximate nearest neighbour
search (FLANN) [21], and (iii) estimation of best transformation matrix using random
sample consensus (RANSAC) [22]. Relative transformations are verified in two stages:
(i) since we assume that the images are taken from the same altitude (study areas are
flat), the scaling factor in the relative transformation of two overlapping images must be
approximately equal to 1. If the value of the scaling factor for relative transformations is
outside the range 0.9–1.1, the relative transformation is considered incorrect. (ii) As all
images are taken in the nadir orientation (gimbal camera positioning system), the relative
transformations should not perform a shearing operation. When there is no shear, the
absolute values of the relative transformation matrix AR satisfy the following condition:
|AR11| = |AR22| and |AR12| = |AR21|. If deviation between these values is greater than 0.1,
the relative transformation is considered to be incorrect. If the relative transformation is
found to be incorrect, according to the Luna Yue Huang solution, an attempt is made to
establish a relative transformation using the same pair of images, but resized to twice lower
resolution. Such a procedure allows to obtain different keypoints for a scale determination.
If the relative transformation obtained with this procedure also fails to pass verification, the
analysed pair of images is discarded. Another possible procedure (in case of multisensory
cameras) to overcome the relative transformation error is the use of higher resolution RGB
pictures collected simultaneously with thermal; however, in this study, the procedure was
focused on the possible application in case of single sensor thermal cameras.

Based on the verified pairs of images, an undirected graph is constructed [23], where
each node is an aerial photo and each edge is a valid relative transformation between a
given pair of images. The connected components are then extracted from the graph. A
connected component in graph theory is a group of vertices in a graph that are all directly
or indirectly connected to each other. Only images (nodes) from a connected component
containing the largest number of nodes are used for further processing.
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Coordinates of the second image corners are calculated in the pixel coordinate system
of the first image of the pair using a relative transformation matrix AR:

p1st = AR·p2nd (2)

where:

AR—relative transformation matrix between the 2nd image and 1st image pixel
coordinate systems;
p2nd—coordinates of corner point expressed in the 2nd image pixel coordinate system;
p1st—coordinates of the same point expressed in the 1st image pixel coordinate system.

The procedure is repeated for each verified image pair from the set. The idea of this
alignment procedure is visualised in Figure 2.

Figure 2. Visualisation of the alignment procedure of an example pair of images with dimensions of
640× 512 pixels. The coordinates of the marked corners are expressed in the pixel coordinate system
of the first image.

Optimisation of georeferencing of all images obtained during the flight involves
tuning the absolute geographic transformation parameters (vx, vy, sx, sy, θ) (for all images
simultaneously) to make the relative transformations recovered from them as close as
possible to the relative transformations obtained earlier using the alignment of each pair
separately. Recovery of the optimised relative transformation matrix ÂR from the optimised
absolute geographic transformation matrices Â1st and Â2nd of two georeferenced images is
obtained according to Equation (3):

ÂR = Â1st
−1·Â2nd (3)

cx and cy shear parameters are not tuned during the optimisation. Although tuning of
these parameters improves the matching between pairs of photos further, it also introduces
an unacceptable shearing of the entire mosaic of photos.

Similar to Equation (2), the coordinates of points expressed in the pixel reference
system of the 2nd photo can be converted to coordinates expressed in the reference system
of the 1st image using Equation (4):

p̂1st = ÂR·p2nd (4)

where:

ÂR—relative transformation matrix between the 2nd image and 1st image pixel coordinate
systems after georeference optimisation;
p2nd—coordinates of a point expressed in the 2nd image pixel coordinate system;



Drones 2023, 7, 683 7 of 19

p̂1st—coordinates of the same point expressed in the 1st image pixel coordinate system
after georeference optimisation.

Georeference optimisation is performed using the gradient descent method with the
loss function L that consists of two components LR and LA. Component LR is the mean
Euclidean distance between the corner point coordinates obtained from the relative transfor-
mation recovered from the tuned absolute geographic transformation and the coordinates
of the corresponding points that have been obtained from the relative transformation of the
pair alignment procedure:

LR =
1

NP

NP

∑
i=1

1
4

4

∑
j=1
‖p1st,i,j − p̂1st, i,j‖ (5)

where:

NP—number of pairs;
p1st,i,j—point of the j-th corner of the i-th pair of the 2nd image expressed in the 1st image
pixel coordinate system estimated from pairs alignment;
p̂1st,i,j—point of the j-th corner of the i-th pair of the 2nd image expressed in the 1st image
pixel coordinate system estimated using relative transformation recovered from absolute
geographic transformations tuned during optimisation.

