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Abstract: Unoccupied Aerial Vehicles (UAVs) are a widely applied tool used to monitor shallow
water habitats. A recurrent issue when conducting UAV-based monitoring of submerged habitats is
the collection of ground-truthing data needed as training and validation samples for the classification
of aerial imagery, as well as for the identification of ecologically relevant information such as the
vegetation depth limit. To address these limitations, a payload system was developed to collect
subsurface data in the form of videos and depth measurements. In a 7 ha large study area, 136 point
observations were collected and subsequently used to (1) train and validate the object-based clas-
sification of aerial imagery, (2) create a class distribution map based on the interpolation of point
observations, (3) identify additional ecological relevant information and (4) create a bathymetry map
of the study area. The classification based on ground-truthing samples achieved an overall accuracy
of 98% and agreed to 84% with the class distribution map based on point interpolation. Additional
ecologically relevant information, such as the vegetation depth limit, was recorded, and a bathymetry
map of the study site was created. The findings of this study show that UAV-based shallow-water
monitoring can be improved by applying the proposed tool.

Keywords: unoccupied aerial vehicles; UAV; drones; ground-truthing; object-based image analysis;
photogrammetry; seagrasses; coastal zone mapping; shallow bathymetry; benthic ecology; Limfjorden

1. Introduction
1.1. UAV-Based Shallow-Water Monitoring

Unoccupied Aerial Vehicles (UAVs) have become a widely applied tool in the field of
spatial ecology [1,2], including the mapping and monitoring of shallow-water habitats [3–9].
Their ability to collect aerial imagery with a high spatial and temporal resolution over
relatively large areas in a cost- and time-efficient way has allowed researchers to study
ecosystems on new spatial scales by bridging the gap between traditional satellite and
plane-based remote sensing and in-water techniques, including diver and vessel-based
surveys [10]. Especially, lightweight multirotor platforms have gained popularity among
researchers due to their low acquisition cost, vertical take-off and landing capability, easy
handling, flexible payload arrangements and their ability to hover in a fixed position
over a point of interest. Examples of research conducted in shallow-water habitats using
UAVs include mapping and monitoring coral reefs [11–13], submerged vegetation in
marine [3,4,14–16] and freshwater [17–20] environments, as well as of submerged habitats
as a whole [21–23].

1.2. Limitations of UAV-Based Shallow-Water Monitoring

Despite its popularity, researchers still face a number of limitations when conduct-
ing UAV-based monitoring of shallow-water habitats. One example is the collection of
high-resolution ground-truthing data needed as training and validation samples for the
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classification of the obtained aerial imagery. Low-altitude images taken by a conventional
UAV-mounted camera are occasionally of sufficient quality to be used for ground-truthing
purposes, given the right environmental conditions and favorable properties of the study
area [3]. In most areas, however, this method is limited to areas of a maximum depth of
a few decimeters, while at the same time being very weather dependent, as the spectral
signal reflecting from benthic substrates quickly gets absorbed or scattered with increasing
depth, low visibilities or wind-induced movements at the water surface, not allowing for a
clear determination of present species or habitats from low-altitude imagery [5,24,25]. In
most cases, it is necessary to apply traditional in-water ground-truthing methods involving
divers, remotely operated vehicles (ROVs) or vessel-based drop-down camera systems
to obtain adequate training and validation samples [26]. Unoccupied Surface Vehicles
(USVs) have recently been used for the monitoring of shallow-water habitats, including
seagrasses, due to their capacity to collect georeferenced underwater imagery [27]. As the
camera of a USV, however, sits right below the water surface, class discrimination becomes
more difficult with increasing water depth, especially in turbid waters. In general, in-water
methods labor, cost and time intensive, often lack spatial accuracy or spatial extent, and are
limited to areas that are accessible by boat or by divers. These limitations often result in a
shortage of ground-truthing samples used in studies exploring the potential of UAV-based
shallow-water monitoring [15,16,18], sometimes with samples being exclusively obtained
through knowledge-based visual interpretation and manual on-screen selection using the
UAV-derived high-altitude imagery itself [12,20].

