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Abstract: In response to the issue of UAV escape guidance, this study proposed a unified intelligent
control strategy synthesizing optimal guidance and meta deep reinforcement learning (DRL). Optimal
control with minor energy consumption was introduced to meet terminal latitude, longitude, and
altitude. Maneuvering escape was realized by adding longitudinal and lateral maneuver overloads.
The Maneuver command decision model is calculated based on soft-actor–critic (SAC) networks.
Meta-learning was introduced to enhance the autonomous escape capability, which improves the
performance of applications in time-varying scenarios not encountered in the training process.
In order to obtain training samples at a faster speed, this study used the prediction method to
solve reward values, avoiding a large number of numerical integrations. The simulation results
demonstrated that the proposed intelligent strategy can achieve highly precise guidance and effective
escape.

Keywords: gliding flight; UAV penetration; multi-constraint optimal guidance; meta-learning;
SAC networks

1. Introduction

Hypersonic UAVs mainly glide in near-space [1]. In their early phase, a higher flight
velocity is acquired, relying on the thin atmospheric environment, which is an advantage for
effectively avoiding the interception of defense systems. At the end of a gliding flight, the
velocity is mainly influenced by the aerodynamic force and suffers from the restrictions of
heat flow, dynamic pressure, and overload [2]. The velocity advantage leads to penetration
becoming more difficult, so orbital maneuvering is applied by UAVs to achieve penetration.
The main flight mission is split into avoiding defense system interception and satisfying
multiple terminal constraints [3]. The core of this manuscript is designing a penetration
guidance strategy via orbital maneuvering capabilities, avoiding interception, and reducing
the penetration’s impact on guidance accuracy.

The penetration strategy is summarized as a tactical penetration and a technical pen-
etration strategy [4]. The technical penetration strategy changes the flight path through
maneuvering, aiming to increase the missed distance in order to successfully penetrate.
Common maneuver manners include the sine maneuver, step maneuver, square wave
maneuver, and spiral maneuver [5]. There are some limitations and instability for technical
penetration strategies, attributed to the UAV struggling to adopt an optimal penetration
strategy according to the actual situation of the offensive and defensive confrontations.
Compared with the traditional procedural maneuver strategy, the differential game guid-
ance law has the characteristics of real-time operation and intelligence as a tactical penetra-
tion strategy [6]. Penetration problems are essentially regarded as the continuous dynamic
conflict problem of multi-party participants, and this strategy is an essential solution for
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solving multi-party optimal control problems. Applying it to the problem of attack–defense
confrontation can not only fully consider the relative information between UAVs and in-
terceptors but also obtain a Nash equation strategy to reduce energy consumption. Many
scholars have proposed differential game models of various maneuvering control strategies
based on control indexes and motion models. Garcia [7] regarded the scenario of active
target defense modeling as a zero-sum differential game, designed a complete differen-
tial game solution, and comprehensively considered the optimal strategy of closed-loop
state feedback to obtain the value function. In Ref. [8], the optimal guidance problem
was studied between an interceptor and an active defense ballistic UAV, and an optimal
guidance scheme was proposed based on the linear quadratic differential game method
and the numerical solution of Riccati differential equations. Liang [9] mainly analyzed
the problem of pursuit and escape attacks of multiple players, inducted the three-body
game confrontation into competition and cooperation problems, and solved the optimal
solution of multiple players via differential game theory. The above methods are of great
significance for analyzing and solving the confrontation process between UAVs and inter-
ceptors. Near-space UAVs have the characteristics of high velocity and short time in the
phase of attack and defense confrontation terminal guidance [10], and the differential game
guidance law struggles to show advantages in this phase. Moreover, the differential game
method requires a large amount of calculation, and the bilateral performance indicators are
difficult to model [11]; as a result, this theory is unable to be applied in practice.

DRL is a research hotspot in the field of artificial intelligence that has sprung up in
recent years, and amazing results have been achieved in robot control, guidance, and control
technologies [12]. DRL specifically refers to agents learning in the process of interaction
with the environment to find the best strategy to maximize cumulative rewards [13]. With
the advantages of dealing with high-dimensional abstract problems and making decisions
quickly, DRL provides a new solution for the maneuvering penetration of high-velocity
UAVs. In order to solve the problem of intercepting a high maneuvering target, an auxiliary
DRL algorithm was proposed in Ref. [14] to optimize the frontal interception guidance
control strategy based on a neural network. Simulation results showed that DRL had a
higher hit rate and larger terminal interception angle than traditional methods and proximal
policy optimization algorithms. Gong [15] proposed an Omni bearing attack guidance
law for agile UAVs via DRL, which effectively dealt with aerodynamic uncertainty and
strong nonlinearity at a high attack angle. DRL was used to generate a guidance law for
the attack angle in an agile turning phase. Furfaro [16] proposed an adaptive guidance
algorithm based on classical zero-effort velocity, and the limitations of this algorithm were
overcome via RL. A closed-loop guidance algorithm was created that is lightweight and
flexible enough to adapt to a given constrained scene.

Compared with differential game theory, DRL is convenient for establishing the
performance index function, and it is a feasible method to solve the dynamic programming
problem by utilizing the powerful numerical calculation ability of computers to skillfully
avoid solving the function analytical solution. However, the traditional DRL has some
limitations, such as high sample complexity, low sample utilization, a long training time,
and so on. Once the mission changes, the original DRL parameters are hard to adapt to the
new mission and need to be learned from scratch. A change in mission or environment
will lead to the failure of the trained model and poor generalization ability of the model.
In order to solve the existing problems in DRL, researchers introduced meta-learning into
DRL and proposed Meta DRL [17]. Lu et al. [18] mainly solved the issues of maximizing
the total data collected and avoiding collisions during the guidance flight and improved the
adaptability to different missions via meta RL. Hu et al. [19] mainly studied a challenging
trajectory design problem, optimized the DBS trajectory, and considered the uncertainty
and dynamics of terrestrial users’ service requests. MAML was introduced for the purposes
of solving raised POMDPS and enhancing adaptability to balance flight aggressiveness and
safety [20]. For suspended payload transportation tasks, the paper [21] proposed a meta-
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learning approach to improve adaptability. The simulation demonstrated improvements in
closed-loop performance compared to non-adaptive methods.

By learning useful meta knowledge from a group of related missions, agents acquire
the ability to learn, and the learning efficiency on new missions is improved and the
complexity of samples is reduced. When faced with new missions or environments, the
network responds quickly based on the previously accumulated knowledge, so only a
small number of samples are needed to quickly adapt to the new mission.

Based on the above analysis, this manuscript proposes Meta DRL to solve the UAV
guidance penetration strategy, and the DRL is improved, resulting in enhancing the adapt-
ability of UAVs in complex and changeable attack and defense confrontations. In addition,
the idea of meta-learning is used to enable UAVs to learn and improve their ability for
autonomous flight penetration. The core contributions of this manuscript are as follows:

1. By modeling the three-dimensional attack and defense scene between UAVs and
interceptors, we analyze the terminal and process constraints of UAVs. A guidance
penetration strategy based on DRL is proposed, aiming to provide the optimal solution
for maneuvering penetration under a constant environment or mission.

2. Meta-learning is used to improve the UAV guidance penetration strategy. The im-
provement enables the UAV to learn and enhances the autonomous penetration ability.

3. Through the simulation analysis, the manuscript analyzes the penetration strategy,
explores penetration timing and maneuvering overload, and summarizes the penetra-
tion tactics.

