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Abstract: This paper is concerned with the robust collision-free guidance and control of underactuated
multirotor aerial vehicles in the presence of moving obstacles capable of accelerating, linear velocity
and rotor thrust constraints, and matched model uncertainties and disturbances. We address this
problem by using a hierarchical flight control architecture composed of a supervisory outer-loop
guidance module and an inner-loop stabilizing control one. The inner loop is designed using a
typical hierarchical control scheme that nests the attitude control loop inside the position one. The
effectiveness of this scheme relies on proper time-scale separation (TSS) between the closed-loop
(faster) rotational and (slower) translational dynamics, which is not straightforward to enforce in
practice. However, by combining an integral sliding mode attitude control law, which guarantees
instantaneous tracking of the attitude commands, with a smooth and robust position control one,
we enforce, by construction, the satisfaction of the TSS, thus avoiding the loss of robustness and
use of a dull trial-and-error tweak of gains. On the other hand, the outer-loop guidance is built
upon the continuous-control-obstacles method, which is incremented to respect the velocity and
actuator constraints and avoid multiple moving obstacles that can accelerate. The overall method
is evaluated using a numerical Monte Carlo simulation and is shown to be effective in providing
satisfactory tracking performance, collision-free guidance, and the satisfaction of linear velocity and
actuator constraints.

Keywords: multirotor aerial vehicles; integral sliding mode control; velocity obstacles; collision
avoidance

1. Introduction

Multirotor aerial vehicles (MAVs) have been extensively researched in recent decades
and are expected to be widely used for a variety of new, challenging applications, such
as delivery [1] and air taxis [2]. These applications demand a high level of safety and are
usually carried out in disturbed environments where the MAV may fly among obstacles
such as buildings, other manned or unmanned aircraft, and birds. To enable dependable
operation, the MAV flight control system must provide outstanding performance, robust-
ness, and collision avoidance. Aiming at contributing to this topic, this paper focuses on
underactuated MAVs equipped with fixed rotors (which includes the conventional and
widespread quadrotor). We start by adopting a typical hierarchical guidance and control
architecture [3], such as the one shown in Figure 1. This architecture is composed of an
outer-loop guidance system whose goal is to conduct the vehicle to the desired state while
avoiding collisions and respecting operational and physical constraints. It also contains an
inner control loop providing stability and robustness.

To address the robustness requirement of MAV flight control systems against model
uncertainties and disturbances, the sliding mode control [4,5] (SMC) strategy has been
widely adopted to design the position and attitude control laws [6–11]. This technique
provides a high-frequency switching control signal to drive and keep a system output
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on a sliding manifold, where the system ideally becomes insensitive to bounded model
uncertainties and disturbances of the matched type. In particular, there are also SMC design
techniques based on sliding manifolds suitably constructed to eliminate the reaching
phase, i.e., to enable a sliding motion (with the insensitivity property) from the very
beginning [12–16]. These design techniques can be found in the literature under two main
alternative designations: the integral sliding mode control (ISMC) [14] and sometimes the
global sliding mode control (GSMC) [13,16].

Figure 1. A typical hierarchical guidance and control architecture for MAVs.

To deal with the underactuated dynamics of the considered class of MAVs, most of
the literature relies on the assumption of time-scale separation (TSS) between the (slower)
position and (faster) attitude closed-loop dynamics [6–9,17–21], which allows us to nest
the attitude control loop inside the position one. As a consequence, the position and
attitude control laws can be designed separately, but their gains have to be suitably tuned
to achieve a sufficient TSS. In particular, the use of SMC in underactuated control systems
is still a challenge [22]. In fact, under this nested control architecture, by using a high-
frequency switching signal in the outer-loop position control law, it is not possible to
properly guarantee the required TSS since such a signal is too fast to be considered slow
in the design of the inner-loop attitude control. Nevertheless, there is no restriction on
the use of such a policy in the attitude control. In this context, Besnard et al. [6] designed
flight controllers using a continuous SMC driven by a sliding mode disturbance observer
(SMDO). A procedure to tune the controllers’ gains in order to respect the TSS between the
control loops was presented. Muñoz Palacios et al. [7] adopted a modified super-twisting
SMC driven by a high-order sliding mode observer. Silva and Santos [8] and Labbadi
and Cherkaoui [9] designed nonsingular fast terminal sliding mode flight control laws,
but, to avoid the TSS violation, the position control loop was smoothed using sigmoid
functions at the cost of robustness. It is worth noting that all the above-cited methods
demand a trial-and-error procedure for the tuning of the flight control laws to respect the
TSS assumption and avoid eventual instability.

