
Citation: Debnath, D.; Hawary, A.F.;

Ramdan, M.I.; Alvarez, F.V.;

Gonzalez, F. QuickNav: An Effective

Collision Avoidance and

Path-Planning Algorithm for UAS.

Drones 2023, 7, 678. https://doi.org/

10.3390/drones7110678

Academic Editor: Sanjay Sharma

Received: 13 October 2023

Revised: 8 November 2023

Accepted: 15 November 2023

Published: 17 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

QuickNav: An Effective Collision Avoidance and Path-Planning
Algorithm for UAS
Dipraj Debnath 1,2 , Ahmad Faizul Hawary 3,*, Muhammad Iftishah Ramdan 4, Fernando Vanegas Alvarez 1,2

and Felipe Gonzalez 1,2

1 School of Electrical Engineering & Robotics, Queensland University of Technology (QUT), QUT S Block,
2 George Street, Brisbane City, QLD 4000, Australia; dipraj.debnath@hdr.qut.edu.au (D.D.);
f.vanegasalvarez@qut.edu.au (F.V.A.); felipe.gonzalez@qut.edu.au (F.G.)

2 QUT Centre for Robotics (QCR), Queensland University of Technology (QUT), Level 11, QUT S Block,
2 George Street, Brisbane City, QLD 4000, Australia

3 School of Aerospace Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang 14300, Malaysia
4 School of Mechanical Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang 14300, Malaysia;

shahramdan@usm.my
* Correspondence: aefaizul@usm.my; Tel.: +60-4-5995901

Abstract: Obstacle avoidance is a desirable capability for Unmanned Aerial Systems (UASs)/drones
which prevents crashes and reduces pilot fatigue, particularly when operating in the Beyond Visual
Line of Sight (BVLOS). In this paper, we present QuickNav, a solution for obstacle detection and
avoidance designed to function as a pre-planned onboard navigation system for UAS flying in a
known obstacle-cluttered environment. Our method uses a geometrical approach and a predefined
safe perimeter (square area) based on Euclidean Geometry for the estimation of intercepting points,
as a simple and efficient way to detect obstacles. The square region is treated as the restricted
zone that the UAS must avoid entering, therefore providing a perimeter for manoeuvring and
arriving at the next waypoints. The proposed algorithm is developed in a MATLAB environment
and can be easily translated into other programming languages. The proposed algorithm is tested
in scenarios with increasing levels of complexity, demonstrating that the QuickNav algorithm is
able to successfully and efficiently generate a series of avoiding waypoints. Furthermore, QuickNav
produces shorter distances as compared to those of the brute force method and is able to solve difficult
obstacle avoidance problems in fractions of the time and distance required by the other methods.
QuickNav can be used to improve the safety and efficiency of UAV missions and can be applied to
the deployment of UAVs for surveillance, search and rescue, and delivery operations.

Keywords: UAS path planning; obstacle avoidance; obstacle detection; geometrical-based approach

1. Introduction

The capabilities of Autonomous Unmanned Aircraft Systems (UASs) have significantly
advanced in performance and effectiveness in recent years. UAS systems rely on unmanned
aerial vehicles (UAVs) and ground control systems (GCSs) equipped with real-time mission
control and communication devices to plan and monitor autonomous flights [1]. UAVs
are becoming a dependable option in a range of application fields because of the rapid
improvements in technologies [2]. This has been enabled by the increasing number of
recent deployments of UAVs in a variety of applications [3]. UAVs are being used not only
in the military sector, but also in the civil and private sectors [4]. However, in recent years,
the use of UAS technology for civil applications has increased due to applications in aerial
photography, mapping, target tracking, ecological prediction, etc. [5].

Operation and application requirements at low altitudes, such as monitoring, search
and rescue, geological science research, and data collection in isolated places, have recently
been influenced by the emergence of small and micro aerial vehicles (SUAVs and MAVs,

Drones 2023, 7, 678. https://doi.org/10.3390/drones7110678 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7110678
https://doi.org/10.3390/drones7110678
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-2181-8536
https://orcid.org/0000-0003-1821-1263
https://orcid.org/0000-0002-4342-3682
https://doi.org/10.3390/drones7110678
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7110678?type=check_update&version=2

Drones 2023, 7, 678 2 of 14

respectively) [6,7]. These UAVs are employed to achieve several objectives, including
the collection of on-demand photographs from low-altitude airspaces. This technology
offers extensive assistance in emergency product shipment, border surveillance, emergency
rescue operations during disasters, and visual surveillance for crowd safety [8].

The development of autonomous UAVs has become essential to fulfil the increasing
needs of the UAS landscape [9]. Modern UAVs aim for increased autonomy and flight
stability due to the technical developments, diversity, and complexity of missions [10]. This
has led to the development of autonomous UAVs that can be controlled by computers
loaded with pre-determined path, detection, and obstacle avoidance algorithms [11,12]. An
onboard mission plan consists of path planning algorithms to alter the flight plan when the
obstacles have been detected. The automated guidance system will interrupt the flight plan
and initiate operations in response to the obstacles, such as when a hazard is identified [13].
The detection and avoidance of obstacles with a high level of accuracy is a challenging
problem for autonomous UASs [14].

Over the last decade, there has been a significant increase in research on UAS obstacle
detection and avoidance. The development of fast-converging algorithms has been a
persistent priority to assure safe and effective navigation, given the dynamic nature of
UAS operations. The algorithms utilized for obstacle avoidance control can be classified
into two main approaches: optimization-based and rule-based ones [15]. Rule-based
algorithms depend on predetermined rules and heuristics to control UAS when they come
across obstacles, depending on the expert-derived instructions. These techniques provide
effectiveness and immediate applicability, but may encounter difficulties in complex and
dynamic situations. On the other hand, optimization-based algorithms approach obstacle
avoidance as a problem of finding the best solution, using mathematical methods to
calculate the most efficient path, while avoiding the obstacles [16,17].

Sensor technologies are essential in obstacle detection and avoidance systems as
they provide real-time data for predetermined routes. Laser range finders (LRF), sound
navigation and range finders (SONAR), and cameras are used as sensors in these sys-
tems. However, these sensors use intensive computing power and are subject to different
environmental uncertainties that necessitate frequent calibration [18].

Several notable approaches and techniques have been proposed in research work to
address the difficulties of detecting and avoiding obstacles for UASs. Khan et al. proposed
a Flexible Geometric Algorithm (FGA) that solved a possible collision using differential
geometry based on the specific location, relative velocities, angular displacements, and
collision cones [19]. The probability of a collision occurring is considered in this model
using two-dimensional (2D) collision cones. A 2D collision cone is created from the aircraft’s
frame and is computed when an obstacle is detected within the protected cone. The key
limitation of this model is the assumption that the airplane is flying at a constant speed.
Zheng [20] introduced a LIDAR-based approach for obstacle detection and avoidance. In
this study, LIDAR is used to scan each point and correction is made to the point cloud
via a relationship transformation. The point cloud features obtained via a laser radar
are used to derive a clustering method using the relative distance and density. Another
approach by Bareiss [21] used an onboard two-dimensional spinning LIDAR system with a
one-dimensional rangefinder to detect the obstacles.