2. Modeling of the Penetration Guidance Problem
2.1. Modeling of UAV Motion

The three-degree-of-freedom motion equation is adopted to describe UAVs and the
dynamic equation is established in the ballistic coordinating system:

.
v = − ρv2SmCD

2m + g′r sin θ + gωe(cos σ cos θ cos φ + sin θ sin φ)
+ω2

e r
(
cos2 φ sin θ − cos φ sin φ cos σ cos θ

)
.
θ = ρv2SmCL cos υ

2mv +
g′r cos θ

v − 2ωe sin σ cos φ + v cos θ
r

+ gωe
v (cos θ sin φ− cos σ sin θ cos φ) + ω2

e r
v
(
cos φ sin φ cos σ sin θ + cos2 φ cos θ

)
.
σ = − ρv2SmCL sin υ

2mv cos θ − gωe sin σ cos φ
v cos θ + ω2

e r(cos φ sin φ sin σ)
v cos θ + v tan φ cos θ sin σ

r
−2ωe(sin φ− cos σ tan θ cos φ)

.
φ = v cos θ cos σ

r.
λ = − v cos θ sin σ

r cos φ.
r = v sin θ

(1)

where v is the velocity of UAV relative to the earth, θ is the velocity slope angle, σ is the
velocity azimuth, and the positive direction is clockwise from the north. r represents the
geocentric distance, and (λ, φ) is the longitude and latitude. The differential argument is
flight time t. gωe is the component of the Earth’s gravitational acceleration in the direction of
the Earth’s rotational angular rate ωe, while g′r is the component of the Earth’s gravitational
acceleration in the direction of the geo-center. ρ is the density of the atmosphere, while m
and Sm are the mass and reference area of UAV. CD and CL are the drag and lift coefficient,
respectively, relating to the Mach number and attack angle, so the control variable attack
angle α is implicit in it, and the other control variable is the bank angle υ.

For a hypersonic UAV with a large lift–drag ratio (L/D), the heat flow, overload, and
dynamic pressure are considered as flight process constraints, as follows:

khρ1/2v3 ≤ Qsmax
ρv2

2 ≤ qmax√
D2+L2

mg0
≤ nmax

(2)
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where Qsmax, qmax, and nmax are the maximum heat flow, dynamic pressure, and overload,
respectively; the parameter kh is a constant coefficient, and g0 is the gravitational accelera-
tion at sea level. In order to keep the gliding state steady and effectively prevent trajectory
jumps, the balance of lift and gravity is required by UAV [22]. Stable gliding is generally
considered as quasi-equilibrium gliding (QEGs). At present, the international definition
of QEG can be summarized into two types [23]: the velocity slope angle is considered as
constant, expressed by

.
θ = 0, or the flight altitude variance ratio is considered as constant,

expressed by
..
h = 0. Moreover,

.
θ = 0 was adopted by traditional QEG guidance, and

..
h = 0

mainly appeared in the analytical prediction guidance of the Mars landing at the end of the
last century [24].

For high L/D UAVs flying in the gliding phase, the Coriolis inertial force and centrifugal
inertial force caused by the Earth’s rotation are relatively small compared to aerodynamic
forces. Therefore, in the design of guidance laws, the Earth can be assumed to be a homo-
geneous sphere that does not rotate. We further decompose Equation (1) into longitudinal
and lateral directions, where the longitudinal motion equation is as follows:

.
v = − ρv2SmCD

2m − g sin θ
.
θ = ρv2SmCL cos υ

2mv − g cos θ
v + v cos θ

r.
h = v sin θ
.
LR = Rev cos θ/(Re + h)

(3)

where h = r− Re represents the flight altitude, and LR is range. For a gliding UAV flying in
close proximity to space, h� Re. Therefore, range differentiation can be further described
as follows: .

LR = v cos θ (4)

This manuscript adopts
.
θ = 0 as the QEG condition. Referring to the second equation

in Equation (3),
.
θ = 0 is transferred into Equation (5).

.
θ = 0 = ρv2SmCL cos υ

2mv − g cos θ
v + v cos θ

r

⇒ ρv2SmCL cos υ
2mv = g cos θ

v − v cos θ
r

⇒ ρv3SmCL cos υ
2 = mg cos θ

v − mv2 cos θ
r

(5)

where L = ρv3SmCD
2 , hence

m(g− v2

r
) cos θ − L cos υ = 0 (6)

2.2. Description of Flight Missions
2.2.1. Guidance Mission

The physical meaning of gliding guidance is eliminating heading errors, satisfying
complex process constraints, and minimizing energy loss. The UAV is guided to glide
unpowered to the setting terminal target point (h f , λ f , φ f ), satisfying the terminal altitude,
longitude and latitude. Hence, the terminal constraints are expressed by Equation (7).{

h(LR f ) = h f , λ(LR f ) = λ f
φ(LR f ) = φ f , ∆σf ≤ ∆σmax

(7)

where the terminal range LR f is given, ∆σ represents the heading error, and ∆σmax is a
pre-setting allowable value. The guidance problem is the process of determining α and υ.

2.2.2. Penetration Mission

The main indexes are used to judge penetration probability as follows:
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(1) The miss distance Dmiss with the interceptor at the encounter moment.
(2) The overload Nm of the interceptor in the last phase.

(3) The line-of-sight (LOS) angular rates
.
θintlos and

.
σintlos with the interceptor at the

encounter moment.

where Dmiss directly reflects the result of penetration—the larger the Dmiss, the greater
of penetration probability. The Nm and LOS angle indirectly reflect the result of penetration.
The larger the

.
θintlos and

.
σintlos, the more difficult it is for the interceptor to successfully

intercept, which is attributed to θintlos and σintlos not easily converging to a constant value
at the encounter moment. In addition, a larger overload is required to adjust θintlos and
σintlos at the end of interception. The larger the Nm, the greater the control cost that the
interceptor has to pay to complete the interception mission. Once Nm exceeds the overload
limit of the interceptor, it indicates that the control is saturated, which demonstrates that
the interceptor struggles to intercept based on the current maximum overload constraint.
Referring to the size and flight characteristics of UAVs [25], this manuscript assumes that
the penetration mission is completed if Dmiss is greater than 2 m.

The maximum maneuvering overload of UAVs is constrained by the structure and
QEG condition [24]. If the lateral maneuver overload is too large, it will cause the UAV
to deviate from the course, eventually leading to the failure of the guidance mission. A
large longitudinal maneuver amplitude will have a significant impact on the L/D of the
UAV, affecting safety. According to the above analysis, the maximum lateral maneuvering
overload is set as 2 g, and the maximum longitudinal maneuvering overload is set as 1 g.

2.3. The Guidance Law of Interceptor

The guidance law of the interceptor relies on the inertial navigation system to obtain
information such as the position and velocity of the UAV. The relative motion is shown in
Figure 1.
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P, T, and M, respectively, represent the UAV, target, and interceptor. r is the relative
position between the UAV and the interceptor, and rt is the target.

The LOS angular rate and the approach velocity to the UAV are obtained for the
interceptor. Overload control command is derived via generalized proportional navigation
guidance (GPNG). {

n∗y2
= KD

∣∣ .
r
∣∣ .
θintlos/g0

n∗z2
= KT

∣∣ .
r
∣∣ .
σintlos/g0

(8)
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As shown in Equation (8), KD and KT are navigation ratios in the longitudinal and
lateral direction, respectively.

.
r is the approach velocity.