Furthermore, environmental conditions and study site-specific properties often do
not allow us to obtain imagery that enables a classification down to species level or to
record additional ecologically relevant information such as density, health status or depth
limit of submerged vegetation, which are important ecological indicators and therefore a
central target in many shallow-water monitoring campaigns [28–30]. Optically deep waters
and unfavorable environmental conditions can furthermore weaken or disturb the spectral
signal to such an extent that it becomes impossible to perform area-based classifications
of submerged habitats due to low reflection signals and resulting issues with aligning the
obtained imagery to a georeferenced orthomosaic covering the entire study site.

1.3. Aim of the Study

Inspired by several studies experimenting with UAV-based subsurface data collection
capable payload systems [31–39], this study aims to address the mentioned limitations of
UAV-based shallow-water monitoring by applying a low-tech ground-truthing payload
device for subsurface data collection in the form of underwater videos and depth measure-
ments. The potential of the developed payload-system to (1) collect training and validation
data that can be used for area-based classification of submerged habitats, (2) collect data
that helps identify additional ecologically relevant information such as the vegetation
depth limit, (3) collect data that can be used for the creation of a class distribution map,
based solely on the interpolation of point observations, as well as to (4) collect data that can
be used to create a high resolution bathymetry map of the study area essentially adding
valuable information to the survey [40].

2. System Design

The UAV platform used in this study was a consumer-grade, low-weight quadcopter
of the type DJI® Phantom 4 RTK. Moreover, the customized payload system consisted
of a payload mount, an emergency release mechanism, a nylon string, an underwater
camera (with depth sensor), as well as two buoys and a counterweight. The payload
mount was 3D printed using PETG carbon fiber, designed for quick mounting in the field
and compatibility with any DJI® Phantom model. An STL file with the model of the
payload mount is made available in the Supplementary Materials. The payload mount
vehicle was integrated into the emergency release mechanism, which consisted of a Li-Po
battery (2S 7.4 V, 220 mAh, E-flite, Horizon Hobby, LLC, Champaign, IL, USA), a receiver
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(4.0–8.4 V, 2.4 GHz, FS-iA6B, Shenzhen Flysky Technology Co., Ltd., Shenzhen, China)
and a servoless payload release system (4.8–8.5 V, EFLA405, E-flite, Horizon Hobby, LLC,
USA). The voltage of the receiver was regulated with a battery eliminator circuit (BAC).
The release mechanism could be activated by the UAV pilot using a transmitter (2.4 GHz,
FS-i6X, Shenzhen Flysky Technology Co., Ltd., China) with an operational range of 1500 m,
in case the camera-sensor cluster would get entangled during subsurface data collection. A
marker buoy was attached to the system for retrieval. The payload mount and emergency
release mechanism are illustrated in Figure 1. Figure 2 shows the single components of the
emergency release mechanism.
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Figure 2. Close up image of the release system with emergency release mechanism, power supply
and receiver. View from above (a) and view from behind (b).

The payload mount and release system did not interfere with the UAV on-board
camera, so both systems could operate at the same time. The underwater camera used in
this set up was a Paralenz® Vaquita (12 MP, 4 K at 60 fps, 1080 p at 240 fps, FOV (1/1.8′′)
D108◦ H90◦ V59◦ lens, 18 mm focal length). This underwater camera performed automatic
depth color correction and was equipped with a temperature and pressure logger. An auto-
record function allowed for the automatic start of recordings at a pre-set depth, avoiding
unnecessary recording time during flights between the sample points.

Figure 3 illustrates the set-up with UAV and payload system. A nylon string of 10 m
in length was used to attach the underwater camera to the payload mount system via the
emergency release mechanism. The lowering of the camera into the water was controlled by
adjusting the UAV flight altitude. A fixed distance of 1 m from the camera to the sea floor
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during data collection was controlled by a floater and counterweight system consisting
of a floater attached to the camera and a counterweight attached to the lower end of the
line. The floater and camera were fixed to the line 1 m distance to the counterweight. The
floater and counterweight were calibrated against each other, so that the upward force of
the floater was slightly larger than the downward force of the camera, but not larger than
that of the camera and counterweight combined. In this way, the combined downward
force of the camera and the counterweight pulled the floater down when entering the
water. As soon as the counterweight touched the sea floor and therefore stopped pulling
downwards, the floater remained in position, as it had just enough force to pull the camera
upwards. The distance of the camera to the sea floor can be adjusted by changing the
distance between the camera and the counterweight.
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The total weight of the payload system amounted to 275 g, which reduced the practical
flight time of the UAV by 10 min, from 25 min to 15 min.