Some other researchers such as Yu Wan [22] proposed a collision avoidance system
for fixed-wing UAVs based on manoeuvre coordination and planned trajectory prediction.
P.S. Krishnan developed a novel Particle Swarm Optimization-based Collision Avoidance
algorithm (PSO-CA) for escape manoeuvres away from obstacles. This approach can also be
used to discover new waypoints for the dynamic trajectory modification of UAVs [23]. B.K.
Patle et al. proposed the Matrix Binary Code with a Genetic Algorithm to optimize static
and dynamic environments for path planning and obstacle identification [24]. The authors
also introduced the Firefly Algorithm (FA) for mobile robot navigation (MRN) in uncertain
environments [25]. The uncertainty is expressed from static to dynamic and changing
environments. Wu et al. proposed an obstacle avoidance solution where the unmanned

Drones 2023, 7, 678 3 of 14

surface vehicle (USV) is travelling along the path provided by the Artificial Potential Field-
Ant Colony Optimization (APF-ACO) algorithm [26]. The USV can successfully overcome
the current obstacle by using the multi-layer technique.

Hu et al. introduced a path planning technique for static and moving obstacles using
discrete optimization for autonomous vehicles. The method can find the optimum path
from a finite number of path possibilities and simultaneously determine the vehicle’s
acceleration and speed [27]. The application of Deep Learning methods for detecting
obstacles and planning new routes around obstacles was successfully implemented in [28].
The Dijkstra algorithm and sensor-related approaches to determine the shortest possible
path planning were also established in [29]. Another widely used collision avoidance
system is Rapidly Exploring Random Tree (RRT) algorithms [30]. RRT detects an area with
fast-exploring speed, and a connection is created if two close trees are identified. When a
tree with a greater distance is discovered at random, a connection is established with the
nearest potential tree. An aircraft’s path can be mapped using this approach. However,
the RRT algorithm extension period is slow when the obstacles are randomly distributed.
The development of a comprehensive and efficient algorithm capable of identifying and
navigating around obstacles, while optimizing flight paths for autonomous UASs, remains
an important area of research.

In this paper, we propose an algorithm that is designed to identify obstacles on a pre-
planned travel path, and then produce an optimal and safe path around them. This study
introduces an algorithm that uses a geometrical based methodology to effectively navigate
around obstacles and optimize the flight path. We evaluate the algorithm’s performance
based on the routing distance, computing costs, and flight time.

2. Materials and Methods
2.1. Case Studies

Our aim is to find the shortest and safest obstacle avoidance path within a given time
frame, e.g., 200 s for a range of test cases. We assume restrictions are imposed to ensure
compliance with the local authority as well as to ensure the flight path is planned to avoid
uncertainties and issues during operation. We assume Line of Sight (LoS) operations and
that the UAS must fly at a constant cruise speed of 1 m/s at a constant 10 m altitude. We also
assume a 2D space. Our proposed algorithm, QuickNav, uses a geometric-based approach.
We analyse the performance in terms of obstacle avoidance and distance improvement
when compared to that of the brute force method [31]. The brute force method examines all
the potential solutions to a problem, often by sequentially evaluating each alternative in
a thorough way [32]. It is comparable to a systematic measuring procedure, where every
possibility is carefully considered to calculate the outcome result. For example, assuming
that a UAV has been assigned the mission of traveling to a series of predetermined locations,
i.e., 1, 2, 3, 4, etc., the brute force algorithm would determine the overall distance of the
path by computing the distance between each pair of adjacent points, beginning with point
1 to point 2, then 2 to point 3, and so on. The procedure continues until all the possible
combinations have been analysed [33]. This approach is employed to determine the total
distance of the potential path of the UAV.

2.2. QuickNav Approach and Algorithm

The location and attitude of the UAS are two essential parameters for UAS navigation.
The motion of UAS in space is determined by 6 DOFs—3 linear motions and 3 angular
motions. The attitude of these parameters is controlled using an onboard flight controller.
The UAV position is obtained using a Global Navigation Satellite System (GNSS), such
as the Global Positioning System (GPS) presented in a latitude–longitude–altitude format.
These three parameters can also be represented as x, y, and z, respectively, in the Cartesian
Coordinate System (CCS).

Motion control and navigation are performed using the low-level flight controller.
Path planning occurs at a higher level and is processed separately. The main function of

Drones 2023, 7, 678 4 of 14

the path planning module is to provide a series of real-time pre-planned waypoints for the
low-level flight controller to manoeuvre.

As this is not an experimental approach, we formulate the problem using CCS that
can later be adapted easily using GPS coordinates. In this context, parameter z represents
the height or altitude, an important parameter for 3D path planning. However, this study
focuses on 2D path planning and makes the assumption that the UAS flies at a fixed altitude.
The z component will therefore not be computed. We propose a fast-converging, highly
scalable, and computationally efficient geometrical-based obstacle detection and avoidance
algorithm for a pre-planned route at a fixed altitude. The flight scenario for path planning
is depicted in Figure 1. The flight scenario for path planning is depicted in Figure 1a (front
view) and Figure 1b (top view). Both figures are shown as 3D images from front and top
views, respectively. The obstacles (buildings, trees, etc.) are labelled as On, where n = 1, 2,
3. . . represents the number of obstacles, and h is the fixed flying altitude. The blue boxes in
both figures represent the safe avoidance area for the drones to manoeuvre. The green lines
represent the progressive line measuring the current waypoint towards the landing point.
The orange (dotted with arrow) line is the final optimal path, which successfully avoids
the obstacles.

Drones 2023, 7, x FOR PEER REVIEW 4 of 16

format. These three parameters can also be represented as x, y, and z, respectively, in the
Cartesian Coordinate System (CCS).

Motion control and navigation are performed using the low-level flight controller.
Path planning occurs at a higher level and is processed separately. The main function of
the path planning module is to provide a series of real-time pre-planned waypoints for
the low-level flight controller to manoeuvre.

As this is not an experimental approach, we formulate the problem using CCS that
can later be adapted easily using GPS coordinates. In this context, parameter z represents
the height or altitude, an important parameter for 3D path planning. However, this study
focuses on 2D path planning and makes the assumption that the UAS flies at a fixed alti-
tude. The z component will therefore not be computed. We propose a fast-converging,
highly scalable, and computationally efficient geometrical-based obstacle detection and
avoidance algorithm for a pre-planned route at a fixed altitude. The flight scenario for
path planning is depicted in Figure 1. The flight scenario for path planning is depicted in
Figure 1a (front view) and Figure 1b (top view). Both figures are shown as 3D images from
front and top views, respectively. The obstacles (buildings, trees, etc.) are labelled as On,
where n = 1, 2, 3… represents the number of obstacles, and h is the fixed flying altitude.
The blue boxes in both figures represent the safe avoidance area for the drones to manoeu-
vre. The green lines represent the progressive line measuring the current waypoint to-
wards the landing point. The orange (dotted with arrow) line is the final optimal path,
which successfully avoids the obstacles.

