
Citation: Yan, X.; Tang, Y.; Xu, Y.;

Shi, H.; Zhu, J. Multi-Constrained

Geometric Guidance Law with a

Data-Driven Method. Drones 2023, 7,

639. https://doi.org/10.3390/

drones7100639

Academic Editor: Sanjay Sharma

Received: 14 September 2023

Revised: 8 October 2023

Accepted: 13 October 2023

Published: 18 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Multi-Constrained Geometric Guidance Law with a
Data-Driven Method
Xinghui Yan 1, Yuzhong Tang 1 , Yulei Xu 1, Heng Shi 2,* and Jihong Zhu 2

1 School of Power and Energy, Northwestern Polytechnical University, Xi’an 710129, China;
yanxh@nwpu.edu.cn (X.Y.); tangyz@mail.nwpu.edu.cn (Y.T.)

2 Department of Precision Instrument, Tsinghua University, Beijing 100084, China
* Correspondence: shiheng@tsinghua.edu.cn

Abstract: A data-driven geometric guidance method is proposed for the multi-constrained guidance
problem of variable-velocity unmanned aerial vehicles (UAVs). Firstly, a two-phase flight trajectory
based on a log-aesthetic space curve (LASC) is designed. The impact angle is satisfied by a specified
straight-line segment. The impact time is controlled by adjusting the phase switching point. Secondly,
a deep neural network is trained offline to establish the mapping relationship between the initial
conditions and desired trajectory parameters. Based on this mapping network, the desired flight
trajectory can be generated rapidly and precisely. Finally, the pure pursuit and line-of-sight (PLOS)
algorithm is employed to generate guidance commands. The numerical simulation results validate
the effectiveness and superiority of the proposed method in terms of impact time and angle control
under time-varying velocity.

Keywords: data-driven; multi-constrained guidance; impact time control; impact angle control;
time-varying velocity

1. Introduction

Classical guidance laws, such as proportional navigation, do not give enough con-
sideration to impact time and angle, which results in poor cooperative performance. For
example, an impact angle constraint should be imposed for the UAVs to approach the target
from a specified direction in some cases [1–4]. When multiple UAVs need to be gathered in
a formation, the impact time should be coordinated [5–8]. Three performance indicators,
namely miss distance, impact time, and impact angle, should be satisfied simultaneously
during cluster flight. Therefore, impact time and angle control guidance (ITACG) laws
have attracted extensive attention in both the academic and industrial worlds [9–18].

Scholars have conducted a series of studies based on different theories and methods,
including optimal control theory, sliding mode control theory, computational geometry,
and those methods based on proportional navigation. Lee et al. [9] proposed the first
ITACG law based on optimal control theory, which consists of a feedback loop and an
additional control command. In [10], a two-phase optimal ITACG law based on the virtual
target method is proposed, which is suitable for all-around control in planar formations
under admissible initial conditions and predetermined terminal constraints. The guidance
problem is described as an optimal control model with discontinuities in [11], and an
iterative guidance method is used to realize multi-constrained control. In [12], a new robust
second-order sliding mode control law was developed by incorporating backstepping
control, the line-of-sight rate shaping method, and second-order sliding mode control. Hou
et al. [13] designed two different terminal sliding surfaces based on nonsingular terminal
sliding mode control theory. This sliding mode control-based guidance law enables the UAV
to satisfy both time and angle constraints while reaching the target. Reference [14], which
combined the impact angle control guidance law based on backstepping control and the
impact time control guidance law based on proportional navigation, achieved simultaneous
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control of both impact angle and time. A new ITACG law with adjustable coefficients was
proposed in [15]. The bias proportional guidance with impact angle constraint is extended
with feedback control of impact time error. However, the UAVs’ flight trajectories under
the aforementioned guidance laws are implicit, making it difficult to accurately estimate
the time-to-go in advance. Zhang et al. [16] proposed a trajectory planning method based
on three circular arcs to control impact time and angle. An explicit two-phase flight
trajectory based on second-order Bezier curves was proposed in [17], allowing for precise
impact time and angle requirements. In [18], the geometric ITACG law was extended to
three-dimensional space using log-aesthetic space curves (LASCs). However, the offline
trajectory design methods in [16–18] cannot be computed quickly enough to achieve an
optimal solution and do not adequately consider time-varying velocity.