The guidance of MAVs among obstacles has been addressed in the literature using
different methods, such as nonlinear model predictive control (NMPC) [23,24], sampling-
based search [25], and velocity obstacles (VO) [26–28]. In particular, Kamel et al. [23] and
Pereira et al. [24] employed an NMPC to guide an MAV through static obstacles, addressing
the collision avoidance problem by using a penalty in the cost function. Furthermore,
Bouzid et al. [25] guided an MAV among static obstacles by combining an optimal rapidly
exploring random tree (RRT) method with a genetic algorithm to compute the shortest
path to a given target. On the other hand, Bareiss and Van Den Berg [27] proposed
the linear–quadratic regulator obstacles (LQR obstacles) to address collision avoidance
for mobile robots described by linear dynamics, rather than by single integrators as in
the original VO [26]. The method was evaluated using quadcopters whose nonlinear
dynamics were supposed to be known and linearized around the hover state. Other
methods, such as the acceleration velocity obstacles (AVO) [29] and continuous control
obstacles (CCO) [30], were also developed as generalizations of the VO to deal with more
complicated known linear dynamics. Among the references [23–25,27], only [27] addresses
the guidance problem for MAVs in the presence of moving obstacles. However, they use a
simplified dynamic model and, like the VO-based methods [26,29,30], predict the obstacles’
future positions assuming that they keep a constant velocity, which is generally not satisfied
in practice, but is addressed using a quick replanning loop with no guarantee that collision
can be avoided when the obstacles accelerate.
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This paper tries to fill the aforementioned gaps in the current state of the art by
addressing the guidance and control for underactuated MAVs subject to matched model
uncertainties and disturbances, as well as velocity and rotor thrust constraints, in the
presence of obstacles that can accelerate. To tackle this problem, we start by adopting
the hierarchical architecture shown in Figure 1 [3]. To design the position and attitude
control laws, we propose a new hierarchical SMC scheme that, differently from [6–10],
enforces the TSS without losing robustness and using a dull trial-and-error tweak of gains.
Under this scheme, the attitude control law is designed using an ISMC strategy, in such
a way as to guarantee exact tracking capability in the attitude control loop during the
entire time, under the condition that the attitude command is sufficiently smooth. Then,
this smoothness requirement is fulfilled by designing the position control law using a
proportional–derivative (PD) approach combined with an SMDO to endow the position
control loop with robustness. By doing so, the TSS is instantaneously enforced since the
inner loop is made infinitely fast. On the other hand, we propose a nonlinear and robust
guidance strategy based on the CCO method [30]. The guidance considers the use of smooth
reference filters and, rather than relying on overly simplified nominal dynamics, it is able
to deal with the uncertain nonlinear system dynamics. These system dynamics, as seen by
the guidance algorithm, encompass the reference filters and the translational and rotational
control loops, including the uncertainties and disturbances. Then, using the fact that the TSS
is enforced by the control strategy, we tighten the admissible sets according to the bounds
of the MAV tracking errors as well as the bounds of the disturbance force and torque. By
doing so, different from that of Bareiss and Van Den Berg [27], the proposed strategy is able
to guarantee collision avoidance and the satisfaction of velocity and rotor thrust constraints
for underactuated MAVs with uncertain dynamics. Furthermore, to reliably address the
problem of collision avoidance in the presence of obstacles that can accelerate, we adopt
our previous method [28] that uses a high-order sliding mode differentiator (SMD) [31,32]
to robustly estimate the obstacles’ maximum accelerations. Then, using these estimates, the
obstacles’ future positions are not predicted using first-order models, as generally done in
the VO-based methods [26,27,29,30], but considering the obstacles’ maximum accelerations.
To summarize, the main contributions of this paper are the proposal of