(a)

(b)

Figure 1. (a). Flight scenario within the obstacle’s environment. (Front view.) (b). The obstacles
cross-section at h altitude (top view) and UAS path.

The proposed algorithm requires a simulation or numerical method to detect and
avoid obstacles within the environment. To reduce the complexity, we assume any obsta-
cle points appear as a square shape in plain view. The size of the obstacles depends on the
perimeter required for the UAS to manoeuvre safely. We randomly generate a series of
UAS waypoints and the obstacle coordinates. We test the algorithm’s efficiency and per-
formance by altering the number of obstacles, and classify the levels of obstacle density as
low, medium, and high. We record the output avoidance path and distance. In Figure 2,
we demonstrate how we consider the geometrical perspective when finding the avoidable
path between waypoints (wp), e.g., between wp0 and the next waypoint, wp1.

Figure 1. (a). Flight scenario within the obstacle’s environment. (Front view). (b). The obstacles
cross-section at h altitude (top view) and UAS path.

The proposed algorithm requires a simulation or numerical method to detect and
avoid obstacles within the environment. To reduce the complexity, we assume any obstacle
points appear as a square shape in plain view. The size of the obstacles depends on the
perimeter required for the UAS to manoeuvre safely. We randomly generate a series of UAS
waypoints and the obstacle coordinates. We test the algorithm’s efficiency and performance
by altering the number of obstacles, and classify the levels of obstacle density as low,
medium, and high. We record the output avoidance path and distance. In Figure 2, we
demonstrate how we consider the geometrical perspective when finding the avoidable
path between waypoints (wp), e.g., between wp0 and the next waypoint, wp1.

Drones 2023, 7, 678 5 of 14Drones 2023, 7, x FOR PEER REVIEW 5 of 16

Figure 2. Avoidance path between two waypoints across parallel obstacles.

Two obstacles, namely O1 and O2, are positioned between the two waypoints; how-
ever, O2 does not hinder the path. The proposed detection method utilizes linear equations
to find the path obstacle through the interception points between obstacle perimeters and
path lines. Any obstacle fences intercepted along the wp0–wp1 lines will be considered as
obstacles and need avoiding. The un-avoidable path is shown as a straight, solid line, and
the possible avoidable paths are represented by the broken lines. In this scenario, the
avoiding strategy will have at least two different avoidance routes around the obstacle O1:
through the edges of the obstacle defined as avoidable point (AP) for each obstacle, AP =
[ap1 ap2 ap3 ap4]. In this case, the path wp0–wp1 intercepts the fences across obstacle O1
shown by the red ‘x’. Hence, there are at least two avoidable paths available (shown by
the broken lines) in the forms of wp0–O1(ap3)–O1(ap4)–wp1 and wp0–O1(ap1)–O1(ap2)–wp1.
The selection criteria are based on the shortest distance from wp0 to wp1. In this example,
the line wp0–O1(ap3)–O1(ap4)–wp1 is the shortest available, and it is therefore selected as the
avoidable path.

The algorithm computes the path and obstacles in every route iteration and compares
the shortest route. Based on this concept, we formulate a method of detection using two
diagonal perpendicular lines that cross the centre point of an obstacle. Then, we further
split the two lines into four lines from the centre of the obstacles to every corner of the
square defined as an avoidable point, respectively. These APs expand from the obstacle
point via a safe perimeter defined as p, where p is the horizontal and vertical distance from
the obstacle’s centre coordinate. For instance, if the path intersects with On (f3), On (ap3) will
be the avoiding waypoint. Using this method, whenever a path intercepts any of the four
diagonal lines, the algorithm can quickly identify the respective APs as the avoidable way-
point, as shown in Figure 3.

The algorithm takes the waypoints and obstacle centre points as inputs. From the
coordinates, we create a square region from an obstacle point based on the safe distance
around the obstacle as the value of p. Then, four diagonal points are created for each ob-
stacle to form a square region (shaded).

Figure 2. Avoidance path between two waypoints across parallel obstacles.

Two obstacles, namely O1 and O2, are positioned between the two waypoints; however,
O2 does not hinder the path. The proposed detection method utilizes linear equations to
find the path obstacle through the interception points between obstacle perimeters and
path lines. Any obstacle fences intercepted along the wp0–wp1 lines will be considered
as obstacles and need avoiding. The un-avoidable path is shown as a straight, solid line,
and the possible avoidable paths are represented by the broken lines. In this scenario, the
avoiding strategy will have at least two different avoidance routes around the obstacle
O1: through the edges of the obstacle defined as avoidable point (AP) for each obstacle,
AP = [ap1 ap2 ap3 ap4]. In this case, the path wp0–wp1 intercepts the fences across obstacle
O1 shown by the red ‘x’. Hence, there are at least two avoidable paths available (shown by
the broken lines) in the forms of wp0–O1(ap3)–O1(ap4)–wp1 and wp0–O1(ap1)–O1(ap2)–wp1.
The selection criteria are based on the shortest distance from wp0 to wp1. In this example,
the line wp0–O1(ap3)–O1(ap4)–wp1 is the shortest available, and it is therefore selected as the
avoidable path.

The algorithm computes the path and obstacles in every route iteration and compares
the shortest route. Based on this concept, we formulate a method of detection using two
diagonal perpendicular lines that cross the centre point of an obstacle. Then, we further
split the two lines into four lines from the centre of the obstacles to every corner of the
square defined as an avoidable point, respectively. These APs expand from the obstacle
point via a safe perimeter defined as p, where p is the horizontal and vertical distance from
the obstacle’s centre coordinate. For instance, if the path intersects with On (f 3), On (ap3)
will be the avoiding waypoint. Using this method, whenever a path intercepts any of the
four diagonal lines, the algorithm can quickly identify the respective APs as the avoidable
waypoint, as shown in Figure 3.

The algorithm takes the waypoints and obstacle centre points as inputs. From the
coordinates, we create a square region from an obstacle point based on the safe distance
around the obstacle as the value of p. Then, four diagonal points are created for each
obstacle to form a square region (shaded).

Given the obstacle coordinate, On = (a, b), the safe flying perimeter around the obstacle
centre point is p.