Besides the classical theories and methods mentioned above, data-driven methods [19–21]
have gained significant attention in the field of guidance law design in recent years. Data-
driven methods focus on the relationships between input and output data in a system
and approximate the behavior of the system without analytical modeling. After collecting
large amounts of input and output data, a data-driven model can be established using
machine learning techniques. In [22], a deep neural network (DNN) was trained to learn
the mapping relationship between flight states and distances. Based on this DNN, a
multi-constrained prediction–correction guidance algorithm was proposed. Guo et al. [23]
proposed a guidance law that combines data-driven methods and proportional navigation.
The data-driven methods were used to compensate for the impact time error of proportional
navigation guidance. Based on this, a biased proportional navigation guidance law was
designed to control the impact time. In [24], another impact time control guidance law was
designed based on proportional navigation and data-driven methods, which do not rely
on time-to-go information. Reference [25] designed a two-phase guidance law based on
data-driven methods to control both impact time and angle.

However, the aforementioned guidance laws are developed based on the assumption
of constant velocity and two-dimensional kinematics. In practical applications, the UAV’s
velocity varies with engine thrust and air drag in three dimensions. As a result, it is
challenging to control impact time and angle precisely under time-varying velocity. This
manuscript addresses the guidance problem of impact time and angle control in three
dimensions. A guidance law based on data-driven methods and computational geometry
is proposed. The main contributions of this manuscript are summarized as follows:

1. The proposed three-dimensional, multi-constrained guidance method develops a
geometric trajectory planning framework. It uses data-driven methods to solve the
trajectory parameters, taking impact time, impact angle, maximum overload, and
time-varying velocity into account.

2. Different from references [9–15], the proposed guidance method overcomes the re-
liance on accurate time-to-go estimation, which is quite difficult under time-varying
velocities. The proposed method achieves better performance in terms of impact time
and angle under time-varying velocity.

3. Compared to references [16–18], the proposed guidance law adopts data-driven
methods to solve trajectory parameters, which greatly speeds up the trajectory gener-
ation process. This improvement benefits the update of trajectories due to different
mission requirements.

The remainder of this manuscript is organized as follows: Section 2 introduces founda-
tional concepts, including the LASC and guidance model. In Section 3, a novel ITACG law
is proposed based on geometric planning and data-driven methods. Numeric simulations
and results are given in Section 4. Section 5 provides the conclusions.
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2. Preliminaries
2.1. Log-Aesthetic Space Curves

LASCs are widely applied in many fields, such as industrial design [26,27] and artistic
aesthetics [28,29]. Each LASC has a linear, logarithmic curvature graph (LCG) and a linear,
logarithmic torsion graph (LTG), as represented by Equations (1) and (2) [30].

log(ρ
ds
dρ

) = α log ρ+c1 (1)

log(µ
ds
dµ

) = β log µ+c2 (2)

where s, ρ, and µ are the curve length, radius of curvature, and radius of torsion, respec-
tively; α and β are the slopes of the segments in LCG and LTG, respectively; c1 and c2 are
constants. Setting Λ = e−c1 and Ω = e−c2 , we obtain

ds
dρ

=
ρα−1

Λ
(3)

ds
dµ

=
µβ−1

Ω
(4)

Setting ρ = 1 and µ = υ at s = 0, and integrating Equations (3) and (4), results in

ρ =

{
eΛs , if α = 0

(Λαs + 1)
1
α , otherwise

(5)

µ =

{
e(Ωs+log υ) , if β = 0

(Ωβs + υβ)
1
β , otherwise

(6)

Hence, the curvature and torsion of a curve can be represented as

κ(s) =

{
e−Λs , if α = 0

(Λαs + 1)−
1
α , otherwise

(7)

τ(s) =

{
e−(Ωs+log υ) , if β = 0

(Ωβs + υβ)
− 1

β , otherwise
(8)

Then, the LASC can be established by integrating the Frenet–Serret formula as fol-
lows [30,31]: 

dT(s)
ds

dN(s)
ds

dB(s)
ds

 =

 0 κ(s) 0
−κ(s) 0 τ(s)
0 − τ(s) 0

 T(s)
N(s)
B(s)

 (9)

where T(s), N(s), and B(s) are unit tangent vector, unit normal vector, and unit binormal
vector, respectively.