.
θintlos and

.
σintlos represent the LOS

angular rate in the longitudinal and lateral directions, respectively.
r =

√
(x− xm)

2 + (y− ym)
2 + (z− zm)

2

θintlos = arcsin((y− ym)/r)
σintlos = arctan((z− zm)/(x− xm))

(9)

Differentiating Equation (9) with respect to t, we obtain the following:

.
θintlos =

1√
1−( y−ym

r )
2 ·

(
.
y− .

ym)r−(y−ym)
.
r

r2

.
σintlos =

1
1+( z−zm

x−xm )
2 ·

(
.
z− .

zm)·(x−xm)−(z−zm)·( .
x− .

xm)

(x−xm)2

.
r = (x−xm)·( .

x− .
xm)+(y−ym)·( .

y− .
ym)+(z−zm)·( .

z− .
zm)

r

(10)

3. Design of Penetration Strategy Considering Guidance
3.1. Guidance Penetration Strategy Analysis

Generally, the UAV achieves penetration through a velocity advantage or increased
maneuvering overload. The former is used in pre-gliding flight, and compared with
interceptors, the velocity of UAVs is relatively large, which is conducive to penetrating
defenses. More threats to UAVs come from the defense systems of intended targets,
resulting in an intercept threat focusing on the end of the glide flight. However, the flight
velocity gradually decreases, which is not enough to penetrate escape. Based on the above
analysis, the manuscript designs a penetration strategy by increasing the maneuvering
overload.

Firstly, in previous research [26], the energy-optimized gliding guidance law was
designed. In this study, avoiding the intercept by maneuvering becomes the key point.
The real-time flight information of the interceptor cannot easily be accurately obtained by
the UAV, while the real-time flight information of the UAV is obtained by the interceptor.
Based on the UAV penetration mission, which only knew the initial launch position of the
interceptor, this manuscript simulates the attack and defense environment between the
UAV and the interceptor, applying the DRL method to solve the overload command of
UAV maneuvering penetration. DNN parameters are trained offline, and a maneuvering
penetration command is constructed online. The launch position of the interceptor is
changeable, and a stable penetration command cannot adapt to the complex penetration en-
vironment. To improve the adaptability of DNN parameters, the original DRL is optimized
by adopting the idea of meta-learning, and the ontology and environmental information are
fully utilized. The optimization of meta-learning enhances flight capability, fast response to
complex missions, and flight self-learning. Finally, the UAV guidance penetration strategy
based on Meta DRL is proposed in this manuscript, as shown in Figure 2.

As for the gliding guidance mission, DRL and optimal control are used to achieve the
guidance penetration mission of the UAV. An optimal guidance command was conducted
in previous research [26], which was introduced to satisfy constraints regarding terminal
position, altitude, and minimal energy loss. Maneuvering overloads are added between the
longitudinal and lateral directions, aiming to achieve the penetration mission at the end of
the gliding flight. Maneuvering overloads are solved via DRL. The DNN parameters are
optimized by means of meta-learning.
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Guidance command
(

n∗y , n∗z
)

is generated by the optimal guidance strategy, and

maneuvering overload command
(
∆ny, ∆nz

)
is generated by meta DRL. The flight total

overload is shown in Equation (11).{
Ny = n∗y + ∆ny

Nz = n∗z + ∆nz
(11)

Maneuvering penetration command via meta DRL is the core of this manuscript.
The penetration considering guidance is described as a Markov decision process (MDP),
which consists of finite-dimensional continuous flight state space, longitudinal and lateral
direction overload sets, and a reward function judging the penetration strategy. Flight
data generated via numerical integration and SAC networks are introduced to train and
learn MDP. Optimizing network parameters via meta-learning aims at adjusting network
parameters with very little flight data when the UAV is faced with online mission changes,
adapting to the new environment as soon as possible.

3.2. Energy Optimal Gliding Guidance Method

In previous research [26], based on the QEG condition and taking the required overload
as the control amount, the performance index with minimum energy loss was established.
The optimal longitudinal and lateral overload were designed, respectively, satisfying the
constraints on terminal latitude, longitude, altitude, and velocity. The required overload
command is shown in Equation (12).{

u∗y = k(ChLR − Cθ) + 1
u∗z = σlos−σ

k(LR f−LR)
(12)

where u∗y = n∗y and u∗z = n∗z are the optimal overload between the longitudinal and lateral
dimensions. k = g0

v2 ≈
g
v2 , LR is the current range, and LR f is the total range of the gliding
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phase. Ch and Cθ are the guidance coefficients based on optimal control, represented as
Equation (13).

Ch =
6((LR−LR f )(θ f +θ)−2h+2h f )

k2(LR−LR f )
3

Cθ =
2
(

LR LR f (θ−θ f )−L2
R f (2θ+θ f )+L2

R(2θ f +θ)+3(LR f +LR)(h f−h)
)

k2(LR−LR f )
3

(13)

Based on Equation (14), the control variables α and υ are calculated as follows:
ρv2SmCL(Ma,α)

2g0
=
√

n∗2y + n∗2z

υ = arctan
(

n∗z
n∗y

) (14)

where α is obtained by calculating the contrast value in Equation (14).

4. RL Model for Penetration Guidance

The problem of maneuvering penetration is modeled as a series of stationary MDPs [27]
with unknown transition probabilities. The continuous flight state space, action set, and
reward function for judging the command are determined in this section.

4.1. MDP of the Penetration Guidance Mission

Deterministic MDP with a continuous state and action is defined as (S, A, T, R, γ) via a
quintuple. S is described as the continuous state space, A is described as the finite action set,
and T is depicted as the state transition function. S×A→ T , reflecting deterministic state
transition relationships. R is defined as the immediate reward. γ ∈ [0, 1] is the discount
factor, to balance immediate and forward reward.

The agent chooses the action at ∈ A at the current state st, while the state changes
from st to st+1 ∈ S, and the environment returns an immediate reward Rt = f (st, at) for
the agent. Cumulative rewards are obtained with a controlled action sequence τ, as shown
in Equation (15).

G(s0, τ) = R0 + γR1 + γ2R2 + ... =
∞

∑
t=0

γtRt (15)

The goal of MDP is determining policy, and maximizing the expected accumulated
rewards, as follows:

τ∗ = argmax
τ
{G(s0, τ)} (16)

4.1.1. State Space Design

The environment of attack–defense is abstracted as a state space of MDP, which
applies guidance for action commands. UAVs struggle to acquire the flight information
and guidance laws of interceptors. Hence, the information of the UAV and the target is
only considered as state space.

S = { xr, yr, zr, θlos, σlos} (17)

where (xr, yr, zr) represents the relative distance between the UAV and the target under
the North East Down (NED) Coordinate System. (θlos, σlos) represents, respectively, the
longitudinal and lateral LOS angles. In order to eliminate dimension differences and
enhance compatibility among states, S is normalized using Equation (18).

S =

(
xr =

xr

xr0
, yr =

yr

yr0
, zr =

zr

zr0
, θlos =

θlos
2π

, σlos =
σlos
2π

)
(18)
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4.1.2. Action Space Design

Action is a decision selected by the UAV based on the current state, and action space A
is the set of all possible decisions. Overload directly affects the velocity azimuth and slope
angle and indirectly affects the gliding flight status; hence, this manuscript determines
overload as an intermediate control variable.

On the basis of the optimal guidance law and flight process constraints, longitudinal
overload ∆ny and lateral overload ∆nz are added to the action space of MDP. Considering
the safety of the UAV and heading error, this manuscript assumes that the longitudinal and
lateral maximum maneuvering overloads are 1 g and 2 g, respectively. A is defined as a
continuous set, shown in Equation (19).