Using a general two-point-form linear equation, a line connecting (x1, y1) and (x2, y2) is

y− y1 =
(y2 − y1)

(x2 − x1)
(x− x1) (1)

The linear distance between two waypoints is given as:

q =
[
(x2 − x1)

2 + (y2 − y1)
2
]1/2

(2)

Drones 2023, 7, 678 6 of 14

For formulation purposes (refer to Figure 3), a flight path between two coordinate
waypoints, wpn (c, d) and wpn+1 (k, l), can be formulated as:

fpath =
(l − d)
(k− c)

[(x− c) + d] ; subject to {c ≤ x ≤ k} (3)

Using the same concepts for every coordinate of the obstacles, four linear equations
can be formulated between the obstacle’s centre point, On (a, b), and four corresponding
AP = {ap1, ap2, ap3, ap4}:

f1 = −x + a + b; subject to {(a− p) ≤ x ≤ a} (4)

f2 = x− a + b; subject to {a ≤ x ≤ (a + p)} (5)

f3 = x− a + b; subject to {(a− p) ≤ x ≤ a} (6)

f4 = −x + a + b; subject to {a ≤ x ≤ (a + p)} (7)

The solution to avoiding obstacles in path planning must satisfy the following Lemmas.

Drones 2023, 7, x FOR PEER REVIEW 6 of 16

Figure 3. Detection and avoidance methods using linear equation interception.

Given the obstacle coordinate, On = (a, b), the safe flying perimeter around the obstacle
centre point is p.

Using a general two-point-form linear equation, a line connecting (x1, y1) and (x2, y2)
is 𝑦 − 𝑦 = (𝑦 − 𝑦)(𝑥 − 𝑥) (𝑥 − 𝑥) (1)

The linear distance between two waypoints is given as: 𝑞 = (𝑥 − 𝑥) + (𝑦 − 𝑦) / (2)

For formulation purposes (refer to Figure 3), a flight path between two coordinate
waypoints, wpn (c, d) and wpn+1 (k, l), can be formulated as:

𝑓 = (𝑙 − 𝑑)(𝑘 − 𝑐) (𝑥 − 𝑐) + 𝑑 ; 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {𝑐 ≤ 𝑥 ≤ 𝑘} (3)

Using the same concepts for every coordinate of the obstacles, four linear equations
can be formulated between the obstacle’s centre point, On (a, b), and four corresponding
AP = {ap1, ap2, ap3, ap4}: 𝑓 = −𝑥 + 𝑎 + 𝑏; 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {(𝑎 − 𝑝) ≤ 𝑥 ≤ 𝑎} (4)

𝑓 = 𝑥 − 𝑎 + 𝑏; 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {𝑎 ≤ 𝑥 ≤ (𝑎 + 𝑝)} (5)

𝑓 = 𝑥 − 𝑎 + 𝑏; 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {(𝑎 − 𝑝) ≤ 𝑥 ≤ 𝑎} (6)

𝑓 = −𝑥 + 𝑎 + 𝑏; 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {𝑎 ≤ 𝑥 ≤ (𝑎 + 𝑝)} (7)

The solution to avoiding obstacles in path planning must satisfy the following Lem-
mas.

Lemma 1. A flight path between wpn and wpn+1 is said to collide with an obstacle when there is at
least one interception between any obstacle’s lines, such that,

Figure 3. Detection and avoidance methods using linear equation interception.

Lemma 1. A flight path between wpn and wpn+1 is said to collide with an obstacle when there is at
least one interception between any obstacle’s lines, such that,

fpath = f1 ; subject to{(a− p) ≤ x ≤ a} (8)

fpath = f2 ; subject to {a ≤ x ≤ (a + p)} (9)

fpath = f3 ; subject to {(a− p) ≤ x ≤ a} (10)

fpath = f4 ; subject to {a ≤ x ≤ (a + p)} (11)

Drones 2023, 7, 678 7 of 14

Lemma 2. In every iteration, when Lemma 1 is true, the algorithm must reiterate to ensure a new
route does not cross another obstacle’s line after avoidance takes place; the line that connects the
edges of obstacles without intercepting any lines will be considered as the final avoidable path.

The solution to finding a new avoidable path (AP) when the path line collides with
any obstacle lines is given below

AP = ∑r=n
r=1 wpr fpath ∑z=n

z=1 Oz(f1, f2, f3, f5) (12)

It is subject to the limit defined in (4)–(7) above.
The pseudo-code to solve the above equations is presented in Algorithm 1.

Algorithm 1: QuickNav algorithm pseudo code

Initialize

input obstacle coordinate, 0n (a, b), where n = 1,2,3. . .
input safe flying perimeter p,
input waypoints wpn (c, d), where n = 1,2,3. . .
define starting waypoint = [wp1]
define destination waypoint = [wp2]
define starting path = [fpath] (between starting waypoint and destination waypoint)
formulate four functions for every obstacles, On { f 1, f 2, f 3, f 4 }
define current path = starting path
define current waypoint = starting waypoint

Main

while collision detected! Check
if <current path intercepts f 1 >

update {next waypoint candidate} = ap1
else if <current path intercepts f 2 >

update {next waypoint candidate} = ap2
else if <current path intercepts f 3 >

update {next waypoint candidate} = ap3
else if <current path intercepts f 4 >

update {next waypoint candidate} = ap4
break;

find the nearest distance between {next waypoint candidate} and
[current waypoint]
update [nearest {candidate next waypoint}] = [current waypoint]

end if

while no collision detected! do
update [current waypoint] = [destination waypoint] //move to the next path
update [destination waypoint] = destination waypoint ++
update avoiding waypoint = {starting waypoint, . . . end waypoints}

end

There could be situations when avoiding one obstacle might cause the avoidance
line to intercept with another obstacle. In this situation, the algorithm will recalculate in
subsequence iterations until no interception occurs for every waypoint. The algorithm
checks the current path line against the obstacle’s lines within the square region of two
waypoints, e.g., wp1 and wp2, or wp2 and wp3, as illustrated in Figure 4. Initially, the path
that connects wp1 and wp2 collides with the O1(f 3) line. Since the path intercepts O1(f 3),
a new destination point is assigned, which is O1(ap3). So, a new path is created between
wp1 and O1(ap3). Then, the path from O1(ap3) and wp2 collides with the line O1(f 4); hence,

Drones 2023, 7, 678 8 of 14

O1(ap4) becomes a new avoidable point before it moves to wp2. In the same way, from wp2
to wp3, it collides with the O2(f 2) line, and O2(ap2) becomes its avoidable point. Then, from
O2(ap2) to wp3, it collides with O3(f 3) so that the last avoidable point before it reaches wp3 is
O3(ap3). Therefore, the final avoidable path is the path that connects wp1–O1(ap3)–O1(ap4)–
wp2–O2(ap2)–O3(ap3)–wp3, as shown by the thick green line in Figure 4.