2.2. Guidance Problem Statement

To facilitate analytical analysis, the following assumptions are made [10,14,18]: (1) The
UAV and target are assumed to be mass points. (2) Compared with the UAV, the target’s
velocity is low and can be considered static. (3) Since the autopilot dynamics are much
faster than the UAV dynamics, the autopilot lag is neglected in guidance law design.

The guidance scenario in three-dimensional space is shown in Figure 1. The position
coordinates in the inertial frame of the UAV and target are I(xm, ym, zm) and T(xt, yt, zt),



Drones 2023, 7, 639 4 of 18

respectively. The inertial frame is denoted as O − X − Y − Z. The subscripts 0 and f
indicate the initial and final moments, respectively. The relative kinematic equations are:

.
xm = V cos θm cos ψm.
ym = V cos θm sin ψm.
zm = V sin θm.
θm = azm

V.
ψm =

aym
V cos θm

(10)

where V is the UAV velocity. azm and aym are the corresponding pitch and yaw acceleration.
θm and ψm represent the pitch angle and the yaw angle, respectively. R is the range between
I and T.
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Since air drag has a great influence on the UAV velocity, the drag model in [32,33] is
adopted. The velocity change in the UAV can be expressed as

.
V =

1
m
(T − 1

2
ρV2SCD − kDa2) (11)

where m, T, and S represent the mass, thrust, and reference area of the UAV, respectively.
CD is the parasite drag coefficient, and its relationship with the UAV velocity V is presented
in Figure 2 [17]. kD is the induced drag coefficient. m and T are functions of time t, and can
be represented as

T(t) =
{

Ten, t ≤ ten
0 , t > ten

(12)

m(t) =

{
m0 −

∫ t
0 µdt, t ≤ ten

m0 −m f u , t > ten
(13)

where Ten, µ, m f u, and ten are the thrust, fuel consumption rate, fuel mass, and maximum
working time of the UAV engine, respectively.

Considering the constraints of miss distance, acceleration limitation, impact time, and
angle, the design objective of the guidance law can be mathematically defined as

lim
t→t f

xm → xt, lim
t→t f

ym → yt, lim
t→t f

zm → zt

lim
t→t f

θm → θm f , lim
t→t f

ψm → ψm f√
azm2(t) + aym2(t) ≤ amax

(14)

For the sake of simplicity, the launch position of the UAV is set to the origin of the
inertial coordinate system O(0, 0, 0). The target position is placed at T(xt, 0, 0) on the X-axis.
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3. Guidance Law Design

In this section, the design concept of a two-phase trajectory is initially introduced
(Section 3.1). Then, the impact angle, impact time, and acceleration limitation are analyzed
(Section 3.2). Afterward, a trajectory generation data-driven method is proposed to satisfy
multiple constraints (Section 3.3). Lastly, a pure pursuit and line-of-sight (PLOS) tracking
algorithm is employed to generate the guidance commands (Section 3.4). Figure 3 shows
the block diagram of the guidance method.
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3.1. Trajectory Design Concept

The impact time and angle control are realized by adjusting the LASC trajectory’s
length, endpoint position, and tangent vector. Denote the initial launch angle of the UAV
as (θm0, ψm0), and the desired angle at impact as (θm f , ψm f ). Near the moment that the
UAV approaches the target, the terminal-phase flight trajectory can be approximated as a
straight line. If the angle formed by this straight line with respect to the target is equal to the
desired impact angle, the impact angle constraint is satisfied. To ensure a smooth transition
between the initial and terminal trajectories, these two trajectories must be tangent at the
phase switching point. Moreover, by adjusting the position of this phase switching point
along the straight-line trajectory, the length of the two-phase trajectory can be adjusted
along with the impact time.

The parameters of the multi-constrained trajectory remain to be determined, including
LASC parameters and phase switching point position. However, the complexity of the tra-
jectory generation process makes it very difficult and even impractical to find an analytical
solution. Consequently, a data-driven method is used to design the two-phase trajectory.
The design framework is illustrated in Figure 4. The initial phase trajectory is a LASC
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that coincides with the launch angle at the origin, while the terminal phase trajectory is a
straight-line segment that fulfills the impact angle constraint. The phase switching point is
denoted as S. O− XL −YL − ZL is the local coordinate system established for solving the
LASC parameters under given conditions.
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3.2. Multi-Constrained Analysis

In order to satisfy the impact angle constraint, it is necessary to make the initial phase
trajectory tangent to the starting line at the origin point O and tangent to the collision line at
the phase switching point S. Equations (5) and (6) provide insight that the LASC involves
five trajectory parameters, namely α, β, Λ, Ω, and υ. With the values of α, β, and Ω fixed,
adjusting the values of Λ and υ is adequate to satisfy the terminal positional and tangential
constraints [30]. Thus, we set α = β = Ω = 0 in this manuscript.