3. Experimental Procedures
3.1. Study Site

The payload system was tested in a 7-ha large study area situated along the southern
coast of Lovns Broad in Limfjorden, Denmark (56◦37′52.1′′ N 9◦13′57.6′′ E) (Figure 4).
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mark (c).

The broad is an important fishing ground for blue mussel fisheries [41] and is subject
to high nutrient loads, highly organic sediments and low light conditions. As a designated
Natura 2000 habitat, the area has been extensively monitored since 2009. Vessel-based
video transect campaigns have been conducted triennially as part of an environmental
impact assessment (EIA’s) of the blue mussel fisheries, which has created a robust record
of the broad’s benthic habitats [42]. The depth range in the study area was expected to be
between 0 and 4 m. Video transects conducted at each 1-m depth interval in the study area
in May 2022 recorded dense beds of the seagrass species Zostera marina on the sandy bottom
at a depth of 1 m. A mixed environment of Z. marina patches, mussel patches (Mytilus
edulis) and sand was recorded at 2 m depth, while only a few single Z. marina shoots were
recorded at 3 m depth, which were sparsely distributed between agglomerations of M.
edulis shells. At a 4 m depth, no Z. marina was recorded. Instead, dense beds of M. edulis
dominated the sea floor. Figure 5 illustrates the benthic habitats at each 1-m depth interval,
based on video recordings obtained in May 2022 as a part of an EIA for the area.

3.2. UAV Flights

Collection of underwater imagery and depth measurements using the developed
payload system was conducted on 5 April 2023 at 1:00 p.m. at a zero tide height. A total
of 136 sample points were distributed in a systematic grid over an area of 7 ha, with a
20 m distance between each point. The flight altitude was set to 15 m, leaving 5 m of
distance between the lower end of the payload system and the water surface (Figure 3).
The flight speed between sample points was set to 2.5 m/s. Once reaching a sample point,
the UAV was programmed to lower to 5 m altitude. In this way, a 5 m distance was kept
between the UAV and the water surface during data collection (Figure 3). The camera was
programmed to start recording as soon as it entered the water. The UAV hovered for 5 s at
a 5 m altitude, which allowed the underwater camera to stabilize in position at 1 m above
the seafloor and record a clear sequence of the benthic habitat. Subsequently, the UAV
returned to its flight altitude of 15 m. The ascent and descent speed over the sampling
points were set to 1 m/s. The real-time kinematic (RTK) functionality of the UAV allowed
for geotagging of the obtained videos with a spatial accuracy of ±0.02 m. The entire survey
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mission was planned, programmed and autonomously executed using the flight mission
planning software UgCS® ver. 4.7.685. Only battery changes required manual interaction.
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Figure 5. Benthic habitats at each 1 m depth interval (1–4 m), obtained from vessel-based video
recordings in May 2022.

After the subsurface data collection, an additional flight over the study area was
conducted at 100 m altitude using the same UAV but without the ground-truthing payload
system. This was done to create one georeferenced orthomosaic that could be used to test
the potential of the obtained underwater imagery when used as training and validation
data for the classification of UAV-derived imagery. Images were taken with the on-board
20 million effective pixels 1-inch CMOS sensor-equipped RGB camera, which has an 84◦

field of view, 8.8 mm/24 mm focal length, and f. 2.8–11 aperture. A total of 88 single
images with dimensions of 150 × 100 m and a Ground Sample Distance (GSD) of 27.41 mm
were obtained during the flight. All images were taken with a nadir viewing angle (90◦).
The image front and side overlaps were set to 75% and flight speed to 3.5 m/s. One
pre-programmed flight path was used, which was planned and executed using the flight
mission planning software UgCS® ver. 4.7.685. Figure 6 illustrates the flight routes of both
flight missions, i.e., the low altitude subsurface ground-truth data collection, as well as the
high-altitude flight for orthomosaic creation.

3.3. Data Processing

After subsurface data collection, the class labels “seagrass”, “mussels” or “sand” were
assigned to each of the obtained 136 videos, based on visual interpretation and expert
knowledge. In cases where two or more classes were present in the video, the data point
received the label of the dominant class, while the information about the occurrence of
additional classes was stored in the sublabel. Sublabels were also assigned when additional
ecologically relevant observations were made, such as the occurrence of tunicates or the
spatial co-existence of seagrass and mussels.