Drones 2023, 7, x FOR PEER REVIEW 9 of 16

connects wp1 and wp2 collides with the O1(f3) line. Since the path intercepts O1(f3), a new
destination point is assigned, which is O1(ap3). So, a new path is created between wp1 and
O1(ap3). Then, the path from O1(ap3) and wp2 collides with the line O1(f4); hence, O1(ap4)
becomes a new avoidable point before it moves to wp2. In the same way, from wp2 to wp3,
it collides with the O2(f2) line, and O2(ap2) becomes its avoidable point. Then, from O2(ap2)
to wp3, it collides with O3(f3) so that the last avoidable point before it reaches wp3 is O3(ap3).
Therefore, the final avoidable path is the path that connects wp1–O1(ap3)–O1(ap4)–wp2–
O2(ap2)–O3(ap3)–wp3, as shown by the thick green line in Figure 4.

Figure 4. An example of how the algorithm solves multi-obstacle problems.

The process continues until all the paths on every waypoint are free from intercep-
tions with the obstacle lines. Once the iteration ends, the successful avoidable path is plot-
ted for visualization. In the next chapter, we will discuss the performance of the algorithm
in terms of distance minimization and compare it against the brute force method. In ad-
dition, we compute the distance as compared to those of the alternate paths. In this study,
we define p = 1 unit; hence, the distance of an obstacle point to the horizontal and vertical
fences is 1 unit, respectively.

3. Results and Discussion
The QuickNav algorithm was verified for up to 44 obstacles using an arbitrary num-

ber of waypoints considered as the location points. The simulations were conducted using
MATLAB. This study includes an examination undertaken to evaluate the efficacy of our
algorithm through the computation of the flight time. The approach employed in this
study was the calculation of the overall distance with our algorithm under the assumption
of a consistent velocity of 1 m per second. The assessment was conducted using the for-
mula t = d/s, where ‘t’ represents the flight time, ‘d’ represents the total distance acquired
via the algorithm, and ‘s’ represents the assumed constant speed, and the results are pre-
sented in Table 1.

Table 1. Simulation results.

Density
Number
of Way-
points

Number
of Obsta-

cles

Un-
Avoided
Distance

(m)

Brute Force
Distance

(m)

QuickNav
Distance

(m)

QuickNav
Conv.
Time

(s)

Flight Time (s)

Distance Diff
Brute Force/Quick-

Nav
(%)

Low 10 20 153 159 155 2.58 155 3.6/1.2
13 25 195 211 197 9.29 197 8.6/1.4

Medium 13 27 285 330 321 44.70 321 15.9/12.9
High 20 38 439 486 477 189.10 477 10.6/8.7

Figure 4. An example of how the algorithm solves multi-obstacle problems.

The process continues until all the paths on every waypoint are free from interceptions
with the obstacle lines. Once the iteration ends, the successful avoidable path is plotted
for visualization. In the next chapter, we will discuss the performance of the algorithm in
terms of distance minimization and compare it against the brute force method. In addition,
we compute the distance as compared to those of the alternate paths. In this study, we
define p = 1 unit; hence, the distance of an obstacle point to the horizontal and vertical
fences is 1 unit, respectively.

3. Results and Discussion

The QuickNav algorithm was verified for up to 44 obstacles using an arbitrary number
of waypoints considered as the location points. The simulations were conducted using
MATLAB. This study includes an examination undertaken to evaluate the efficacy of our
algorithm through the computation of the flight time. The approach employed in this study
was the calculation of the overall distance with our algorithm under the assumption of a
consistent velocity of 1 m per second. The assessment was conducted using the formula
t = d/s, where ‘t’ represents the flight time, ‘d’ represents the total distance acquired via
the algorithm, and ‘s’ represents the assumed constant speed, and the results are presented
in Table 1.

Table 1. Simulation results.

Density Number of
Waypoints

Number of
Obstacles

Un-Avoided
Distance

(m)

Brute Force
Distance

(m)

QuickNav
Distance

(m)

QuickNav
Conv. Time

(s)

Flight Time
(s)

Distance Diff
Brute Force/
QuickNav

(%)

Low
10 20 153 159 155 2.58 155 3.6/1.2
13 25 195 211 197 9.29 197 8.6/1.4

Medium 13 27 285 330 321 44.70 321 15.9/12.9

High 20 38 439 486 477 189.10 477 10.6/8.7
25 44 405 445 414 90.50 414 9.9/2.1

The density levels are sorted into low, medium, and high depending on the number of
waypoints and obstacles (Table 1). The waypoint numbers are considered as the predefined
optimized route. QuickNav took 2.58 s to compute a new route for 10 waypoints in the
presence of nine detected obstacles, considering a flying time of 155 s (Figure 5). The total

Drones 2023, 7, 678 9 of 14

distance in the absence of obstacles was 153 m, which increased to 155 m for the new route
planned using QuickNav to avoid the obstacles.

Drones 2023, 7, x FOR PEER REVIEW 10 of 16

25 44 405 445 414 90.50 414 9.9/2.1

The density levels are sorted into low, medium, and high depending on the number
of waypoints and obstacles (Table 1). The waypoint numbers are considered as the prede-
fined optimized route. QuickNav took 2.58 s to compute a new route for 10 waypoints in
the presence of nine detected obstacles, considering a flying time of 155 s (Figure 5). The
total distance in the absence of obstacles was 153 m, which increased to 155 m for the new
route planned using QuickNav to avoid the obstacles.

When the number of waypoints was increased gradually to 13, the time to compute
the new route increased from 2.58 s to 9.29 s, and the total distance changed from 195 m
to 197 m (Figure 6). The overall duration of the flight was observed to be 197 s. When the
scenario or the number of waypoints was increased and the obstacles overlapped, the total
distance increased from 285 m to 321 m for a medium-density environment.

The dimensions of the box formed are larger in the case of overlapping obstacles than
those for a single obstacle to ensure that the box covers the area occupied by both the
obstacles. The time to compute the new route in the medium-density environment in the
presence of 17 detected obstacles was 44.70 s, which is considerably longer than that for
the low-density environment (Figure 7). Additionally, the total duration of the flight was
321 s. Similarly, as the number of waypoints and obstacle numbers were further increased
to 20, the time to compute the route which altogether avoided any obstacle increased to
189.10 s, and the final distance increased from 439 m to 477 m (Figure 8). At the same time,
this undertaking involved a total duration of flight amounting to 477 s. In another high-
density environment consisted of 25 location points, with 44 obstacles and detected 18
obstacles, it took 90.50 s to compute the total distance (Figure 9). Simultaneously, the total
duration of the flight was 414 s. The time required in this case is less than that of the case
with 20 obstacles, as the distance is shorter compared to that scenario.

(a) (b)

Figure 5. (a) Obstacle detection for a low-density network with 1 obstacle in a single path. (b) Ob-
stacle avoidance for a low-density network with 1 obstacle in a single path.
Figure 5. (a) Obstacle detection for a low-density network with 1 obstacle in a single path. (b) Obstacle
avoidance for a low-density network with 1 obstacle in a single path.