For simplicity, the LASC can be normalized into a standard form by scaling and
rotating transformations [18,30]. The coordinates of the two endpoints are transformed
to O(0, 0, 0) and S′(2, 0, 0), with the scaling factor of |OS|/2. The initial condition is
determined by the starting position O(0, 0, 0) and the launch angle (θm0, ψm0). The terminal
condition is determined by the endpoint position S′(2, 0, 0) and the impact angle (θm f , ψm f ).
Thus, the LASC in the standard form can be obtained by integrating Equation (9). The
generated LASC conforms to the following mapping relation f1:

(LS0 , θm f , ψm f ) = f1(θm0, ψm0, Λ, υ, |OS|) (15)

where LS0 is the length of the LASC in the standard form.
To apply the standard-form trajectory to the inertial frame, the size of the LASC needs

to be scaled as
LS = LS0 · |OS|/2 (16)

The length L of the entire two-phase trajectory is

L = LS + |ST| (17)

To satisfy the impact time constraint, the trajectory length needs to be adjusted by
tuning the position of the phase switching point. The position of the phase switching point
is determined by the length of the line segment |ST|. Therefore, the desired two-phase
trajectory satisfies the following mapping relation f2:

(L, θm f , ψm f ) = f2(θm0, ψm0, Λ, υ, |OS|, |ST|) (18)

The following geometric relationship can be obtained from Figure 4.

|OS|2 = |ST|2 + |OT|2 − 2|ST| · |OT|2 cos∠OTS (19)
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Then, Equation (18) can be rewritten as

(L, θm f , ψm f ) = f3(θm0, ψm0, Λ, υ, |ST|, |OT|) (20)

Although the trajectory length and the trajectory parameters have been obtained,
the impact time still needs to be calculated due to time-varying velocity. The following
relationship between the trajectory length and the impact time needs to be satisfied.∫ t f

0
V(t)dt− L = 0 (21)

After obtaining the two-phase trajectory that satisfies the constraints of impact time
and angle, it is necessary to evaluate the maximum acceleration demand during trajectory
tracking. Because the acceleration demand imposes a constraint on the curvature of the
trajectory as follows:

V2 · |κ(s)|max ≤ amax (22)

According to Equation (7), the curvature of the LASC is monotonically decreasing.
Hence, we have

|κ(s)|max = |κ(0)| = |κ0(0)| · 2/|OS| (23)

where κ(s) and κ0(s) are the curvature in the inertial frame and the standard form, respectively.
Equation (20) can be supplemented as

(L, θm f , ψm f , |κ(s)|max) = f3(θm0, ψm0, Λ, υ, |ST|, |OT|) (24)

While the UAV velocity varies with time, it is important to determine the exact
maximum acceleration during trajectory tracking. To ensure the feasibility of flying along
the trajectory, the maximum acceleration is evaluated using the maximum velocity and
maximum curvature as

Vmax · |κ(s)|max ≤ amax (25)

3.3. Trajectory Generation
3.3.1. Analysis of Mapping Relationship

The LASC plays a crucial role in ensuring a smooth transition between the two phases.
To satisfy the impact angle constraint while maintaining the adjustability of the trajectory
length, a predefined collision line is set. The trajectory length is adjusted by tuning the
phase switching point, which further realizes control over the impact time. Consequently,
the trajectory parameters that need to be determined include LASC parameters Λ and υ,
initial relative distance |OT|, and straight-line trajectory length |ST|.