A =

{
∆ny ∈ [−g, g]
∆nz ∈ [−2g, 2g]

(19)

4.2. Multi-Missions Reward Function Designing

The reward function fr is an essential section for guiding and training the maneuvering
penetration strategy. After execution of the action command, fr returns a reward value to
the UAV, which reflects the fairness and rationality of the action judgment. The rationality
of fr directly affects the training result and determines the efficiency of SAC training. In
this manuscript, the aim of fr is to guide the UAV to achieve the guidance penetration
mission while satisfying terminal multi-constraints. Given the requirements of the mission,
fr consists of the miss distance with the interceptor and the terminal deviation from the
target.

fr(s, a) = c1dmiss − c2derror (20)

where dmiss and derror are the miss distance and terminal deviation after execution the action
command. The sufficient and necessary condition of satisfying terminal position deviation
is eliminating the heading error, which is directly related to the LOS angular rate. Similarly,
dmiss can be reflected by the LOS angular rate at the encounter time between the UAV and
the interceptor. Therefore, the normalized fr is expressed by Equation (21).

fr = c1

√(
.
θintlos

)2
+
( .

σintlos

)2
− c2

√(
.
θlos

)2
+
( .

σlos

)2
(21)

where
.
θintlos represents the normalized LOS angular rate in the longitudinal direction with

the interceptor,
.
σintlos represents the normalized LOS angular rate in the lateral direction

with the interceptor.
.
θlos represents the normalized LOS angular rate in the longitudinal

direction with the target, and
.
σlos represents the normalized LOS angular rate in the lateral

direction with the target. In this manuscript, the LOS angular rates at the encounter time
and terminal time are solved analytically via numerical calculation.

4.2.1. The Solution of LOS Angular Rate in the Lateral Direction

The attack–defense confrontation model in the lateral direction is shown in Figure 3.
P, T, and M, respectively represent UAV, target, and interceptor. LRgo and LMgo are

represented as the remaining range among UAV, target and interceptor, which are calculated
in Equations (22) and (23).



Drones 2023, 7, 626 10 of 26Drones 2023, 7, x FOR PEER REVIEW 9 of 25 
 

v
RgoL

( , )f fT λ φ

( , )P λ φ
λ

φ

MgoL
( ),m mM λ φmv fv

int losσ

losσ

mσ

vσ

 
Figure 3. The attack–defense confrontation model in the lateral direction. 

P, T, and M, respectively represent UAV, target, and interceptor. LRgo and LMgo are 
represented as the remaining range among UAV, target and interceptor, which are calcu-
lated in Equations (22) and (23). 

The lateral relative motion model between UAV and the target is shown in Equation 
(22). 

 (22) 

where , represents the heading error between UAV and the target point. Lateral relative 
motion model between UAV and interceptor is shown in Equation (23). 

 (23) 

where , represents heading error between UAV and the interceptor. In order to simplify 
the calculation, the relative motion equation Equation (23) is conducted as Equation (24): 

 (24) 

where  and  are calculated as Equation (25). 

 (25) 

To facilitate the analysis and prediction,  is calculated as follows, taking the deriva-
tion of the second formula in Equation (22): 

 (26) 

Bring the heading error and first formula in Equation (22) into Equation (26), the rate 
of LOS angular rate is calculated by Equation (27). 

 (27) 

Defining  as the predicted remaining time of flight,  is derived via the remaining 
flight range and variation in range, expressed in Equation (28). 

 (28) 

Defining the value of state and the value of control , the differential of LOS angular 
rate is obtained, which is shown in Equation (29). 

 (29) 

In the latter phase of glide flight,  is an order of magnitude smaller than . Equation 
(29) is further simplified to Equation (30). 

 (30) 

Figure 3. The attack–defense confrontation model in the lateral direction.

The lateral relative motion model between UAV and the target is shown in Equation (22).{ .
LRgo = −v cos ∆δ

LRgo
.
σlos = v sin ∆δ

(22)

where ∆δ = σ − σlos, represents the heading error between UAV and the target point.
Lateral relative motion model between UAV and interceptor is shown in Equation (23).{ .

LMgo = −v cos ∆σ− vm cos ∆σm
LMgo

.
σintlos = v sin ∆σ− vm sin ∆σm

(23)

where ∆σ = σ − σintlos, represents heading error between UAV and the interceptor. In
order to simplify the calculation, the relative motion equation Equation (23) is conducted
as Equation (24): { .

LMgo = −vr cos ∆σmn
LMgo

.
σintlos = vr sin ∆σmn

(24)

where vr and ∆σmn are calculated as Equation (25).{
vr =

√
(v cos σv − vm cos σm)

2 + (v sin σv − vm sin σm)
2

∆σmn = atan v sin σv−vm sin σm
v cos σv−vm cos σm

(25)

To facilitate the analysis and prediction,
.
σlos is calculated as follows, taking the deriva-

tion of the second formula in Equation (22):

.
LRgo

.
σLOS + LRgo

..
σLOS =

.
v sin ∆σ + v∆

.
σ cos ∆σ (26)

Bring the heading error and first formula in Equation (22) into Equation (26), the rate
of LOS angular rate is calculated by Equation (27).

.
LRgo

.
σlos + LRgo

..
σlos =

.
v sin ∆σ + v∆

.
σ cos ∆σ⇒

.
LRgo

.
σlos + LRgo

..
σlos =

.
v
v LRgo

.
σlos −

.
LRgo

.
σlos +

.
LRgo

.
σ⇒

..
σlos =

(
.
v
v −

2
.
LRgo

LRgo

)
.
σlos +

.
LRgo
LRgo

.
σ

(27)

Defining Tgoc as the predicted remaining time of flight, Tgoc is derived via the remain-
ing flight range and variation in range, expressed in Equation (28).

Tgoc = −
LRgo
.
LRgo

(28)
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Defining the value of state x =
.
σlos and the value of control u =

.
σ, the differential of

LOS angular rate is obtained, which is shown in Equation (29).

.
x =

( .
v
v
+

2
Tgoc

)
x− 1

Tgoc
u (29)

In the latter phase of glide flight,
.
v
v is an order of magnitude smaller than 2

Tgoc
.

Equation (29) is further simplified to Equation (30).

.
x =

2
Tgoc

x− 1
Tgoc

u (30)

The current remaining flight time Tgoc, as shown in Equation (31). a certain time t of
future flight starting from the current time t, and the remaining flight time Tgo1 at time t
satisfy the following relationship:

Tgoc = Tgo1 + t (31)

dTgo1 = −dt represents the derivation of remaining flight time. For a given control
input u, the definite integral of Equation (30) is solved, and the calculated result is shown
in Equation (32).

x(t) = e
∫ 2

Tgo1
dt
(∫
− u

Tgo1
e
−
∫ 2

Tgo1
dt

dt + C
)

= e
∫ 2

Tgoc−t dt
(∫
− u

Tgoc−t e
−
∫ 2

Tgoc−t dt
dt + C

)
= e−2 ln (Tgoc−t)

(∫ u
t−Tgoc

e2 ln (t−Tgoc)dt + C
)

= 1
(Tgoc−t)

2

(∫
u
(
t− Tgoc

)
dt + C

)
= 1

(Tgoc−t)
2

(
u
(

1
2 t2 − Tgoct

)
+ C

)
(32)

The LOS angular rate is
.
σlos, at the current time t = 0, the constant C is expressed by

Equation (33).
C =

.
σlosT2

goc (33)
.
σlos is obtained by Equation (34).