When the number of waypoints was increased gradually to 13, the time to compute
the new route increased from 2.58 s to 9.29 s, and the total distance changed from 195 m
to 197 m (Figure 6). The overall duration of the flight was observed to be 197 s. When the
scenario or the number of waypoints was increased and the obstacles overlapped, the total
distance increased from 285 m to 321 m for a medium-density environment.

Drones 2023, 7, x FOR PEER REVIEW 11 of 16

(a) (b)

Figure 6. (a) Obstacle detection for a low-density network with 2 obstacles in a single path. (b) Ob-
stacle avoidance for a low-density network with 2 obstacles in a single path.

(a) (b)

Figure 6. (a) Obstacle detection for a low-density network with 2 obstacles in a single path. (b) Obstacle
avoidance for a low-density network with 2 obstacles in a single path.

The dimensions of the box formed are larger in the case of overlapping obstacles than
those for a single obstacle to ensure that the box covers the area occupied by both the
obstacles. The time to compute the new route in the medium-density environment in the
presence of 17 detected obstacles was 44.70 s, which is considerably longer than that for the
low-density environment (Figure 7). Additionally, the total duration of the flight was 321 s.
Similarly, as the number of waypoints and obstacle numbers were further increased to 20,

Drones 2023, 7, 678 10 of 14

the time to compute the route which altogether avoided any obstacle increased to 189.10 s,
and the final distance increased from 439 m to 477 m (Figure 8). At the same time, this
undertaking involved a total duration of flight amounting to 477 s. In another high-density
environment consisted of 25 location points, with 44 obstacles and detected 18 obstacles,
it took 90.50 s to compute the total distance (Figure 9). Simultaneously, the total duration
of the flight was 414 s. The time required in this case is less than that of the case with
20 obstacles, as the distance is shorter compared to that scenario.

Drones 2023, 7, x FOR PEER REVIEW 11 of 16

(a) (b)

Figure 6. (a) Obstacle detection for a low-density network with 2 obstacles in a single path. (b) Ob-
stacle avoidance for a low-density network with 2 obstacles in a single path.

(a) (b)

Drones 2023, 7, x FOR PEER REVIEW 12 of 16

(c)

Figure 7. (a) Obstacle detection for medium-density network with maximum 3 obstacles in a single
path. (b) Obstacle detection for medium-density network after increasing the square box ratio. (c)
Obstacle avoidance for medium-density network with maximum 3 obstacles in a single path.

(a) (b)

Figure 8. (a) Obstacle detection for a high-density network with maximum obstacles in a single path.
(b) Obstacle avoidance for a high-density network with a maximum of 4 obstacles in a single path.

Figure 7. (a) Obstacle detection for medium-density network with maximum 3 obstacles in a single
path. (b) Obstacle detection for medium-density network after increasing the square box ratio.
(c) Obstacle avoidance for medium-density network with maximum 3 obstacles in a single path.

The algorithm computation time is dependent on the number of obstacles, the number
of waypoints, the total distance travelled, and if there are any overlapping obstacles. For the
same number of obstacles, QuickNav computed the shortest path in the shortest amount of
time feasible in the least dense environment. Furthermore, as the number of waypoints
increased, the time taken to compute the new distance increased. The second important
finding was that for a given set of waypoints, the computation time increased as the number
of obstacles arose. This indicates that the time required to compute a new route increases
according to the number of waypoints. Similarly, for a constant number of waypoints, the
time taken to compute the new optimum route increased with additional obstacles.

Drones 2023, 7, 678 11 of 14

Drones 2023, 7, x FOR PEER REVIEW 12 of 16

(c)

Figure 7. (a) Obstacle detection for medium-density network with maximum 3 obstacles in a single
path. (b) Obstacle detection for medium-density network after increasing the square box ratio. (c)
Obstacle avoidance for medium-density network with maximum 3 obstacles in a single path.

(a) (b)

Figure 8. (a) Obstacle detection for a high-density network with maximum obstacles in a single path.
(b) Obstacle avoidance for a high-density network with a maximum of 4 obstacles in a single path.

Figure 8. (a) Obstacle detection for a high-density network with maximum obstacles in a single path.
(b) Obstacle avoidance for a high-density network with a maximum of 4 obstacles in a single path.

Drones 2023, 7, x FOR PEER REVIEW 13 of 16

(a) (b)

(c)

Figure 9. (a) Obstacle detection for a high-density network with maximum 5 obstacles in a single
path. (b) Obstacle detection for the high-density network after increasing the square box ratio. (c)
Obstacle avoidance for a high-density network with a maximum of 5 obstacles in a single path.

The algorithm computation time is dependent on the number of obstacles, the num-
ber of waypoints, the total distance travelled, and if there are any overlapping obstacles.
For the same number of obstacles, QuickNav computed the shortest path in the shortest
amount of time feasible in the least dense environment. Furthermore, as the number of
waypoints increased, the time taken to compute the new distance increased. The second
important finding was that for a given set of waypoints, the computation time increased
as the number of obstacles arose. This indicates that the time required to compute a new
route increases according to the number of waypoints. Similarly, for a constant number of
waypoints, the time taken to compute the new optimum route increased with additional
obstacles.

The proposed QuickNav algorithm for obstacle avoidance in UASs/drones has sev-
eral advantages. The algorithm utilizes a geometrical methodology and a preset safe pe-
rimeter to predict the intercepting points and create avoidable waypoints, allowing quick
navigation around the obstacles. In addition, the predetermined secure boundary func-
tions as a virtual fence, guaranteeing the proactive identification and evasion of obstacles,
hence enhancing the safety measures and preventing collisions. QuickNav is able to

Figure 9. (a) Obstacle detection for a high-density network with maximum 5 obstacles in a single path.
(b) Obstacle detection for the high-density network after increasing the square box ratio. (c) Obstacle
avoidance for a high-density network with a maximum of 5 obstacles in a single path.

Drones 2023, 7, 678 12 of 14

The proposed QuickNav algorithm for obstacle avoidance in UASs/drones has several
advantages. The algorithm utilizes a geometrical methodology and a preset safe perimeter
to predict the intercepting points and create avoidable waypoints, allowing quick naviga-
tion around the obstacles. In addition, the predetermined secure boundary functions as
a virtual fence, guaranteeing the proactive identification and evasion of obstacles, hence
enhancing the safety measures and preventing collisions. QuickNav is able to generate
shorter paths compared to those of the brute force approaches. This optimizes the energy
consumption and extends the operating range of UAVs. Although the advantages are sub-
stantial, there are also some limitations of the proposed algorithm. The adaptability of the
algorithm to complex and dynamic situations with irregular barriers may be constrained by
its dependence on a geometrical approach and predetermined safe zones. Additional vali-
dation and rigorous testing across various situations are required to thoroughly determine
its performance in real-world environments. Dynamic environments, varying obstacles,
and unexpected changes may impact the performance. The absence of comprehensive
sensing techniques could limit its adaptation.