The location of the geotagged videos was saved as a vector file and combined with the
assigned data labels and depth measurements. The images obtained from the high-altitude
flight were stitched using the image processing software Agisoft Metashape Professional®

ver. 1.7.4.

3.4. Classification with Generated Training and Validation Data

The 136 geotagged and labeled videos were alternating and assigned to one set of
training samples (n = 68) and one set of validation samples (n = 68). The training samples
were used to train a Support Vector Machine (SVM) algorithm within an object-based
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image analysis (OBIA) framework, using the eCognition developer software ver. 10.1
on a 64-bit operating system, with Intel® Core™ i9-7900 CPU @ 3.30 GHz and 64 GB
RAM. Segmentation algorithm, scale parameter as well as hyperparameter settings of
the SVM and feature space were selected, following the OBIA workflow suggested by
Thomasberger et al. [43]. Thus, the multiresolution segmentation algorithm with a scale
parameter value of 231 was used to create the image objects. The radial basis function
(rbf) kernel was chosen for the SVM, with C and gamma values set to 1000 and 0.0001,
respectively. The selected feature space dimension consisted of seven textural gray-level
co-occurrence matrix (GLCM) features [44] (homogeneity, entropy, ang. 2nd moment,
mean, correlation, dissimilarity, standard deviation) and eight spectral features (mean red,
mean green, mean blue, maximum difference, brightness, standard deviation red, standard
deviation green, standard deviation blue).
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The validation samples were used to calculate the producer, user and overall accuracy
in a confusion error matrix by using the built-in accuracy assessment tool in the eCognition
Developer software ver. 10.1. The polygons created in the segmentation process serve
as an assessment unit, which is the most appropriate unit for the accuracy assessment of
classification using an OBIA approach [26].

3.5. Interpolation of Point Observations

The interpolation of point-specific depth measurements was performed using the
spline interpolation algorithm in ArcGIS Pro, ver. 2.9.2., with a weight value of 20 and
considering the 24 nearest input sample points. The interpolation of point-specific class
observations was likewise performed using the spline interpolation algorithm in ArcGIS
Pro, ver. 2.9.2., with a weight value of 0.1 and considering the 12 nearest input sample
points. For comparison, the output of the interpolation was compared to the output of the
classification performed using the OBIA approach described in Section 3.3 by overlaying
both maps and calculating the area of agreement and disagreement.
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4. Results and Discussion
4.1. Data Collection

All 88 images obtained from the high altitude flight (100 m) could be stitched to an
orthomosaic covering 7 ha. Subsurface data in the form of videos and depth measurements
were successfully collected with the developed payload system at all 136 preselected sample
stations. Simultaneously with the subsurface data collection, low-altitude (5 m) images
were taken with the UAV-mounted camera. A comparison of both methods is illustrated in
Figure 7 and illustrates the limitations of using low-altitude imagery for ground-validation
purposes in optically complex waters. While the targeted classes could be clearly identified
using the underwater imagery, water properties as well as disturbances at the water surface
prevented class identification using the low altitude imagery obtained during the data
collection for this study.
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Figure 7. Images of the targeted classes, mussels (a), seagrass (b) and sand (c), obtained by the UAV-
mounted camera at 5 m altitude (upper row) and by the underwater camera system (bottom row).

The total survey time of the subsurface data collection was 1 h and 30 min, divided
between 6 flights and including 15 min of time needed for battery changes. Throughout
the survey, the camera-sensor cluster never became entangled during subsurface data
collection, so the emergency release function did not need to be activated.

Of the 136 point observations, 52 were labeled as “seagrass”, 21 as “mussels” and
63 as “sand”. Figure 8 shows the orthomosaic with locations of point observations, the
distribution of labeled samples and depth measurements, as well as examples of still images
from the underwater videos. Table 1 shows the distribution of samples per class.

Table 1. Distribution of training and validation samples per class.