.
σlos(t) =

1(
Tgoc − t

)2

(
u
(

1
2

t2 − Tgoct
)
+

.
σlosT2

goc

)
(34)

.
σlos at the terminal time tf is shown in Equation (35).

.
σlos =

.
σlos

(
t f

)
=

1(
Tgoc − t f

)2

(
u
(

1
2

t2
f − Tgoct f

)
+

.
σlosT2

goc

)
(35)

Similarly, based on above analysis,
.
σintlos is calculated via the analysis and prediction.

The solution is shown in Equation (36).

.
σintlos =

.
σintlos

(
tint f

)
=

1(
Tintgoc − tint f

)2

(
u
(

1
2

t2
int f − Tintgoctint f

)
+

.
σintlosT2

intgoc

)
(36)

where Tintgoc represents the total encounter time based on the current moment, tint f repre-
sents encounter time with interceptor, and u is the input overload.
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4.2.2. The Solution of LOS Angular Rate in the Longitudinal Direction

The attack–defense confrontation model in longitudinal direction is shown in Figure 4.
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RRgo and RMgo represent the remaining range among the UAV, target and interceptor,
which are calculated in Equations (37) and (38).

The longitudinal relative motion model between the UAV and the target is shown in
Equation (22). { .

RRgo = −v cos ∆θ

RRgo
.
θlos = v sin ∆θ

(37)

The longitudinal relative motion model between the UAV and the interceptor is shown
in Equation (38). { .

RMgo = −v cos ∆θ − vm cos ∆θm.
RMgo

.
θintlos = v sin ∆θ − vm sin ∆θm

(38)

In order to simplify the calculation, the relative motion equation Equation (38) is
expressed as Equation (39). { .

RMgo = −vr cos ∆θmn

RMgo
.
θintlos = vr sin ∆θmn

(39)

where vr and ∆θmn are calculated in Equation (40).{
vr =

√
(v cos θv − vm cos θm)

2 + (v sin θv − vm sin θm)
2

∆θmn = atan v sin θv−vm sin θm
v cos θv−vm cos θm

(40)

To facilitate the analysis and prediction,
.
θlos is calculated as follows. Taking the

derivation of the second formula in Equation (37) results in Equation (41):

.
RRgo

.
θLOS + RRgo

..
θLOS =

.
v sin ∆θ + v∆

.
θ cos ∆θ (41)

Bring the heading error and first formula in Equation (37) results in Equation (41), the
rate of the LOS angular rate is calculated using Equation (42).

.
RRgo

.
θlos + RRgo

..
θlos =

.
v sin ∆θ + v∆

.
θ cos ∆θ ⇒

.
RRgo

.
θlos + RRgo

..
θlos =

.
v
v RRgo

.
θlos −

.
RRgo

.
θlos +

.
RRgo

.
θ ⇒

..
θlos =

(
.
v
v −

2
.
RRgo

RRgo

)
.
θlos +

.
RRgo
RRgo

.
θ

(42)



Drones 2023, 7, 626 13 of 26

Based on the predicted remaining time of flight Tgoc in lateral prediction, the LOS
angular rate is

.
σlos, and at the current time t = 0, the constant C is expressed by Equation (43).

C =
.
θlosT2

goc (43)
.
θlos is obtained using Equation (44).

.
θlos(t) =

1(
Tgoc − t

)2

(
u
(

1
2

t2 − Tgoct
)
+

.
θlosT2

goc

)
(44)

.
θlos at the terminal time tf is shown in Equation (45).

.
θlos =

.
θlos

(
t f

)
=

1(
Tgoc − t f

)2

(
u
(

1
2

t2
f − Tgoct f

)
+

.
θlosT2

goc

)
(45)

Similarly, based on the above analysis,
.
θintlos is calculated via the analysis and predic-

tion. The solution is shown in Equation (46).

.
θintlos =

.
θintlos

(
tint f

)
=

1(
Tintgoc − tint f

)2

(
u
(

1
2

t2
int f − Tintgoctint f

)
+

.
θintlosT2

intgoc

)
(46)

where Tintgoc represents the total encounter time based on the current moment, tint f repre-
sents encounter time with interceptor, and u is the input overload.

According to the above analysis,
( .

σlos,
.
θlos

)
and

( .
σintlos,

.
θintlos

)
depend on the change

in the LOS angle rate. For the guidance mission,
( .

σlos,
.
θlos

)
is related to the overload of the

UAV, and the smaller the value, the closer the UAV approaches the target at the end of the
gliding flight. For the penetration mission,

( .
σintlos,

.
θintlos

)
is related to the overloads of the

UAV and the interceptor, and the greater the value, the higher the costs of the interceptor at
the interception terminal phase, and the UAV will break through more easily if the control
overload of the interceptor reaches saturation.

5. DRL Penetration Guidance Law
5.1. SAC Training Model

Standard DRL maximizes the sum of expected rewards ∑t E(st,at)∼ρπ
[ fr(st,at)]. For

the problem of multi-dimensional continuous state inputs and a continuous action output,
SAC networks are introduced to solve the MDP model.

Compared with other policy learning algorithms [28], SAC augments the standard RL
objective with expected policy entropy using Equation (47).

Jπ = ∑
t

γtE(st ,at)∼ρπ
[ fr(st, at) + τH(π( · |st))] (47)

The entropy term τH(π( · |st)) is shown in Equation (48), which represents the stochas-
tic feature of the strategy, balancing the exploration and learning of networks. The entropy
parameter τ determines the relative importance of entropy against the immediate reward.

H(π( · |st)) = −
∫

a∈A π(a| st) log π(a| st)da
= E

a∼π(· |st)
[− log π(a| st)] (48)
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The optimal strategy of SAC is shown in the Equation (49), aiming at maximizing the
cumulative reward and policy entropy.

π∗MaxEnt = argmax
π

∑
t

γtE(st ,at)∼ρπ
[ fr(st, at) + τH(π( · |st))] (49)

The framework of SAC networks is shown in Figure 5, consisting of an Actor network
and a Critic network. The Actor network generates the action, and the environment returns
the reward and the next state. All of the ballistics data are stored in the experience pool,
including the state, action, reward, and next state.
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The Critic network is used to judge the found strategies, which impartially guides the
strategy of the Actor network. At the beginning, the Actor network and Critic network are
given random parameters. The Actor network struggles to generate the optimal strategy,
and Critic network struggles to scientifically judge the strategy of the Actor network. The
parameters of the networks need to be updated based on continuously generating data and
sampling ballistics data.

For updating the Critic network, it outputs the expected reward E
a∼π(· |st)

based on

samples, and the Actor network outputs the action probability, which is depicted by the
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entropy term H(π( · |st)). Combining E
a∼π(· |st)

with H(π( · |st)), the value function is

conducted and shown in Equation (50)

Qso f t(st, at) = E
(st ,at)∼ρπ

[
∞

∑
t=0

γtr(st, at) + τ
∞

∑
t=1

γtH(π(·
∣∣st))

]
(50)

We further obtain the Bellman equation, as shown in Equation (51):

Qso f t(st, at) = E
st+1 ∼ ρ(st+1|st, at)
at+1 ∼ π

[
r(st, at) + γ

(
Qso f t(st+1, at+1) + τH(π(·

∣∣∣st+1))
)]

(51)

Given by Equation (52), the loss function of the Critic network is acquired as follows:

JQ(ψ) = E
(st, at, st+1) ∼ D
at+1 ∼ π

[
1
2

(
Qso f t(st, at)−

(
r(st, at) + γ

(
Qso f t(st+1, at+1)− τ log(π(at+1|st+1))

)))2
]

(52)

For updating the Actor network, the updating strategy is shown in Equation (53)

πnew = argminDKL
π∈∏

π(·|st)

∥∥∥∥∥∥
exp

(
1
τ Qπold

so f t(st, ·)
)

Zπold
so f t(st)

 (53)

where Π represents the set of strategies, and Z is the partition function, used to normalize
the distribution. DKL is the Kullback–Leibler (KL) divergence [29].