If the trajectory scaling factor is σ, then the initial relative distance |OT|, straight-
line trajectory length |ST|, and trajectory length L are all scaled in the same proportion.
Moreover, the maximum curvature becomes |κ(s)|max/σ, while the LASC parameters Λ
and υ remain unchanged. For the sake of simplicity, we assume the initial distance between
the objects is a definite value R0 for further analysis. Thus, the Equation (24) can be
rewritten as

(L, θm f , ψm f , |κ(s)|max) = f0(θm0, ψm0, Λ, υ, |ST|) (26)

It can be inferred from Equation (26) that the trajectory parameters are determined by
the initial angle, impact angle, and trajectory length. There is also a maximum curvature
associated with these trajectory parameters. The corresponding mapping relation F0 can be
expressed as

(Λ, υ, |ST|, |κ(s)|max) = F0(θm0, ψm0, θm f , ψm f , L) (27)

It is worth pointing out that when a curve rotates around the X-axis, its geometric fea-
tures, such as relative distances and angles, remain unchanged. As shown in Figures 5 and 6,
v′m0 and v′m f are the projection vectors of the initial unit vector vm0 = (x0, y0, z0) and termi-
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nal unit vector vm f =
(

x f , y f , z f

)
in the YOZ plane, respectively. θ0 is the angle between

vm0 and the YOZ plane, while θ f is the angle between vm f and the YOZ plane. ψ0 is the
angle between v′m0 and the Z-axis, while ψ f is the angle between v′m f and the Z-axis. The
related relation expressions are as follows:

θ0 = arcsinx0
θ f = arcsinx f
ψ0 = arctan(y0, z0)
ψ f = arctan(y f , z f )

(28)
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θ0, θ f , and ∆ψ represent the relative geometry of the initial vector and terminal vector
in space. The corresponding values remain unchanged in spite of rotating around the
X-axis. Therefore, the Equation (27) can be further simplified as follows:

(Λ, υ, |ST|, |κ(s)|max) = F(θ0, θ f , ∆ψ, L) (29)

where ∆ψ =
∣∣∣ψ0 − ψ f

∣∣∣.
Compared with Equation (27), Equation (29) reduces the dimensions of the input

variables from 5 to 4, which significantly reduces the computational burden of constructing
the database. Additionally, the proposed trajectory design method gains better flexibility
by using fewer parameters in trajectory generation.
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3.3.2. Acquisition of Trajectory Parameters

The LASC that satisfies the terminal constraints can be obtained by solving the LASC
parameters Λ and υ with the improved simplex method [30,34]. However, the existing
trajectory generation problem involves time-varying velocity, which makes it difficult to
solve analytically and rapidly. Local optimization algorithms like the improved simplex
method would struggle to obtain the global optimal solution, while global optimization
algorithms would suffer from time-consuming computation. Hence, a data-driven method
is introduced here to solve the trajectory parameters efficiently. Instead of relying on
complex analytical equations, the data-driven method focuses on establishing the relation-
ship between input and output variables, which benefits solving the trajectory parameters
accurately and efficiently.

Due to the strong capability of nonlinear fitting, DNN-based modeling is a widely adopted
data-driven method and has gained more and more popularity in various fields [22,35,36].
DNN is composed of multiple layers and massive neurons, which allows it to model
complex relationships and patterns through training data. Through learning from large
datasets, DNN can perform nonlinear mappings between input and output variables,
which makes it highly effective in handling complex and high-dimensional problems.

The general training process has three main steps [37]: forward propagation, loss
function calculation, and backpropagation. In the step of forward propagation, input data
are passed through the network’s input layer to the output layer:

Ym = f m(WmYm−1 + bm) (30)

where Wm and bm are the weight coefficients and biases of the mth layer, respectively. Ym

represents the output value of the mth layer. To achieve better performance in nonlinear
mapping, the activation function f m is applied.

The predicted output values are obtained through forward propagation. Then, these
predicted values are compared with the actual output values to further assess the DNN’s
mapping performance. The prediction error is obtained by the loss function, while the
weights and biases of each neuron are tuned according to the gradient of the loss function.
The commonly used loss function is the mean squared error (MSE), which is defined
as follows:

L =
1
N

N

∑
i=1

(Yi
pred −Yi

actual)

2

(31)

where N is the number of samples. Yi
pred and Yi

actual represent the predicted output and
actual output values of the ith sample, respectively.

In the step of backpropagation, the updates for weights and biases are performed
as follows:

Wm
t = Wm

t−1 − η
∂L

∂Wm
t−1

(32)

bm
t = bm

t−1 − η
∂L

∂bm
t−1

(33)

where Wm
t represents the weights of the mth layer at time t. bm

t denotes the biases of the
mth layer at time t. η is the learning rate that determines the step size for searching weight
values. ∂ represents the gradient sign. The “−” sign indicates that the weight updates are
made to reduce the loss function.