Component LA is the mean Euclidean distance between the geographic centroids
of tuned image footprints and geographic centroids of image footprints obtained during
initial georeferencing using EXIF data.

LA =
1

NI

NI

∑
i=1
‖pi − p̂i‖ (6)

where:

NI—number of images;
pi—point of centroid of the i-th image obtained from EXIF data expressed in the geographic
coordinate system;
p̂i—point of centroid of the i-th image obtained from absolute geographic transformation
tuned during optimisation.

By minimising the LR factor, the optimised absolute geographic transformations are
adjusted, so that the relative transformations between images pairs that have been retrieved
from them are as close as possible to the relative transformations previously obtained
separately for each pair in the alignment process. Minimising the La factor ensures that
the entire mosaic will not move in any direction during the optimisation. Equation (7) is
the final formula for the L loss function. To minimise the impact on the relative matching
of images using the LR component, the less important LA component is multiplied by a
factor of 10−6. The factor value was selected experimentally by qualitative assessment of
results tested for different values.

L = LR + 10−6LA (7)

2.2.3. Inter-Image Temperature Consistency Optimisation

In order to minimise the temperature bias between overlapping images using gradient
descent, a consistent dataset has to be prepared. If the reduction of the vignette effect has
not yielded sufficient results and the photo overlap is large enough, the areas of the photos
near the edges where the vignette effect affects the temperature images the most can be
truncated (Figure 3).
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Figure 3. Example of cropped areas and the common area in a pair of images used for tempera-
ture adjustment.

For the two images from each pair, only the common part is retained as well as a
mask that allows to reproduce the irregular shape of the cut-out from the rectangular array.
Temperature cut-outs of both images and the mask are resized to an array of 32× 32 pixels.
During the resizing, the temperatures are interpolated using the bilinear method, and
the mask is interpolated using the nearest neighbours method. The example result of the
common clip is shown in Figure 4. The example corresponds to the image pair shown in
Figures 2 and 3. The rotation is due to the transformation to an absolute geographic datum.
The lack of preservation of the aspect ratio is due to the need for scaling to fill the whole
area of square array of 32× 32 pixels.

Figure 4. Example components of the dataset sample: (a) binary mask, (b) first temperature image,
(c) second temperature image.

By resizing the slices to 32× 32 pixels, it was possible to create a coherent dataset
of three arrays (the masks and the common parts of image pairs) of size Np × 32× 32,
where Np is the number of pairs, which could then be used in optimisation using the
gradient method.

Optimisation of the temperature values involves tuning the temperature offset b
between the calibrated and not calibrated image:

v̂ = v + b (8)

where:

v̂—temperature value with applied calibration;
v—temperature value before calibration.

Optimisation uses a loss function L that consists of two components: LB and LM.
Component LB is the pixelwise mean squared error between the calibrated temperature
values of the first and second cut-out images from a given pair (Equation (9)):

LB =
1

NP

NP

∑
i=1

1
32

32

∑
j=1

1
32

32

∑
k=1

(
v̂1st,i,j,k − v̂2nd,i,j,k

)2
(9)
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where:

NP—number of pairs;
v̂1st, i,j,k—calibrated temperature value of the pixel with the coordinates (j,k) of the 1st image
in the i-th pair;
̂v2nd, i,j,k—calibrated temperature value of the pixel with the coordinates (j,k) of the 2nd

image in the i-th pair.

LM is the absolute difference between the mean values of temperatures in all uncali-
brated and calibrated images (Equation (10)):

LM = |µ− µ̂| (10)

where:

µ—mean temperature value of uncalibrated images;
µ̂—mean temperature value of calibrated images.

By minimising the LB component, the bias between the temperature values in the
overlapping images is minimised. The LM component ensure that during optimisation,
the whole mosaic will not drift from the initial temperature mean value. The total loss is
calculated using Equation (11). To minimise the impact of LM on bias correction using the
LB component, the LM component was multiplied by factor of 10−2. The factor value was
selected experimentally by qualitative assessment of results tested for different values.