Seagrass Mussels Sand Total

All Samples 52 21 63 136
Training 26 11 31 68

Validation 26 10 32 68

A total of 39 of the 136 point observations received sublabels. An example of this can
be seen in Figure 8, where sand and seagrass were visually detected. A manual delineation
of the two classes in the still image was used to calculate the % cover, which resulted
in 12.5% eelgrass cover and 87.5% sand cover. Consequently, the point observation was
attributed to the class label “sand” and an additional sublabel “seagrass”.
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Figure 8. Orthomosaic with examples of still images from the obtained underwater videos (a), as
well as training and validation samples of the classes “sand” (c,e), “mussels” (b) and “seagrass” (d).

4.2. Object-Based Image Analysis with Obtained Training and Validation Samples

The SVM classifier achieved an overall accuracy (OA) of 0.985, in combination with the
collected training samples applied in an OBIA approach. The computational time required
for the classification was 37 min and 26.3 s, including image segmentation (2 min and
2.3 s), sample creation (6.1 s), classifier training (2 min and 26.5 s) and classifier application
(32 min and 51.5 s). The classified orthomosaic is shown in Figure 9. Table 2 shows the
error matrix based on the collected validation sample set.

Table 2. Error matrix based on the collected validation sample set.

Class Seagrass Mussels Sand Sum

A
cc

ur
ac

y

Seagrass 26 1 0 27
Mussels 0 31 0 31

Sand 0 0 10 10
Sum 26 32 10 68

Producer 1 0.969 1
User 0.963 1 1

Overall 0.985
KIA 0.976

The classification resulted in 3.2 ha seagrass cover, 2.7 ha sand and 1.1 ha of mussels.
Even though the number of samples that could be collected with the proposed method was
limited, the results showed that UAV-based subsurface data could support the classification
and validation process of shallow-water benthic habitats. Some visually detected misclassi-
fications were not represented in the error matrix, especially of sand being misclassified as
seagrass, which might have resulted from the relatively low number of available validation
samples. While it is recommended to compute the appropriate validation sample size
needed to create an error matrix for each project individually by using the multinomial
distribution function [45], a general “rule of thumb” suggests the collection of a minimum
of 50 samples for each map class [46]. In order to reach the suggested minimum sample
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size of 50 per class, the practitioner could add the remaining number of required samples
manually, based on expert knowledge and visual inspection of the generated orthomosaic.
This exercise was performed and repeated three times in this study, by manually adding
40 validation samples of the class “sand”, 18 samples of the class “mussels” and 24 samples
of the class “seagrass”. The resulting OAs ranged from 0.976 over 0.984 to 0.988 and there-
fore supported the OA resulting from the error matrix based on the UAV-based validation
samples only.
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4.3. Classification Based on Point Observations

On occasion, environmental conditions above and/or below the water surface did
not allow us to obtain UAV-based aerial imagery of submerged habitats of good enough
quality needed to create an orthomosaic that covers the whole study area, i.e., preventing
us from performing a classification based on UAV-derived aerial imagery. A solution
for such “worst case” scenarios was tested by interpolating the 136 georeferenced and
labeled point observations obtained with the payload device using the spline interpolation
method. The interpolation could only be performed over 5.1 ha of the total 7 ha large
study site due to the limitation of the method to the outer edges of the sampling grid.
From the 5.1 ha, 2.1 ha were classified as seagrass, 2.4 ha as sand and 0.6 ha as mussels. A
comparison of both classification methods, i.e., the interpolation of point observation and
the classification based on OBIA (Section 4.1), showed an agreement of 85.7%. Assuming
that the classification output of the OBIA is the one closest to the actual class distribution in
the study area, most misclassification of the interpolation method occurred along the class
borders and in regions with patchy class distribution when the interpolation method was
used. Figure 10 illustrates the output of the interpolation methods, as well as a comparison
of both methods.

The high agreement of 85.7% of both methods indicates that by applying the proposed
UAV-based subsurface data collection method, shallow-water benthic habitat mapping
is, at the expense of accuracy, possible even in scenarios where conditions do not allow
for area-based classification of submerged habitats using aerial imagery. This method of
interpolating UAV-based point observations could be especially useful when monitoring
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eutrophied water bodies with extended periods of low visibility or in high latitude regions,
where the weather windows for obtaining good aerial imagery are narrow.
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4.4. Interpolation of Depth Measurements

The depth measurements collected by the payload system (Figure 8) could be interpo-
lated to a detailed bathymetry map of the study area using the spline interpolation method
(Figure 11a).
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Shallow-water bathymetry is an important factor that greatly influences environmental
processes in the coastal zone and is therefore a crucial input parameter for many benthic
habitat assessments [47] and ecological models [41], which in turn are used by coastal
managers for policy making [42]. Nevertheless, detailed bathymetry maps are often not
available due to the ineffectiveness and limitation of traditional techniques, such as boat
surveys, in shallow waters. An example of this is the bathymetry data available for the
study area, which shows considerably less detail (Figure 11b).