The application of QuickNav to challenging environments would require further
testing and the validation of its real-world performance and robustness. Further work could
include the incorporation of sensing technologies, such as LiDAR, radar, or computer vision,
to enhance the precision and adaptability of obstacle identification used by the algorithm.
This integration would enable the algorithm to effectively accommodate diverse obstacle
types and characteristics. The incorporation of sensors and sensor fusion methodologies
(e.g., the fusion of LiDAR, radar, and cameras) would also improve its robustness to
noise and disturbances. Real-world applications present challenges for implementing the
proposed QuickNav algorithm. Robust testing and validation would be necessary for
interactions with different UAS platforms, effective response to changing and unexpected
circumstances, and the handling of unexpected obstacles. Successful implementation
would require improving the accuracy of real-time obstacle detection and reducing the
dependency on known areas. The utilization of filtering methods, such as Kalman filters or
particle filters, could also address the issue of sensor noise. The algorithm’s navigational
efficacy could be further improved by using predictive models for predicting the motion of
obstacles and the impact of uncertainty.

4. Conclusions

Our QuickNav algorithm successfully generates a series of avoiding waypoints within
specified time constraints. The amount of time is proportional to the problem’s complexity.
QuickNav can produce a shorter distance in a faster timeframe when compared to that of
the brute force method, demonstrating that QuickNav can solve difficult obstacle avoidance
problems in a fraction of the time and distance compared to those of the more traditional
methods. The QuickNav algorithm may have a significant impact on the future of UAS
technology. QuickNav can be used to advance and automate the future of aerial operations
by increasing its safety and facilitating more complex missions for UAVs in surveillance,
search and rescue, and delivery services.

Future work could include the further testing of QuickNav’s performance in a range
of simulated and real-world scenarios to evaluate the resilience and adaptability of the
algorithm. QuickNav’s ability to learn and adapt to new obstacles or shifting surroundings
could be improved via the addition of machine learning techniques. Machine learning could
improve the algorithm’s decision making based on real-time data. The real-time fusion of
multiple sensors could improve its environmental awareness and reduce its reliance on
pre-defined safe perimeters. Reliable deployment in varied operating situations would
require real-world testing and the validation of the algorithm in complex and unexpected
circumstances. Collaborative swarm navigation using QuickNav-equipped UAVs could
enable autonomous aerial missions and could improve UASs’ safety and efficiency in
difficult conditions.

Drones 2023, 7, 678 13 of 14

Author Contributions: Conceptualization, D.D. and A.F.H.; methodology, D.D. and A.F.H.; software,
D.D.; validation, F.G., F.V.A. and M.I.R.; formal analysis, F.G.; investigation, F.V.A.; resources, A.F.H.;
data curation, D.D.; writing—original draft preparation, D.D.; writing—review and editing, F.G.,
F.V.A. and A.F.H.; visualization, D.D.; supervision, A.F.H. and F.G.; project administration, A.F.H.;
funding acquisition, F.G. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the RUI grant (1001/PAERO/8014162) and partially funded
by the RUI Khas Grant (1001/PMEKANIK/8014032).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors acknowledge continued support from the School of Aerospace
Engineering, Universiti Sains Malaysia (USM), and Queensland University of Technology (QUT)
through the Centre for Robotics. The authors would also like to gratefully thank the School of
Aerospace Engineering USM and School of Mechanical Engineering USM for the collection and
processing of MATLAB datasets that were used as a ground reference for the simulated environment.
The authors extend their sincere appreciation to Scarlett Raine for her valuable help in conducting
the English language review.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhao, W.; Chu, H.; Zhang, M.; Sun, T.; Guo, L. Flocking control of fixed-wing UAVs with cooperative obstacle avoidance capability.

IEEE Access 2019, 7, 17798–17808. [CrossRef]
2. Bashir, N.; Boudjit, S.; Dauphin, G.; Zeadally, S. An obstacle avoidance approach for UAV path planning. Simul. Model. Pract.

Theory 2023, 129, 102815. [CrossRef]
3. Debnath, D.; Hawary, A. Adapting travelling salesmen problem for real-time UAS path planning using genetic algorithm. In

Intelligent Manufacturing and Mechatronics: Proceedings of SympoSIMM 2020; Springer: Perlis, Malaysia, 2021; pp. 151–163.
4. Tu, G.-T.; Juang, J.-G. UAV Path Planning and Obstacle Avoidance Based on Reinforcement Learning in 3D Environments.

Actuators 2023, 12, 57. [CrossRef]
5. Lin, Z.; Castano, L.; Mortimer, E.; Xu, H. Fast 3D collision avoidance algorithm for fixed wing UAS. J. Intell. Robot. Syst. 2020, 97,

577–604. [CrossRef]
6. Yu, Y.; Tingting, W.; Long, C.; Weiwei, Z. Stereo vision based obstacle avoidance strategy for quadcopter UAV. In Proceedings of

the 2018 Chinese Control and Decision Conference (CCDC), Shenyang, China, 9–11 June 2018; pp. 490–494.
7. Du, H.; Wang, Z.; Zhang, X. EF-TTOA: Development of a UAV Path Planner and Obstacle Avoidance Control Framework for

Static and Moving Obstacles. Drones 2023, 7, 359. [CrossRef]
8. Mittal, P.; Singh, R.; Sharma, A. Deep learning-based object detection in low-altitude UAV datasets: A survey. Image Vis. Comput.

2020, 104, 104046. [CrossRef]
9. Stulgis, A.; Ambroziak, L.; Kondratiuk, M. Obstacle detection and avoidance system for unmanned multirotors. In Proceedings

of the 2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR), Miedzyzdroje, Poland,
27–30 August 2018; pp. 455–460.