L = LB + 10−2LM (11)

2.3. Landmark Referencing

The rivers in the study areas have homogenous temperatures throughout the surveyed
sections; therefore, the average of several dozens of temperature measurements performed
along the river has been used for landmark referencing. The reference river measure-
ments have been used to compensate a systematic error. The sets of both the original and
temperature-adjusted images were shifted with the same offset value for all images from
the given set, so that the average water body temperature read from the thermal mosaic
was equal to the measured average reference water temperature. It was decided to apply
this step because the temperature values returned by the DJI Thermal SDK may differ
significantly from the actual temperature. This final landmark referencing step is optional,
but it is a straightforward correction and makes it easier to compare measurement precision
before and after the calibration procedure as it reduces a systematic error.

3. Results and Discussion
3.1. Devignetting

A ”single image” algorithm was used to correct the vignette effect. For this reason, the
resulting image is prone to misinterpretations and consequently to an erroneous correction
of the vignette effect. Figure 5 shows an example of a successful devignetting. In this case,
the standard deviation of the temperature in the image decreased as a result of devignetting,
which is manifested as a narrowing of the histogram of pixel temperature values. Figure 6
shows an erroneous devignetting, where it is likely that the river at the left edge of the
image caused the misinterpretation. In this case, the correction resulted in an increase in
the standard deviation of the image temperature, which manifests as a widening of the
histogram of pixel values.
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Figure 5. An example of successful devignetting: (a) top left, original image, (b) top right, the same
image after applying devignetting procedure, (c) bottom, pixel temperature distributions of the
original and corrected image.

Figure 6. An example of unsuccessful devignetting: (a) top left, original image, (b) top right, the
same image after applying devignetting procedure, (c) bottom, pixel temperature distributions of the
original and corrected image. The river is a bright streak along the left edge of the image.
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In order to assess the algorithm effectiveness quantitively, it was tested on a set of
3037 images. The measure of the algorithm effectiveness was a relative change in the
image temperature standard deviation before and after the correction. For 74.4% (2261) of
the images, a standard deviation reduction was obtained of –0.07 ◦C on average, and for
25.6% (776) of the images, an increase in the standard deviation was obtained of 0.01 ◦C on
average. The detailed distribution of the changes in the temperature standard deviation as
a result of the devignetting is shown in Figure 7.

Figure 7. Change in the image temperature standard deviation as a result of the devignetting
algorithm. Negative values imply improvement (lowering of the standard deviation in a corrected
image). The dashed line is drawn at 0 ◦C.

3.2. Visual Assessment

Figures 8–12 show parts of thermal image mosaics before and after calibration for
each case study (see Table 1). It should be noted that the pictures are not orthomosaics but
image mosaics created straightforwardly by displaying all georeferenced images. If there
was more than one image of the same area in a given set causing an overlap, a subsequent
image was selected for the mosaic.

Figure 8. Case A—image mosaic before (left) and after (right) the calibration.
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Figure 9. Case B—image mosaic before (left) and after (right) the calibration.

Figure 10. Case C—image mosaic before (left) and after (right) the calibration.

Figure 11. Case D—image mosaic before (left) and after (right) the calibration.
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Figure 12. Case E—image mosaic before (left) and after (right) the calibration.

A visual comparison of the thermal imagery mosaics before and after calibration shows
an improvement regarding the temperature fluctuations, particularly between successive
flight passages that are noticeable as parallel bands in all of the uncorrected mosaics. The
algorithm also handles the correction of undervalued images taken at the beginning of
the flight when the camera is warming up, as seen, for example, in the left side of case
D mosaic (Figure 11). Furthermore, correction of the images from the cases A (Figure 8)
and B (Figure 9) has allowed to detect a warmer tributary of the stream, which is fed by the
warm groundwater.

3.3. Waterbody Temperature

Figure 13 summarises the RMSE of river temperature measurements obtained from
thermal images at various configurations of the calibration procedure: uncalibrated, devi-
gnetted only (Section 2.2.1), consistency optimised only (Section 2.2.3), and after applying
both devignetting and consistency optimisation algorithms. To focus on the measurement
precision only, all RMSE values (including uncalibrated) were calculated using images
subjected to the landmark referencing described in Section 2.3.

Figure 13. Root mean square errors of waterbody temperature before calibration, after devignetting
only, after consistency optimisation only, and after devignetting and consistency optimisation.
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Applying the devignetting algorithm itself resulted in an increase in RMSE in most
cases, implying that the image temperature reading precision was decreased. A slight
improvement was obtained in case D with a change in RMSE of –0.03 ◦C but it was
statistically insignificant. Application of the inter-image consistency optimisation algorithm
itself reduced the RMSE substantially in all cases, up to almost 50% in case B (from RMSE
of 0.95 ◦C before the algorithm application down to 0.50 ◦C afterwards). Applying both
algorithms to the image resulted in further improvement of the precision in three cases,
and in the remaining two, the resulting RMSE increased compared to optimisation itself
but was still substantially lower than that for the unprocessed image.