Promising UAV-based solutions involving bathymetry inversion techniques [48] and
towed tethered sonar systems [35,39] have recently been developed to address the issue
of bathymetric data deficiency in shallow waters. While these methods can provide data
of higher accuracy compared to the interpolation of point measurements, they are less
user-friendly than the developed payload system. For instance, the necessary radiometric
resolution needed for inversion techniques requires hyperspectral imagery [49,50] or at
least multispectral imagery [48,51], which increases survey costs due to the advanced
sensors needed. By relying on the bottom reflectance of multiple bands in the visible light
spectrum, this method is also restricted to waters with sufficient transparency and known
bottom types [48–50]. Additional steps in the monitoring workflow, such as radiometric
calibration, the recording of end-member seafloor cover spectra, and issues surrounding
software availability or algorithm implementation, further complicate the survey mission
and often require advanced skills.

The UAV-based towed sonar system [35,39] is another recently developed method
used for shallow-water bathymetry mapping, which consists of a floating sonar unit that is
dragged by a UAV via a tether. While providing preliminary but promising results, relative
configurations of UAV and sonar units as well as delayed dynamics of the towed system
have to be taken into consideration by computing and incorporating the displacement into
the planning and control algorithm [35,39].

The proposed UAV-based subsurface data collection method is an alternative low-
tech solution for bathymetry mapping with an easy data collection workflow that can be
used for a multitude of survey missions such as sediment mobility studies or, when used
in combination with the obtained underwater imagery, for the detection of habitats and
species depth limits. Furthermore, the created bathymetry layer can be incorporated into
object-based image analysis as an addition to the spectral information derived from the
orthomosaic, potentially enhancing the accuracy of automatic habitat classification [52].

4.5. Ecological Detail

The potential of enhancing the UAV-derived dataset with more ecological information
than the detection of the classes (i.e., “seagrass”, mussels” and “sand”) was tested by
identifying and isolating the point observations with common sublabels. These were (1)
the occurrence of tunicates, (2) a spatial co-existence of mussels and seagrass as well as (3)
the occurrence of seagrass below 2 m depth. By isolating those point observations, specific
patterns and details could be observed, which were not possible to detect from imagery
obtained during UAV flight at 100 m altitude. These were (1) the exclusive occurrence of
tunicates within a band of approximately 50 m in width at depths between 2.3 and 2.9 m,
which aggregated around small patches of hard surfaces (mostly shells) on a sandy bottom
(Figure 12c), (2) a spatial co-existence of mussels and seagrass in the south-western region
of the study site at depths between 1.2 and 1.7 m (Figure 12d) and (3) the deepest growing
seagrass at 2.9 m (Figure 12b). The latter observation corresponded with the observations
made during the vessel-based video monitoring conducted in the study area in May 2022,
where the deepest seagrass was located at a 3 m depth [42]. Figure 12 highlights the
locations of the point observations with common sublabels.

While the sublabels chosen for this study served as examples, it was shown that the
developed payload system could be used to address tasks that go beyond the mapping
and monitoring of the most dominant habitats. For example, studies conducted to inves-
tigate seagrass health status [53], coverage [54], density [55] or species composition [56]
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in optically deep waters, as well as the ecological impact of invasive species [57], could
benefit from the proposed method by increasing the number of point observations while
decreasing the need for diver surveys and other time, labor and cost intensive in-water
monitoring methods. The ability to provide reliable information about the depth limit
of seagrasses is another feature that has the potential to increase the efficiency of many
monitoring campaigns if the proposed method of UAV-based subsurface data collection
is applied. The depth limit of seagrasses is an important indicator for water quality [28]
and subject to reoccurring monitoring, currently only conducted using diver, vessel-based
video and echo-sounding techniques [10].
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5. Limitations

The properties of the water column during the conducted field work allowed for a clear
identification of the targeted classes from the obtained underwater videos. The automatic
depth color correction of the applied underwater camera also helped to increase the contrast
in the obtained imagery. However, higher turbidity levels or low light conditions could
potentially adversely affect the quality of the data to such an extent that class discrimination
becomes difficult or even impossible. On the other hand, all underwater videos could be
used for further analysis, even though the data collection was performed in a eutrophied
water body with high nutrient loads, highly organic sediments and low light conditions,
which speaks for the method’s robustness against turbid and dark conditions. Alternatively,
the distance between the underwater camera and the substrate could be minimized or
additional light sources added to the set up.