• a hierarchical SMC scheme to design the position and attitude control laws for under-
actuated MAVs that, by construction, enforces the TSS assumption and

• robust guidance, based on the CCO and designed using a constraint-tightening ap-
proach, for underactuated MAVs with uncertain dynamics in the presence of velocity
and rotor thrust constraints and multiple moving obstacles capable of accelerating.

The remaining text is structured as follows. Section 1.1 presents the notation. Section 2
defines the problem. Sections 3 and 4 present, respectively, the control and guidance
methods. Section 5 evaluates the proposed method using numerical simulations. Lastly,
Section 6 concludes the paper.

1.1. Notation

The sets of real numbers, positive real numbers, and non-negative real numbers are
denoted by R, R>0, and R≥0, respectively. In the same manner, the sets of integer numbers,
positive integer numbers, and non-negative integer numbers are denoted by Z, Z>0, and
Z≥0, respectively. Uppercase and lowercase boldface letters are used, respectively, to denote
matrices and algebraic vectors, while geometric (Euclidean) vectors are denoted as in~a.
The symbols In and 0n×m denote, respectively, the n× n identity matrix and the n×m zero
matrix. Moreover, the vectors of ones and zeros of dimension n are denoted, respectively,
by 1n and 0n. A Cartesian coordinate system (CCS) is represented as Sb , {B;~xb,~yb,~zb},
with B denoting its origin and ~xb, ~yb, and~zb representing the unit geometric vectors along
its orthogonal axes. The algebraic vectors corresponding to the projection of an arbitrary
physical vector~a ∈ R3 onto Sb and Sr are denoted, respectively, by ab ∈ R3 and ar ∈ R3.
The relation between ar and ab is ab = Db/rar, where Db/r ∈ SO(3) is the attitude matrix of
Sb relative to Sr and SO(3) , {D ∈ R3×3|DTD = I3} denotes the special orthogonal group.
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The inverse of Db/r is equal to its transpose, being denoted by Dr/b. Let ~a b/r represent
an arbitrary quantity of Sb relative to Sr, e.g., throughout this paper,~r b/r will denote the
position of Sb with respect to Sr. Consider two arbitrary algebraic vectors x = (x1, . . . , xn)
and y = (y1, . . . , yn). The vector inequality x < y means that xi < yi, ∀i ∈ {1, . . . , n}. The
kth-order time derivative of x is denoted by x(k). Furthermore, we define the vector signum
function as sign(x) , (sign(x1), . . . , sign(xn)), where

sign(xi) ,


1 xi > 0,

0 xi = 0,

−1 xi < 0,

with i ∈ {1, . . . , n}. The Euclidean norm and component-wise absolute value of x are de-

noted, respectively, by ‖x‖ ,
√

x2
1 + · · ·+ x2

n and |x| , (|x1|, . . . , |xn|). On the other hand,

the component-wise absolute value of a generic matrix A ∈ Rm×n is |A| ,
(
|Ai,j|

)
∈ Rm×n,

where Ai,j is the element of the ith row and jth column of A. The standard basis vectors of
R3 are denoted by e1 , (1, 0, 0), e2 , (0, 1, 0), and e3 , (0, 0, 1). A closed sphere of radius
ρ ∈ R>0 centered at p ∈ R3, the Minkowski sum of two sets, and the set subtraction are
denoted, respectively, by

B(p, ρ) =
{

x ∈ R3 | ‖x− p ‖ ≤ ρ
}

,

X ⊕Y = {x + y | x ∈ X , y ∈ Y},
X \ Y = {x | x ∈ X , x /∈ Y}.