Figure 14 shows the temperature values sampled along the river centreline from the
images processed using various configurations of devignetting and inter-image consistency
optimisation. Since any point of the river may be present in multiple overlapping photos,
several temperature readings are obtained for the same stream chainage location. The
inter-image consistency optimisation procedure applied to the images from the beginning
phase of the flight when the camera is warming up (dark blue markers in Figure 14) resulted
in correct temperature readings in majority of the cases. The remaining outliers in the river
temperature readings that have not been compensated by the algorithm, for example, three
strongly negative peaks in case C in Figure 14, have proven to be sampled on vegetation
overhanging the water surface.

Figure 14. Cont.
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Figure 14. Temperature values sampled along river centreline from devignetted only (left column),
optimised only (middle column), and both devignetted and optimised (right column) images plotted
as small red points. Large colour-scale points show the temperature sampled from unprocessed
images, the colours themselves indicating time of flight in minutes. The dashed line indicates actual
water temperature measured with a thermocouple. Rows A to E correspond to locations (see Table 1).

4. Conclusions

The proposed solution significantly improved the precision of water surface tempera-
ture measurement using UAV thermal imagery. Predominant improvement came from the
use of inter-image temperature consistency optimisation. Single image vignette correction
had marginal impact on the final results. Calibration eliminated the clearly visible bias of
images taken during the initial stage of flight that was due to warming up of the camera.
This approach renders pre-flight warm-up of the camera unnecessary.

Previous methods of reducing adverse phenomena occurring in uncooled thermal
cameras have relied on calibration under controlled laboratory conditions and required
non-standard instrumentation such as reference black bodies or custom UAV attachments.
For this reason, they require the additional effort of a specialised operator and cannot
be automated. The proposed precision enhancement algorithm in opposition to those
methods requires minimal effort as it only involves the data collected during a standard
UAV flight and is highly automated, making it possible to use by a non-specialised operator.
This also makes the solution ready to be implemented as part of a photogrammetric
software workflow.

The presented method was successfully tested in the specific landscape of small river
valleys in rural and suburban areas where semi-natural and anthropogenic land covers
are intertwined with surface water areas with heterogeneous surface temperatures. A
reliable mapping of land surface and water temperatures in such settings is important for
the understanding of groundwater–surface water interactions and other physical processes
that affect riverine ecosystems.
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Appendix A

The algorithm was implemented in Jupyter Notebooks using the Python programming
language. The processing solution includes five notebooks responsible for preliminary
image conversion, vignette correction, georeferencing of images, inter-image tempera-
ture consistency optimisation, and offsetting of all images (1_conversion.ipynb, 2_devi-
gnetting.ipynb, 3_georeferencing.ipynb, 4_calibration.ipynb, respectively). They can be run
on any operating system thanks to the Docker containerisation.

Appendix A.1. Conversion Notebook

First, the images must be converted from the camera manufacturer’s specific format
(usually a JPG image with RGB channels providing temperature visualisation) to a single-
channel TIFF file containing temperature values. For this study, the DJI thermal SDK
(https://www.dji.com/pl/downloads/softwares/dji-thermal-sdk, accessed on 29 Septem-
ber 2023) library provided by the thermal camera manufacturer was used for the extraction
of temperature arrays from manufacturer-specific JPG file format. This library requires
values of flight altitude, air humidity, surface emissivity, and surface reflection temperature.
The extracted temperatures are saved to a TIF file. The EXIF data is copied unchanged from
the input JPG file to the resulting TIF file.

Appendix A.2. Georeferencing Notebook

For initial georeferencing, longitude (λ), latitude (ϕ), altitude (z), and rotation (θ) data
were extracted from the images using the exiftool software. The camera’s diagonal angle
of view (α) was taken from the camera documentation. The length of the image footprint
diagonal (ld) expressed in meters was calculated with the ld = 2z tan(0.5α) formula. The

horizontal and vertical footprint lengths were calculated using the lh = ld
(

ph/
√

p2
h + p2

v

)
and lv = ld

(
pv/

√
p2

h + p2
v

)
formulas, respectively, where ph and pv are the width and

height of the image expressed in number of pixels (in this case study, ph = 640 and
pv = 512). The longitude and altitude were converted into x, y coordinates of the UTM
system using the pyproj library. These are the coordinates of the centroid of the footprint
of the photo. Footprint was initialized using the Polygon object of the shapely library
with four corner points: (x− 0.5lh, y− 0.5lv), (x + 0.5lh, y− 0.5lv), (x + 0.5lh, y + 0.5lv),
(x− 0.5lh, y + 0.5lv). It was then rotated by θ around the centroid using the affinity.rotate
function from the shapely library to obtain the final footprint.