Combining the re-parameterization technique with Equation (54), the loss function of
the Actor network is obtained as follows:

Jπ(φ) = E
st∼D,εt∼N

[τ log π( f (εt; st)|st)−Qso f t(st, f (εt; st))] (54)

in which at = f (εt; st), and εt is the input noise, obeying the distribution N.
The method of stochastic gradient descent is introduced to minimize the loss function

of networks. The optimal parameters of the Actor–Critic networks are obtained by repeating
the updating process and passing the parameters to the target networks via soft updating.

5.2. Meta SAC Optimization Algorithm

The learning algorithm in DRL relies on a lot of interaction between the agent and the
environment and high training costs. Once the environment changes, the original strategy
is no longer applicable and needs to be learned from scratch. The penetration guidance
problem under the stable flight environment can be solved using SAC networks. For a
changeable flight environment, such as where the initial position of the interceptor changes
greatly or the interceptor guidance law deviates greatly from the preset value, the strategy
solved via traditional SAC struggles to adapt, which thus requires to restudy and redesign.
This manuscript introduces meta-learning to optimize and improve SAC performance.
The training goal of Meta SAC is to obtain initial SAC model parameters. When the UAV
penetration mission is changed, through a few scenes of learning, the UAV can adapt to the
new environment and complete the corresponding guidance penetration mission, without
relearning model parameters. Meta SAC can achieve “learn while flying” for UAVs and
strengthen the adaptability of UAVs.

The Meta SAC algorithm is shown in Algorithm 1, which is divided into a meta-
training and meta-testing phase. The meta-training phase seeks to determine the optimal
meta-learning parameters based on multi-experience missions. In the meta-testing phase,
the trained meta parameters are interactively learned in the new mission environment to
fine-tune the meta parameters.
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Algorithm 1 Meta SAC

1: Initialize the experience pool Ω, Storage space N
2: Meta training:
3: Inner loop
4: for iteration k do
5: sample mission(k) from T ∼ p(T )
6: update actor policy Θ to Θ′ using SAC based on mission(k):
7: Θ′ ← SAC(Θ, mission(k)) .
8: Outer loop

9: Θ = mmse
(

k
∑

i=1
Θ′ i

)
10: Generate D1 from Θ and estimate the reward of Θ.
11: Add a hidden layer feature as a random noise.

12: Θ′ i = Θ + αΘ∇ΘEαt∼π(αt |st ;Θ,zi),zi∼N (µi ,σi)

[
∑
t

Rt(st)

]
13: The meta-learning process of different missions is carried out through SGD.
14: for iteration mission(k) do
15: min

Θ
∑

Ti∼p(T )
LTi

(
fΘ′ i

)
= ∑
Ti∼p(T )

LTi

(
fΘ−α∇ΘLTi ( fΘ)

)
16: Θ = Θ− β∇Θ ∑

Ti∼p(T )
LTi

(
fΘ′ i

)
17: Meta testing
18: Initialize the experience pool Ω, Storage space N.
19: Load meta training network parameters Θ.
20: Set training parameters.
21: for iteration i do
22: sample mission from T ∼ p(T )
23: Θ′ = SAC(Θ, mission(k))
End for

The basic assumption of Meta SAC is that the experience mission for meta training
and the new mission for meta testing obey the same mission distribution p(T ). Therefore,
there are some common characteristics between different missions. In the DRL scenario,
our goal is to learn a function fθ with parameter θ, which can minimize the loss function
LT of a specific mission T . In the meta DRL scenario, our goal is to learn a learning process
θ′ = µψ

(
Dtr
T , θ

)
, which can quickly adapt to the new mission T with a very small dataset

Dtr
T . Meta SAC can be summarized as optimizing the parameters θ and ψ in the learning

process, and the optimization equation is shown in Equation (55).

minET ∼P(T )
θ,ψ

[
L
(
Dtest
T , θ′

)]
s.t. θ′ = µψ

(
Dtr
T , θ

)
(55)

where Dtest
T and Dtr

T , respectively, represent training and testing missions sampled from
p(T ), and L

(
Dtest
T , θ′

)
represents the testing loss function. In the meta-training phase,

parameters are optimized via the inner loop and outer loop.
In the inner loop, Meta SAC updates the model parameters with a small amount of

randomly selected data for the specific mission T as the training data, reducing the loss of
the model in mission T . In this part, the updating of model parameters is the same as in
the original SAC algorithm, and the agent learns several scenes from randomly selected
missions.

The minimum mean square error of strategy parameters θ corresponding to different
missions in the inner loop phase is solved to obtain the initial strategy parameters θini of
the outer loop. In this manuscript, a hidden layer feature is added to the input part of
strategy θini as a random noise. The random noise is sampled again in each episode, in
order to provide a more continuous random exploration in time, which is helpful for agent
to adjust their overall strategy exploration according to the current mission MDP. The goal
of meta-learning is to enable the agent to learn how to quickly adapt to new missions by
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simultaneously updating a small amount of gradient of strategy parameters and hidden
layer features. Therefore, the θ of θ′ = µψ

(
Dtr
T , θ

)
includes not only parameters of the

neural network, but also the distribution parameters of hidden variables of each mission,
namely the mean and variance of the Gaussian distribution, as shown in Equation (56).

µ′i = µi + αµ∇µi Eαt∼π(αt |st ;θ,zi),zi∼N (µi ,σi)

[
∑
t

Rt(st)

]
σ′i = σi + ασ∇σi Eαt∼π(αt |st ;θ,zi),zi∼N (µi ,σi)

[
∑
t

Rt(st)

]
θ′i = θ + αθ∇θEαt∼π(αt |st ;θ,zi),zi∼N (µi ,σi)

[
∑
t

Rt(st)

] (56)

The model is represented by a parameterized function fθ with parameter θ, and when
it is transferred to a new mission T , model parameter θ is updated to θ′ through gradient
rise, as shown in Equation (57).

θ′i = θ − α∇θLTi ( fθ) (57)

We update step α is a fixed super parameter. Model parameter θ is updated to
maximize the performance fθ′i

of different missions, as shown in Equation (58).

min
θ

∑
Ti∼p(T )

LTi

(
fθ′i

)
= ∑
Ti∼p(T )

LTi

(
fθ−α∇θLTi ( fθ)

)
(58)

The meta-learning process of different missions is carried out through SGD, and the
principle of θ is as follows:

θ = θ − β∇θ ∑
Ti∼p(T )

LTi

(
fθ′i

)
(59)

where β is the meta update step.
In the meta-testing phase, a small amount of experience in new missions is used to

quickly learn strategies for solving new missions. A new mission may involve completing a
new mission goal or achieving the same mission goal in a new environment. The updating
process of the model in this phase is the same as the cycle part in the meta-training phase,
and by calculating the loss function with the data collected in the new mission and adjusting
the model through back propagation, the new mission is adapted by the agent.