Finally, consider the Sr representations ar and br , (b1, b2, b3) of~a and~b, respectively.
The vector product ~c = ~b ×~a is represented in Sr by cr = [br×]ar, where [br×] is the
following skew-symmetric matrix:

[br×] ,

 0 −b3 b2

b3 0 −b1

−b2 b1 0

.

2. Problem Definition

This section defines the main problem of the paper. First, the MAV translational and
rotational dynamics are derived in Section 2.1. Second, the control and guidance problems
are stated in Section 2.2.

2.1. MAV Dynamic Modeling

Consider an inertial reference CCS Sr , {R;~xr,~yr,~zr} fixed on the ground at a known
point R, with ~zr oriented upwards, parallel to the local vertical. Moreover, consider a
body-fixed CCS Sb , {B;~xb,~yb,~zb} located at a point B fixed to the MAV center of mass, as
shown in Figure 2, along with an illustration of a general underactuated MAV equipped
with nr ≥ 4 fixed rotors parallel to~zb.

The attitude kinematics of Sb with respect to Sr can be described in SO(3) by [33]

Ḋb/r
= −

[
ωb/r

b ×
]
Db/r, (1)

where Db/r ∈ SO(3) and ωb/r
b ∈ R3 are, respectively, the attitude matrix and the angular

velocity of the MAV.
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. . .

. . .

Figure 2. The adopted CCSs and a general underactuated MAV equipped with nr fixed rotors parallel
to~zb.

Using the Euler equation [34], the MAV rotational dynamics can be described by

ḣb + ωb/r
b × hb = τc

b + τd
b , (2)

where hb ∈ R3 is the angular momentum of the MAV relative to point B, τc
b ∈ R3 is the

control torque, and τd
b ∈ R3 is the disturbance torque, which can include state-dependent

terms related to parametric and model uncertainties [11]; both torques are with respect to
B. Assuming a rigid airframe and negligible rotor inertias, the angular momentum hb can
be written as

hb = Jbωb/r
b , (3)

where Jb ∈ R3×3 is the MAV inertia tensor.
By substituting (3) into (2), the rotational dynamics can be finally described by

ω̇b/r
b = J−1

b

[
Jb ωb/r

b ×
]
ωb/r

b + J−1
b

(
τc

b + τd
b

)
. (4)

The translational kinematics of Sb relative to Sr, on the other hand, are represented by

ṙb/r
r = vb/r

r , (5)

where rb/r
r ∈ R3 and vb/r

r ∈ R3 are, respectively, the position and linear velocity of the MAV.
Using Newton’s second law, the translational dynamics of the MAV can be described

in Sr by
v̇b/r

r = −ge3 + m−1
(

f c
r + f d

r

)
, (6)

where g ∈ R>0 is the gravity acceleration magnitude, m ∈ R>0 is the MAV mass, f c
r ∈ R3 is

the control force, and f d
r ∈ R3 is the disturbance force, which can include state-dependent

terms related to parametric and model uncertainties.
The set of Equations (1) and (4)–(6) can be used to represent the six-degrees-of-freedom

(DOF) dynamics of any fixed-rotor rigid MAV with negligible rotor inertia, regardless of its
rotor configuration. For the considered class of underactuated MAVs, the control force is
given by

f c
r = f nr, (7)

where nr , Dr/be3 is the Sr representation of ~zb and f , ‖f c
r ‖ is the resultant thrust

magnitude.
Denote by fi ∈ R the thrust of the ith rotor and define the vector f r , ( f1, f2, . . . , fnr ).

The control allocation equation relating f and τc
b with f r is [35][

f
τc

b

]
= Γf r, (8)

where Γ ∈ R4×nr is the control allocation matrix, which depends on the rotors’ coefficients
and arrangement. For the considered class of underactuated MAVs, Γ is always of full-
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row rank, i.e., rank(Γ) = 4, thus allowing the rotors to produce, within certain limits, a
three-dimensional torque and a resultant thrust in the~zb direction.