Therefore, a deep neural network, denoted as NETDNN and shown in Figure 7, can be
trained to establish the mapping in Equation (29). NETDNN is used to solve the trajectory
parameters Λ, υ, |ST| and the maximum curvature |κ(s)|max. Then, the multiple constraints
can be checked according to Equations (9) and (25).
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3.4. Trajectory Tracking

It is crucial to guide the UAV along the designed trajectory in the presence of distur-
bances. Otherwise, the actual flight trajectory may deviate from the designed trajectory.
Therefore, a closed-loop trajectory tracking method is needed. Four commonly used
three-dimensional trajectory tracking algorithms are compared in [38], namely lookahead,
nonlinear guidance law (NLGL), pure pursuit and line-of-sight (PLOS), and vector field.
Among these algorithms, the PLOS algorithm performs the best in both accuracy and
computational efficiency. Therefore, the PLOS trajectory tracking method depicted as
Algorithm 1 is used to track the designed multi-constrained trajectory.

Algorithm 1 Pure Pursuit and Line-of-Sight algorithm.

1: for each time step do
2: Obtain the current waypoint Wi = (x1, y1, z1), next waypoint Wi+1 = (x2, y2, z2),

current UAV position I = (x, y, z) and corresponding pitch and yaw angles θ, ψ in the
inertial frame.

3: Calculate αy ← arctan(Wi+1(2)−Wi(2)
Wi+1(1)−Wi(1)

) .

4: Calculate ψd ← arctan(Wi+1(2)− I(2), Wi+1(1)− I(1)) .
5: Calculate WR

i ← RZ(−αy)Wi , WR
i+1 ← RZ(−αy)Wi+1 , IR ← RZ(−αy)I .

6: Calculate αz ← arctan(WR
i+1(3)−WR

i (3)
WR

i+1(1)−WR
i (1)

) .

7: Calculate θd ← arctan
(

WR
i+1(3)− IR(3), WR

i+1(2)− IR(2)
)

.

8: Calculate e = RY(−αz)RZ(−αy)(I −Wi).

9: Calculate
.
ψm ← k1,ψ(ψd − ψ) + k2,ψ

(
−ey

)
.
θm ← k1,θ(θd − θ) + k2,θ(ez)

10: Calculate azm and aym commands from Equation (10)
azm ←

(
k1,θ(θd − θ) + k2,θ(ez)

)
V aym ←

(
k1,ψ(ψd − ψ) + k2,ψ

(
−ey

))
V cos θ

11: end for

Where azm and aym are the pitch and yaw acceleration commands, respectively. αz
and αy are the rotation angles used to transform the inertial frame into the local frame
with respect to UAV velocity. These rotations can be represented by rotation matrices RZ
and RY. ez and ey are the vertical and cross-track errors, respectively. k1,θ and k1,ψ are the
proportional gains of the pure pursuit strategy. k2,θ and k2,ψ are the proportional gains of
the LOS strategy.

4. Numerical Simulation
4.1. Simulation Setup

To assess the performance of the proposed guidance method, it is compared with the
guidance method in [14]. The simulation experiment involves four UAVs: I1, I2, I3, and I4.
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Their simulation settings are depicted in Table 1. The UAV engine thrust Ten = 10,000 N,
maximum working time of the engine ten = 10 s, UAV’s initial mass m0 = 200 kg, fuel mass
mfu = 50 kg, fuel consumption rate µ = 5 kg/s, induced drag coefficient kD = 0.05, and
maximum acceleration limit amax = 100 m/s2. The four proportional gains of the PLOS
algorithm are set as k1,θ = k1,ψ = 20 and k2,θ = k2,ψ = 0. The position of the target is
(15,000, 0, 0) m. The autopilot is assumed to have a first-order lag with a time constant of
0.2 s. Thus, the flight velocity, distance, and time can be obtained through simulation.

Table 1. Comparison of simulation settings for UAVs.