The rows of the matrix in the computer solutions are counted from top to bottom. It
causes the vertical axis of the image reference system to point downward in the imple-
mentation. This requires modification of the transformation matrix (Equation (1)) into
Equation (A1). The modified transformation matrix is similar to the standard trans-
formation matrix with clockwise rotation; however, it uses clockwise rotation and the
bottom-right pixel coordinates are used as vx and vy parameters. The modified version
of the transformation matrix used in the implementation of the algorithm is presented in
Equation (A1):

A =

cos θ sin θ vx
sin θ − cos θ vy

0 0 1

·
sx cx 0

cy sy 0
0 0 1


=

sx cos θ + cy sin θ cx cos θ + sy sin θ vx
sx sin θ − cy cos θ cx sin θ − sy cos θ vy

0 0 1

 (A1)

https://www.dji.com/pl/downloads/softwares/dji-thermal-sdk
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The modified transformation matrix was composed with vx and vy parameters being
the coordinates of the bottom-right footprint corner, sx and sy parameters being the pixel

sizes calculated with sx = sy = ld/
√

p2
h + p2

v, θ parameter equal to the negative yaw value
extracted from the EXIF data (as counterclockwise rotation is needed), and shear cx and cy
parameters equal to zero.

In order to optimise the process of finding matches of overlapping pairs of photos,
candidates are found that are potentially overlapping. The process of finding candidates
consists of dilating all footprints by 5 m and then finding pairs of overlapping dilated
footprints. Dilation is necessary, because due to inaccurate initial georeferencing, some of
the footprints may indicate no overlap even if corresponding photos contain a common
area. Then, with the help of the cv2 library, an attempt is made to stitch a given image with
each of the potential neighbours. The stitching procedure consists of several steps using
functions from the cv2 library: (i) detecting features and computing descriptors with the
SIFT algorithm using the detectAndCompute function, (ii) descriptor matching using the
knnMatch function from the FlannBasedMatcher class object, (iii) filtering out incorrect
matches using the Lowe’s ratio test with a ratio value equal to 0.7, (iv) using correct
matches with the estimateAffinePartial2D function to estimate the relative transformation
matrix between the given image and the potential overlapping neighbour. If the number of
matching points used for calculation of the transformation matrix is greater than or equal
to eight, the pair of images and their relative transformation matrix are qualified for further
processing. At this stage, using a relative transformation matrix, the coordinates of the
corners of the stitched image in the relative reference system of the other image of the pair
are also calculated.

To further ensure that the stitched pairs are correct, we filter out pairs where the
scaling factor in the relative transformation matrix is outside the range of 0.8 to 1.2, as we
assume that the images were taken from the same altitude, so the relative scaling factor
must be equal to one.

All stitched pairs of images that remain up to this point are interpreted as undirected
graphs using the networkx library. Using the connected_components function, the connected
component that contains the largest number of nodes (images) is extracted. It is also
possible to visualise the stitched pairs and connected components as a graph with the
geographical position of the nodes preserved. An example graph visualisation is shown in
Figure A1.

Figure A1. Graph visualization with preserved relative geographical positions of nodes and the
largest connected component marked in green. Green nodes are used for georeferencing optimisation,
red nodes are discarded. Example for D case study.
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The data prepared up to this point are loaded into the tensor objects of the pytorch
library. Values of these tensors relate either to images or image pairs. Transformation
parameters vx, vy, θ, sx, sy, cx, cy are stored in separate tensors of length equal number of
images. These tensors will be tuned during the gradient descent optimisation, so they are
initialized with the parameter requires_grad=True. A short optimisation time is ensured by
using the ReduceLROnPlateau learning rate scheduler.

Appendix A.3. Calibration Notebook

Footprints are read from the previously generated GeoTIFF files. Then, based on
them, pairs are found whose common part area is not less than the value defined as
MIN_INTERCESTION_AREA. Samples that are the common part in pairs of images are
scaled to a low resolution, defined as CLIP_SIZE. The dataset is loaded into the tensors,
and gradient descent optimisation is performed.
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