6. Simulation Analysis

In this section, the manuscript analyzes and verifies the escape guidance strategy
based on Meta SAC. SAC is used to solve a specific escape guidance mission. We conduct
comprehensive experiments to verify whether the UAV can complete the guidance escape
mission under satisfying terminal and process constraints. Once the UAV guidance escape
mission changes, the original strategy based on SAC cannot be easily adapted to the
changed mission and thus needs to be relearned and retrained. The manuscript proposes
an optimization method via meta-learning that improves the learning ability of UAVs
during the training process. This section focuses on verifying the validation of Meta SAC
and demonstrating its performance in various new missions. In addition, the maneuvering
overload commands under different pursuit evading distances are analyzed in order to
explore the influence of different maneuvering timings and distances on the escape results.
We use CAV-H to verify the escape guidance performance. The initial conditions, terminal
altitude, and Meta SAC training parameters are given in Table 1.
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Table 1. Simulation and Meta SAC training conditions.

Scheme Meta SAC Training Parameters

UAV initial velocity 4000 m/s Learning episodes 1000
Initial velocity Inclination 0◦ Guidance period 0.1 s
Initial velocity azimuth 0◦ Data sampling interval 30 Km

Initial position (3◦ E, 1◦ N) Discount factor γ = 0.99
Initial altitude 45 Km Soft update tau 0.001

Terminal altitude 40 Km Learning rate 0.005

Target position (0◦ E, 0◦ N) Sampling size for each
train 128

Interceptor Initial
velocity 1500 m/s Net layers 2

Initial velocity Inclination Longitudinal LOS angle Net nodes 256

Initial velocity azimuth Lateral LOS angle Capacity of experience
pool 20,000

6.1. Validity Verification on SAC

In order to verify the effectiveness of SAC, three different pursuit evading scenarios are
constructed, and the terminal reward value, miss distance, and terminal position deviation
are analyzed. As shown in Figure 6a, the terminal reward value is poor in the initial phase
of training, which demonstrates that the optimal strategy is not found. After 500 episodes,
the terminal reward value increases gradually, indicating that a better strategy has been
explored and converged. In the last 100 episodes, the optimal strategy is trained and
learned, while the network parameters are adjusted to the optimal strategy. As can be
seen from Figure 6b, the miss distance is relatively divergent in the first 150 episodes of
training, indicating that the Action network in SAC constantly explores new strategies, and
the Critic network also learns scientific evaluation criteria. After 500 training episodes, the
network gradually learns and trains in the direction of optimal solution. The miss distance
at the encounter moment converges to about 20 m. As shown in Figure 6c, the terminal
position of the UAV has a large deviation in the early training phase, which is attributed
to the exploration of the escape strategy by the network. In the later training phase, the
position deviation is less affected by exploration. These pursuit evading scenarios tested in
the manuscript can achieve convergence, and the final convergence values are all within
1 m.
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In order to verify whether the SAC algorithm can solve the escape guidance strategy
that meets the mission requirements in different pursuit and evasion scenarios, the pursuing
and evading distance is changed, and the training results are shown in Figure 7. In the
medium-range scenario, the miss distance converges to about 2 m, and the terminal
deviation converges to about 1 m.
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As shown in Figure 8, in long-range attack and defense scenarios, the miss distance
converges to about 5 m, and the terminal deviation converges to about 1 m.
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Based on the above simulation analysis, SAC is a feasible method to solve the UAV
guidance escape strategy. After limited episodes of learning and training, network parame-
ters are converged, which is used to test the flight mission.

6.2. Validity Verification on Meta SAC

When the mission of the UAV changes, the original SAC parameters cannot meet
the requirements of the new mission, and thus the parameters need to be retrained and
relearned. The SAC proposed in the manuscript is improved via meta-learning. Strong
adaptive network parameters are found using learning and training, and when the pursuit
evading environment changes, the network parameters are fine-tuned to adapt to the new
environment immediately.

Meta SAC is divided into a meta-training phase and a meta-testing phase, and initial-
ization parameters for the SAC network are trained in the meta-training phase, which is
fine-tuned by interacting with the new environment in the meta-testing phase. By changing
the initial interceptor position, three different pursuit evading scenarios are constructed,
which represent a short, medium, and long distance.

The training results of Meta SAC and SAC are compared, and terminal reward values
are presented in Figure 9a. Meta SAC is an effective method to speed up the training
process, and after 100 episodes, a better strategy is learned by the network and converged
gradually. In contrast, the SAC network needs 500 episodes to find the optimal solution.
Miss distance is shown in Figure 9b. The better strategy is quickly learned by Meta SAC,
which is more effective than the SAC method. Figure 9c shows the terminal deviation
between the UAV and the target.
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Figure 9. Meta SAC training results of the short-range scenario. (a) Reward value, (b) miss distance,
(c) target deviation.

To explore the optimal solution as much as possible, some strategies with large terminal
position deviations appear in the training process. As shown in Figure 10b,c, in medium-
range attack and defense scenarios, the miss distance converges to about 8 m based on
Meta SAC, and the terminal deviation converges to about 1 m.
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Figure 10. Meta SAC training results of the medium-range scenario. (a) Reward value, (b) miss
distance, (c) target deviation.

As shown in Figure 11b,c, in long-range attack and defense scenarios, the miss distance
converges to about 10 m based on Meta SAC, and the terminal deviation converges to about
1 m.
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According to the theoretical analysis, in the training process, new missions correspond-
ing to the same distribution are used to execute micro-testing using Meta SAC, resulting in
more gradient-descending directions of the optimal solution being learned by the network.
Combined with the theory analysis and training results, the manuscript demonstrates that
meta-learning is a feasible method to accelerate convergence and improve the efficiency of
training.

In the previous analysis, when the pursuit evading scenario is changed, network pa-
rameters obtained in the meta-training phase are fine-tuned through a few interactions. The
manuscript verifies meta testing performance by changing the initial interceptor position,
and results compared with the SAC method are shown in Table 2. Based on the network
parameters of the meta-training phase, the strategic solutions for the escape guidance mis-
sions are found through training within 10 episodes. On the contrary, network parameters
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based on SAC need more interaction to find solutions, and the episode of interactions
comprises more than 50 episodes. According to the above simulation, the adaptability of
Meta SAC is much greater than SAC, and once the escape mission changes, through very
few episodes of learning, the new mission is completed by the UAV without re-learning
and designing the strategy. The method provides the possibility of realizing UAV learning
while flying.

Table 2. Results compared with the SAC method.

Interceptor
Initial Position (Km) Interaction Episodes Miss Distance (m) Terminal Deviate

(m)

SAC Meta SAC SAC Meta SAC SAC Meta SAC

(0, 30, 0) 74 1 3.78 3.29 0.56 0.61
(2, 30, 6) 75 4 2.80 2.72 0.68 0.72
(4, 30, 12) 59 8 6.93 3.75 0.69 0.58
(6, 30, 18) 59 1 2.71 6.82 0.68 0.72
(8, 30, 24) 26 2 3.16 3.70 0.47 0.50

(10, 30, 30) 58 3 3.50 2.37 0.61 0.64
(12, 30, 36) 67 1 2.86 2.21 0.68 0.45
(14, 30, 42) 56 8 2.18 2.89 0.55 0.61
(16, 30, 48) 69 1 2.73 2.23 0.61 0.72
(18, 30, 54) 106 1 2.45 3.71 0.56 0.63
(20, 30, 60) 94 1 2.7 2.35 0.49 0.54
(22, 30, 66) 59 1 2.23 2.51 0.73 0.71
(24, 30, 72) 62 1 2.11 3.47 0.48 0.67
(26, 30, 78) 63 1 2.04 4.5 0.48 0.57
(28, 30, 84) 63 4 2.64 5.12 0.47 0.40
(30, 30, 90) 63 9 2.95 6.05 0.68 0.47