UAV Guidance Launch Time Initial Heading Direction Desired Impact Direction

I1 Proposed t = 0 s (0.4082, 0.4082, 0.8165) (0.6247,−0.6247,−0.4685)
I2 Proposed t = 2 s (0.6667,−0.3333, 0.6667) (0.4682, 0.8109,−0.3511)
I3 Ref. [14] t = 0 s (0.4082, 0.4082, 0.8165) (0.6247,−0.6247,−0.4685)
I4 Ref. [14] t = 2 s (0.6667,−0.3333, 0.6667) (0.4682, 0.8109,−0.3511)

The simulation was performed on a hardware platform with a 2.5 GHz six-core
processor and 16 GB RAM. It takes approximately 50 ms to generate a flight trajectory that
satisfies the constraints of impact time, impact angle, and maximum acceleration limit.

4.2. Establishment of Mapping Network

Before training network NETDNN , trajectory dataset samples need to be obtained
first. Here, the optimal Latin hypercube method is employed to sample the trajectory data
within the design space [39]. This sampling technique ensures that the samples are evenly
distributed across the entire design space. The value ranges of the trajectory parameters
are set to Λ ∈ [0, 1], υ ∈ (1.5, 15] and |ST| ∈ [0, 6000 m]. Other trajectory parameters
are set as α = β = Ω = 0 and R0 = 15,000 m. Based on the trajectory parameters, the
flight trajectories are obtained by integrating the Frenet–Serret Equation (9). Then the
corresponding parameters θ0, θ f , ∆ψ, L and |κ(s)|max can be obtained from the generated
trajectories. During the generation process of LASC, an undesired condition may occur
in which the cumulative angular variation in tangent or binormal vectors is greater than
2π. Such conditions should be excluded because of the excessive loss of UAV velocity in
practical applications. Then, a dataset of 1000 samples is obtained, as shown in Table 2.
The input data S1 are composed of parameters θ0, θ f , ∆ψ, and L. The output data S2 are
composed of parameters Λ, υ, |ST|, and |κ(s)|max. The mapping network NETDNN is then
trained using S1 and S2. All the data are normalized before training and split into two parts.
A total of 70% of the data is used for training, while the remaining 30% is used for testing.

Table 2. Sample data for DNN mapping network training and testing.

NO.
Input Parameter Output Parameter

θ0 θf ∆ψ L Λ υ |ST| |κ(s)|max

1 24.7554 42.2519 149.8320 18,234.11 0.1860 2.1069 1284 1.5675 × 10−4

2 47.3558 35.4730 167.8687 18,980.46 0.5441 5.7322 4577.62 3.7876 × 10−4

3 36.0618 30.7972 174.3580 19,442.37 0.4036 13.3226 3539.06 2.5077 × 10−4

...
...

...
...

...
...

...
...

...
1000 35.5963 23.7348 170.6936 19,876.64 0.3774 9.4083 2949 2.5318 × 10−4

Then, a feed-forward fully connected DNN is developed to learn the nonlinear rela-
tionship between S1 and S2. The appropriate selection of the hyperparameters is critical to
achieving optimal performance. Here, the optimized hyperparameters are given in Table 3.
The corresponding optimization process is similar to that in [36]. The training loss curve in
Figure 8 shows that the DNN model keeps approaching the real model during the training
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process. The coefficient of determination R2 is adopted to assess the approximation er-
ror [40]. Figure 9 illustrates the learning effect, which visualizes the prediction performance
of DNN. The results demonstrate that the coefficients of determination of all four output
parameters are above 0.99. Therefore, the prediction accuracy of the mapping network
NETDNN is high.

4.3. Case 1: UAV Guidance under Constant Velocity

In Case 1, the velocity is set to be constant and equal to V = 300 m/s. The desired
impact time is set to t f = 65 s. According to Equation (28), we have θ0,1 = 24.0948◦,
θ f ,1 = 38.6598◦, ∆ψ1 = 153.4349◦, L1 = 19,500 m, and θ0,2 = 41.8103◦, θ f ,2 = 27.9152◦,
∆ψ2 = 139.9783◦, L2 = 18,900 m. Based on mapping network NETDNN , we obtain
Λ1 = 0.1553, υ1 = 2.2468, |ST|1 = 3857.56 m, |κ(s)|max,1 = 1.6785× 10−4, and Λ2 = 0.3257,
υ2 = 2.1061, |ST|2 = 1931.00 m, |κ(s)|max,2 = 2.2483× 10−4. Both trajectories of the UAVs
I1 and I2 satisfy the maximum acceleration constraint according to Equation (25).