The resulting system (1), (4)–(8) is said to be underactuated since it has only four
control inputs, τc

b and f , to control a six-DOF motion. Furthermore, from (6) and (7), it can
be seen that the translational dynamics depend on the MAV attitude. For this reason, we
can say that the rotational and translational dynamics are cascaded.

2.2. Problem Statement

Consider that the MAV is subject to velocity and rotor thrust constraints and flies
among moving obstacles. These circumstances give rise to the following constraints:

rb/r
r ∈ P(t), (9)

vb/r
r ∈ V , (10)

f r ∈ F , (11)

where P(t) ⊆ R3 denotes the collision-free space, which changes as the obstacles move
and is generally non-convex; V ⊆ R3 is an admissible convex set; and F is assumed to be

F ,
{

f r ∈ Rnr | fi ∈
[

f−i , f+i
]
, ∀i ∈ {1, . . . , nr}

}
,

being f−i ∈ R>0 and f+i ∈ R>0, respectively, the given lower and upper bounds for the ith
rotor thrust.

Let us define the heading angle ψ ∈ [−π, π) as the third rotation in the 1-2-3 Euler
angle representation of the MAV attitude.

Denoting the MAV’s desired (constant) position and desired (constant) heading, re-
spectively, by řb/r

r ∈ R3 and ψ̌ ∈ [−π, π), we now define the main problem of the paper.

Problem 1. Guide the underactuated MAV described by (1), (4)–(8) to precisely reach the desired
position řb/r

r and the desired heading ψ̌, while satisfying constraints (9)–(11).

Problem 1 is a nonlinear guidance and control problem of an underactuated MAV
subject to disturbances and constraints, operating in a dynamic environment with multiple
moving obstacles that can accelerate. To tackle this problem, we adopt the guidance and
control architecture shown in Figure 1. The adopted strategy is to design the control module
to provide robustness with respect to disturbances and uncertainties, and the guidance
module to satisfy the position, velocity, and rotors’ thrust constraints while conducting
the vehicle to reach the desired position and heading. The control and guidance methods
are, respectively, detailed in Sections 3 and 4. It is worth mentioning that the objective
of Problem 1 can be immediately generalized for a sequence of desired positions and
headings [3].

3. Control Design

This section presents the design of the position and attitude control laws to address
Problem 1. Specifically, Section 3.1 introduces the adopted hierarchical flight control
architecture. Section 3.2 formulates the attitude control law. Section 3.3 formulates the
position control law. Lastly, Section 3.4 presents the control allocation.

Before proceeding to the next subsection, let us denoted the command of a given
variable by using an overbar symbol, e.g., r̄b/r

r and ψ̄ denote the position and heading
commands, respectively.

3.1. Hierarchical Flight Control Architecture

Most of the literature on underactuated MAVs [6–9,17–21] has designed the position
and attitude controllers relying on a TSS between the (slower) position and (faster) attitude
closed-loop dynamics, which allows us to nest the attitude control loop inside the position
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one, as shown in the block diagram of Figure 3. In this architecture, the position controller
receives r̄b/r

r as the command input, rb/r
r and vb/r

r as feedback, and produces f̄ c
r as the output.

The attitude command generator (ACG) converts n̄r and ψ̄ into the three-dimensional
attitude command D̄b/r. The attitude controller receives D̄b/r as the command input, Db/r

and ωb/r
b as feedback, and produces τ̄ c

b as output. Lastly, the control allocation converts f̄
and τ̄ c

b into individual thrust commands f̄ r ,
(

f̄1, . . . , f̄nr

)
.

Figure 3. Hierarchical control architecture for underactuated MAVs equipped with fixed rotors. ACG
stands for attitude command generator.

Consider the following assumption regarding the rotors.

Assumption 1. The rotor dynamics are instantaneous and their static parameters are exactly known.

Assumption 1 is common in practice since the rotor dynamics are much faster than
the attitude and position ones, thus allowing us to suppose, in the design of the controllers,
that the thrust commands are instantaneously achieved, i.e., f r ≡ f̄ r, ∀t ≥ 0. Consequently,
from (8), one can say that f ≡ f̄ and τ c

b ≡ τ̄ c
b .