The maximum operational depth of the developed payload system is another limita-
tion that needs to be taken into consideration. While the lengths of the nylon string with
the attached underwater camera vehicle can theoretically have any user-defined length, the
authors suggest limiting the application to depths of a maximum of 10 m due to practica-
bility reasons, which would require a nylon string length of 20 m with the proposed set up.
When data need to be collected at greater depth, a line-spool vehicle is suggested instead of
a free hanging camera vehicle.

6. Future Work

The presented payload system is a low-tech, inexpensive and easily applied lightweight
tool, developed with the aim of exploring potential areas of application in shallow-water
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monitoring campaigns. While the results of this study showed promising results for all
tested applications, some adjustments and recommendations for future work are given.

When upscaling the method, it is suggested, for example, to make use of a larger
UAV platform. The limited flight time per battery of the consumer-grade, low-weight
quadcopter used in this study required an interruption of the survey mission every 15 min,
which roughly translates to 20 sample points covered per battery. A hexacopter model,
such as the DJI® Matrice 600, not only provides longer flight times of approximately 35 min,
but also comes with a higher payload capacity. The latter would allow for the mount
of more advanced camera systems, additional loggers (e.g., water quality measurement
systems [36], temperature profiling systems [38] or water samplers [33,34,58–61]), and a
line spool, which would eliminate the need for lowering the UAV flight altitude in order to
submerge the camera-logger cluster.

A life-feed from the underwater camera to the UAV pilot would allow for adaptive
manual flight adjustment based on the observations made in real time.

Of the entire data processing workflow, labeling the obtained point observation was
the most time- and labor-intensive step. Methods of automatic classification of shallow
water habitats from unlabeled video recordings have been developed and tested, showing
promising results [62,63]. It is therefore suggested to integrate such methods into the
workflow if the proposed collection of UAV-based subsurface data is performed on a
larger scale.

On-board real-time computation and instant classification combined with direct com-
munication between the UAV and the underwater camera system could further increase the
efficiency of the survey mission by supporting an intelligent dynamic flight path adaptation
and sample point distribution based on the observations made. This would be especially
useful if the survey focuses on a specific depth or habitat type, such as a seagrass or mussel
bed. Once the underwater camera stops detecting the habitat of interest in one direction or
records a depth above or below a preset value, the flight path can automatically be adjusted
to encircle the area of interest while saving valuable survey time, increasing the amount of
class-specific point observations and reducing the amount of noise in the collected data set.
This approach of dynamic and intelligent autonomous flight navigation and data collection
has been tested in many applications [64–67] and could likewise increase the efficiency of
area-based monitoring missions by, for example, limiting the data collection to areas where
the UAV mounted sensor still receives useful information and at the same time indicating
where subsurface data collection is required.

7. Conclusions

The developed UAV-based subsurface data collection tool is a novel method in terms
of the multipurpose data it provides in a relatively labor- and cost-efficient way. An area
of 7 ha was surveyed in 1 h and 30 min. Quickly mounted in the field after an area-based
monitoring mission, the tool autonomously collected georeferenced point observations in
the form of underwater videos and depth measurements. The obtained subsurface data
was successfully used as training and validation data for the object-based classification of
aerial imagery, the creation of a class distribution map based on the interpolation of point
observations, the creation of a bathymetry map and the detection of additional potentially
relevant information such as the seagrass depth limit. The results of the study show that the
application of a low-tech tool already has great potential for adding valuable information to
shallow-water monitoring campaigns. This should encourage researchers to apply, further
develop, upscale and adapt the method to their specific needs by, for example, increasing
the platform size, adding additional loggers and incorporating intelligent vehicles capable
of real-time computation and dynamic flight path adaptation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/drones7110647/s1, model of the payload bridge (stl file format).
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