The simulation results are shown in Figure 10 and Table 4. It can be observed that all
the UAVs have successfully reached the target position. The impact time errors for UAVs I1
and I2 are both within 0.08 s, while the impact angle errors are both within 0.02◦. Obviously,
compared with UAVs I3 and I4, UAVs I1 and I2 achieve better accuracy in both impact time
and impact angle. This is because the guidance method in [14] adopts a linear estimation
method to calculate the time-to-go, which would degenerate under nonlinear kinematics.

4.4. Case 2: UAV Guidance under Time-Varying Velocity

In this case, the UAV velocities are time-varying according to Equation (11). The
desired impact time is set to t f = 40 s. All other simulation conditions are the same
as in Case 1. According to Equation (28), we have θ0,1 = 24.0948◦, θ f ,1 = 38.6598◦,
∆ψ1 = 153.4349◦, L1 = 19,433.92 m, and θ0,2 = 41.8103◦, θ f ,2 = 27.9152◦, ∆ψ2 = 139.9783◦,
L2 = 18,786.81 m. Based on mapping network NETDNN , we obtain Λ1 = 0.1413, υ1 = 2.2106,
|ST|1 = 3495.75 m, |κ(s)|max,1 = 1.6338 × 10−4, and Λ2 = 0.3193, υ2 = 2.0755,
|ST|2 = 1746.41 m, |κ(s)|max,2 = 2.1801× 10−4. Both trajectories of the UAVs I1 and I2
satisfy the maximum acceleration constraint according to Equation (25).

The simulation results are shown in Figure 11 and Table 5. It can be revealed that
although all the UAVs have reached the target point, the guidance performances of UAVs I3
and I4 have significantly decreased. Their impact time errors are close to 2 s and the impact
pitch angle errors exceed 10◦. This is mainly because the guidance law in [14] adopts a
linear estimation method for time-to-go prediction, which significantly degenerates under
time-varying velocity. By contrast, the impact time errors of UAVs I1 and I2 are both less
than 0.1 s, and the impact angle errors are both less than 0.05◦. It can be seen that the
time-varying velocity has little influence on the performance of the proposed guidance
method. This is because the proposed method has taken the influence of variable velocity
into account during neural network training.

Table 3. Hyperparameters for the DNN model.

Hyperparameters Preferences

Optimizer Adam
Number of hidden layers 4

Number of neurons per layer 4; 40; 40; 40; 40; 4
Activation functions Hidden: Relu

Regularization L2
Learning rate 0.01

Mini-batch size 150
Number of epochs 100

Weight initialization He
Loss function MSE
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Table 4. Simulation results of Case 1.

UAV I1 I3 I2 I4

Desired impact time 65 s
Impact time 64.92 s 65.29 s 64.94 s 64.73 s

Desired impact pitch angle −27.94◦ −20.57◦
Impact pitch angle −27.95◦ −30.50◦ −20.55◦ −23.75◦

Desired impact yaw angle −45◦ 60◦
Impact yaw angle −45.00◦ −43.05◦ 60.02◦ −56.55◦
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Table 5. Simulation results of Case 2.

UAV I1 I3 I2 I4

Desired impact time 40 s
Impact time 39.92 s 41.93 s 39.91 s 41.71 s

Desired impact pitch angle −27.94◦ −20.57◦

Impact pitch angle −27.94◦ −49.37◦ −20.56◦ −34.19◦

Desired impact yaw angle −45◦ 60◦

Impact yaw angle −44.99◦ −47.53◦ 59.97◦ −59.18◦

5. Conclusions

This manuscript proposes a data-driven method based on a multi-constrained geomet-
ric guidance law under time-varying velocity in three dimensions. The two-phase trajectory
consists of an LASC and a collision line segment. By adjusting the phase switching points,
the UAV’s flight time and impact angle can be precisely controlled. The characteristic pa-
rameters of the desired trajectory are calculated through DNN using a data-driven method.
Finally, the guidance commands are generated using a trajectory-tracking algorithm.

The proposed guidance can generate an explicit flight trajectory, which does not rely
on accurate time-to-go information. Moreover, the trajectory generation processes are
greatly shortened by data-driven-based mapping. The simulation results demonstrate the
high performance of the proposed guidance method in terms of impact time and angle
control under both constant and time-varying velocities.
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