6.3. Strategy Analysis Based on Meta SAC

This section tests the network parameters based on Meta SAC, and analyzes the escape
strategy and flight state under different pursuit evading distances. As shown in Figure 12a,
for the pursuit evading scene over a short distance, the longitudinal maneuvering overload
is larger in the first half of the phase of escape, resulting in the velocity slope angle decreas-
ing gradually. In the second half of the phase of escape, if the strategy is executed under
the original maneuvering overload, the terminal altitude constraint cannot be satisfied, and
therefore, the overload gradually decreases, and the velocity slope angle is slowly reduced.
As shown in Figure 12b, at the beginning of escape, the lateral maneuvering overload is
positive, and the velocity azimuth angle constantly increases. With the distance between
the UAV and the interceptor reducing, the overload increases gradually in the opposite
direction, and the velocity azimuth angle decreases. On the one hand, this can confuse the
strategy of the interceptor, while on the other hand, the guidance course is corrected.
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As shown in Figure 13a, compared with the pursuit evading scene of a short distance,
the medium-distance escape process takes longer, the pursuing time left to the interceptor is
longer, and the UAV flies in the direction of increasing the velocity slope angle. The timing
of the maximum escape overload corresponding to the medium distance is also different.
As shown in Figure 13b, in the first half of the phase of escape, lateral maneuvering overload
corresponding to a medium distance is larger than that in a short distance, and in the second
half of the phase of escape, the corresponding reverse maneuvering overload is smaller,
resulting in the UAV being able to use the longer escape time to slowly correct the course.
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As shown in Figure 14, under a long pursuit distance, the overload change of the UAV
maneuver is similar to that for a medium range, and the escape timing is basically the same
as the escape strategy.
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According to the above analysis, the escape guidance strategy via Meta SAC can be
used as a tactical escape strategy, and the timing of escape and the maneuvering overload
are adjusted in a timely manner under different pursuit evading distances. On the one
hand, the overload corresponding to this strategy can confuse the interceptor and cause
some interference, and on the other hand, it can take into account the guidance mission,
correcting the course deviation caused by escape.

Figure 15a shows the flight trajectory of the interceptor against UAV at the North East
Down (NED) coordinate (10 km, 30 km, 30 km), the trajectory point at the encountering
moment is shown in Figure 15b, and the miss distance is 19 m in this pursuit evading scene.
To verify the scientific and applicability of Meta SAC, the initial position of interceptor
is changed. Flight trajectories are shown in Figure 15c,e, and trajectory points at the
encountering moment are shown in Figure 15d,f. The miss distances in these two pursuit
evading scenarios are 3 m and 6 m, respectively. Based on the CAV-H structure, the miss
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distance between the UAV and the interceptor is greater than 2 m at the encountering
moment, which means that the escape mission is achieved.

Drones 2023, 7, x FOR PEER REVIEW 21 of 25 
 

(a) (c) (e) 

(b) (d) (f) 

Figure 15. The ballistic flight diagrams of the whole course under different pursuit evading dis-
tances. (b,d,f) represent trajectories at the encountering time under different pursuit evading dis-
tances. 

Based on the principles of Meta SAC and optimal guidance, flight states are shown 
in Figure 16. Longitude, latitude, and altitude during the flight of the UAV are shown in 
Figure 16a,b, under different pursuit evading scenarios, and the terminal position and al-
titude constraints are met. There is larger amplitude modification in the velocity slope and 
azimuth angle, which is attributed to the escape strategy via lateral and longitudinal ma-
neuvering, as shown in Figure 16c,d. The total change in velocity slope and azimuth angle 
is within two degrees, which meets the flight process constraints. Through the analysis of 
flight states, this escape strategy is an effective measure for guidance and escape with high 
accuracy. 
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Based on the principles of Meta SAC and optimal guidance, flight states are shown
in Figure 16. Longitude, latitude, and altitude during the flight of the UAV are shown
in Figure 16a,b, under different pursuit evading scenarios, and the terminal position and
altitude constraints are met. There is larger amplitude modification in the velocity slope
and azimuth angle, which is attributed to the escape strategy via lateral and longitudinal
maneuvering, as shown in Figure 16c,d. The total change in velocity slope and azimuth
angle is within two degrees, which meets the flight process constraints. Through the
analysis of flight states, this escape strategy is an effective measure for guidance and escape
with high accuracy.

Flight process deviation mainly includes aerodynamic calculation deviation and out-
put overload deviation. For the aerodynamic deviation, this manuscript uses the interpola-
tion method to calculate it based on the flight Mach number and angle of attack, which may
have some deviation. Therefore, when calculating the aerodynamic coefficient, random
noise with an amplitude of 0.1 is added to verify whether the UAV can complete the
guidance mission. As shown in Figure 17a, aerodynamic deviation noise causes certain
disturbances to the angle of attack during the flight. At the 10th second and end of the
flight, the maximum deviation of the angle of attack is 2◦. However, overall, the impact
of aerodynamic deviation on the entire flight is relatively small, and the change in angle
of attack is still within the safe range of the UAV. As shown in Figure 17b, due to the
constraints of UAV game confrontation and guidance missions, the bank angle during the
entire flight process changes significantly, and aerodynamic deviation noise has a small
impact on the bank angle. After increasing the aerodynamic deviation noise, the miss
distance between the UAV and the interceptor at the time of encounter is 8.908 m, and
the terminal position deviation is 0.52 m. Therefore, under the influence of aerodynamic
deviation, the UAV can still complete the escape guidance mission.
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For the output overload deviation, the total overload is composed of the guiding
overload derived from the optimal guidance law and the maneuvering overload output
derived from the neural network. Random maneuvering overload with an amplitude of
0.1 is added to verify whether the UAV can complete the maneuver guidance mission. As
shown in Figure 18, random overloads are added in the longitudinal and lateral directions,
respectively. Through simulation testing, the miss distance between the UAV and the
interceptor at the encounter point is 10.51 m, and the terminal deviation of the UAV is
0.6 m. Under this deviation, the UAV can still achieve high-precision guidance and efficient
penetration.
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7. Conclusions

This manuscript proposes an escape guidance strategy satisfying multiple terminal
constraints via SAC. The action space is designed under the UAV process constraint.
Considering the fact that real-time interceptor information is hard to obtain in the actual
escape process, the state space considering the target and the heading angle is designed.
The reward function is an important index function that is used to guide and evaluate the
training results. Based on the pursuit evading model, the terminal LOS angle rates in the
lateral and longitudinal directions are derived to describe the deviation and miss distance.
In order to improve the adaptability of the escape guidance strategy, the manuscript
improves SAC via meta-learning and compares meta SAC with SAC. The strong adaptive
escape strategy based on Meta SAC is analyzed. In view of the above theoretical numerical
analysis, we have obtained the following conclusions:

(1) The escape guidance strategy based on SAC is a feasible tactical escape strategy that
can achieve high-precision guidance while meeting the escape requirements.

(2) Meta SAC can significantly improve the adaptability of the escape strategy. When the
escape mission changes, it can fine-tune network parameters to adapt to the mission
through a small number of training epochs. This method provides the possibility for
the UAV to learn while flying.

(3) The strong adaptive escape strategy based on Meta SAC can adjust the escape timing
and maneuver overload in real time according to the pursuit evading distance. On
the one hand, the overload corresponding to this strategy can confuse the interceptor
and cause some interference, while on the other hand, it can take into account the
guidance mission, correcting the course deviation caused by escape.
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