10. Lee, M.H.; Moon, J. Deep reinforcement learning-based model-free path planning and collision avoidance for UAVs: A soft
actor–critic with hindsight experience replay approach. ICT Express 2023, 9, 403–408. [CrossRef]

11. Sandino, J.; Maire, F.; Caccetta, P.; Sanderson, C.; Gonzalez, F. Drone-based autonomous motion planning system for outdoor
environments under object detection uncertainty. Remote Sens. 2021, 13, 4481. [CrossRef]

12. Komol, M.M.R.; Elhenawy, M.; Masoud, M.; Rakotonirainy, A.; Glaser, S.; Wood, M.; Alderson, D. Deep RNN Based Prediction of
Driver’s Intended Movements at Intersection Using Cooperative Awareness Messages. IEEE Trans. Intell. Transp. Syst. 2023, 24,
6902–6921. [CrossRef]

13. Hawary, A.; Razak, N. Real-time Collision Avoidance and Path Optimizer for Semi-autonomous UAVs. IOP Conf. Ser. Mater. Sci.
Eng. 2018, 370, 012043. [CrossRef]

14. Al-Kaff, A.; García, F.; Martín, D.; De La Escalera, A.; Armingol, J.M. Obstacle detection and avoidance system based on monocular
camera and size expansion algorithm for UAVs. Sensors 2017, 17, 1061. [CrossRef]

15. Zhang, J.; Yan, J.; Zhang, P.; Kong, X. Collision avoidance in fixed-wing UAV formation flight based on a consensus control
algorithm. IEEE Access 2018, 6, 43672–43682. [CrossRef]

16. Pasha, J.; Elmi, Z.; Purkayastha, S.; Fathollahi-Fard, A.M.; Ge, Y.-E.; Lau, Y.-Y.; Dulebenets, M.A. The drone scheduling problem:
A systematic state-of-the-art review. IEEE Trans. Intell. Transp. Syst. 2022, 23, 14224–14247. [CrossRef]

17. Ahmadian, N.; Lim, G.J.; Torabbeigi, M.; Kim, S.J. Collision-free multi-UAV flight scheduling for power network damage
assessment. In Proceedings of the 2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA,
11–14 June 2019; pp. 794–798.

https://doi.org/10.1109/ACCESS.2019.2895643
https://doi.org/10.1016/j.simpat.2023.102815
https://doi.org/10.3390/act12020057
https://doi.org/10.1007/s10846-019-01037-7
https://doi.org/10.3390/drones7060359
https://doi.org/10.1016/j.imavis.2020.104046
https://doi.org/10.1016/j.icte.2022.06.004
https://doi.org/10.3390/rs13214481
https://doi.org/10.1109/TITS.2023.3254905
https://doi.org/10.1088/1757-899X/370/1/012043
https://doi.org/10.3390/s17051061
https://doi.org/10.1109/ACCESS.2018.2864169
https://doi.org/10.1109/TITS.2022.3155072

Drones 2023, 7, 678 14 of 14

18. Ramli, M.F.B.; Legowo, A.; Shamsudin, S.S. Object detection technique for small unmanned aerial vehicle. IOP Conf. Ser. Mater.
Sci. Eng. 2017, 260, 012040. [CrossRef]

19. Khan, M.; Hassan, S.; Ahmed, S.I.; Iqbal, J. Stereovision-based real-time obstacle detection scheme for unmanned ground vehicle
with steering wheel drive mechanism. In Proceedings of the 2017 International Conference on Communication, Computing and
Digital Systems (C-CODE), Islamabad, Pakistan, 8–9 March 2017; pp. 380–385.

20. Zheng, L.; Zhang, P.; Tan, J.; Li, F. The obstacle detection method of uav based on 2D lidar. IEEE Access 2019, 7, 163437–163448.
[CrossRef]

21. Bareiss, D.; Bourne, J.R.; Leang, K.K. On-board model-based automatic collision avoidance: Application in remotely-piloted
unmanned aerial vehicles. Auton. Robot. 2017, 41, 1539–1554. [CrossRef]

22. Wan, Y.; Tang, J.; Lao, S. Research on the collision avoidance algorithm for fixed-wing UAVs based on maneuver coordination and
planned trajectories prediction. Appl. Sci. 2019, 9, 798. [CrossRef]

23. Krishnan, P.; Manimala, K. Implementation of optimized dynamic trajectory modification algorithm to avoid obstacles for secure
navigation of UAV. Appl. Soft Comput. 2020, 90, 106168. [CrossRef]

24. Patle, B.; Parhi, D.; Jagadeesh, A.; Kashyap, S.K. Matrix-Binary Codes based Genetic Algorithm for path planning of mobile robot.
Comput. Electr. Eng. 2018, 67, 708–728. [CrossRef]

25. Patle, B.; Pandey, A.; Jagadeesh, A.; Parhi, D.R. Path planning in uncertain environment by using firefly algorithm. Def. Technol.
2018, 14, 691–701. [CrossRef]

26. Wu, P.; Xie, S.; Liu, H.; Li, M.; Li, H.; Peng, Y.; Li, X.; Luo, J. Autonomous obstacle avoidance of an unmanned surface vehicle
based on cooperative manoeuvring. Ind. Robot Int. J. 2017, 44, 64–74. [CrossRef]

27. Hu, X.; Chen, L.; Tang, B.; Cao, D.; He, H. Dynamic path planning for autonomous driving on various roads with avoidance of
static and moving obstacles. Mech. Syst. Signal Process. 2018, 100, 482–500. [CrossRef]

28. Fraga-Lamas, P.; Ramos, L.; Mondéjar-Guerra, V.; Fernández-Caramés, T.M. A review on IoT deep learning UAV systems for
autonomous obstacle detection and collision avoidance. Remote Sens. 2019, 11, 2144. [CrossRef]

29. Dhulkefl, E.; Durdu, A.; Terzioğlu, H. Dijkstra algorithm using UAV path planning. Konya J. Eng. Sci. 2020, 8, 92–105. [CrossRef]
30. Wei, K.; Ren, B. A method on dynamic path planning for robotic manipulator autonomous obstacle avoidance based on an

improved RRT algorithm. Sensors 2018, 18, 571. [CrossRef]
31. Huang, H.; Savkin, A.V. Surveillance of remote targets by UAVs. In Proceedings of the 2021 Australian & New Zealand Control

Conference (ANZCC), Gold Coast, Australia, 25–26 November 2021; pp. 222–225.
32. Cekmez, U.; Ozsiginan, M.; Sahingoz, O.K. A UAV path planning with parallel ACO algorithm on CUDA platform. In Proceedings

of the 2014 International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, 27–30 May 2014; pp. 347–354.
33. Hanna, S.; Yan, H.; Cabric, D. Distributed UAV placement optimization for cooperative line-of-sight MIMO communications. In

Proceedings of the ICASSP 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton,
UK, 12–17 May 2019; pp. 4619–4623.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1088/1757-899X/260/1/012040
https://doi.org/10.1109/ACCESS.2019.2952173
https://doi.org/10.1007/s10514-017-9614-4
https://doi.org/10.3390/app9040798
https://doi.org/10.1016/j.asoc.2020.106168
https://doi.org/10.1016/j.compeleceng.2017.12.011
https://doi.org/10.1016/j.dt.2018.06.004
https://doi.org/10.1108/IR-04-2016-0127
https://doi.org/10.1016/j.ymssp.2017.07.019
https://doi.org/10.3390/rs11182144
https://doi.org/10.36306/konjes.822225
https://doi.org/10.3390/s18020571

	Introduction
	Materials and Methods
	Case Studies
	QuickNav Approach and Algorithm

	Results and Discussion
	Conclusions
	References