By assuming that the rotational dynamics are faster than the translational ones, the
TSS allows consideration in the design of the position controller that nr = n̄r. Then, by also
considering Assumption 1, Equation (7) becomes

f c
r = f̄ n̄r , f̄ c

r , (12)

where n̄r ≡ D̄r/be3, which in theory removes the underactuation of the system since
the dependency of f c

r on the actual attitude is removed. Then, the attitude and position
control laws can be separately designed by considering the resulting fully actuated system
described by Equations (1), (4)–(6), and (12). The critical point is that, when using this
strategy, the controllers’ gains have to be carefully tuned in order to respect the TSS
assumption, whereas, in practice, this tuning is a cumbersome trial-and-error process, thus
requiring improved safety procedures to deal with the eventual instability that may occur
in the case of insufficient TSS [36].

To avoid this drawback, we propose a hierarchical sliding mode control scheme for
underactuated MAVs that enforces the attitude-position TSS. To this end, we design a
multi-input attitude control law using an ISMC strategy, in such a way as to guarantee
exact tracking capability in the attitude control loop during all the time. Such exact tracking
makes nr = n̄r without the need for tuning to reach the TSS. Therefore, the position control
law can be designed using the fully actuated system described by (5), (6), and (12).

3.2. Integral Sliding Mode Attitude Control Law

Consider the objective of tracking a time-varying attitude command D̄b/r that satisfies
the following assumption.



Drones 2023, 7, 611 8 of 30

Assumption 2. The time-varying attitude command D̄b/r is such that, at the initial time,
D̄b/r(0) = Db/r(0) and ω̄b/r

b (0) = ωb/r
b (0). Moreover, it is (h − 1)th-order differentiable

with respect to time, where h ≥ 2, such that its first-time derivative ˙̄Db/r is Lipschitz-continuous.

Assumption 2 is not restrictive; it only requires the knowledge of the MAV’s initial
attitude and angular velocity and the use of a suitably smooth attitude command. These
conditions can be fulfilled by properly designing the heading command ψ̄ and the position
control law (see Figure 3).

The attitude and angular velocity control errors can be defined, respectively, as [33]

D̃ , Db/b̄ ≡ Db/r
(

D̄b/r
)T
∈ SO(3), (13)

ω̃ , ωb/b̄
b ≡ ωb/r

b − D̃ω̄b/r
b ∈ R3, (14)

where D̄b/r , Db̄/r, ω̄b/r
b , ωb̄/r

b̄ , and b̄ refers to a CCS Sb̄ representing the commanded
attitude for Sb.

The attitude and angular velocity errors (13) and (14) allow the description of the
attitude error kinematics by a conventional attitude kinematics differential equation, such
as (1), i.e.,

˙̃D = −[ω̃×]D̃. (15)

Besides the attitude matrix D̃, a three-dimensional attitude representation is required for
the proposed control design. Here, we adopt the Gibbs vector [33]

g̃ , ε̃ tan(ϑ̃/2),

where ε̃ ∈ S2 , {x ∈ R3 | ‖x‖ = 1} and ϑ̃ ∈ R are, respectively, the principal Euler
axis and angle corresponding to D̃. Note that the Gibbs vector is singular at the angles
ϑ̃ = (2i + 1)π rad, ∀i ∈ Z. However, since g̃ represents the attitude error (not the full
attitude), an effective control design will keep ϑ̃ << π and singularities will not be reached
in practice [8]. The direct and inverse relations between D̃ and g̃ are, respectively, given by

D̃ =
(1− g̃Tg̃)I3 + 2g̃g̃T − 2[g̃×]

1 + g̃Tg̃
,

g̃ =
1

1 + tr
(
D̃
)
 D̃23 − D̃32

D̃31 − D̃13

D̃12 − D̃21

,

where D̃ij is the element of the ith row and jth column of D̃, and tr(·) is the trace operator.
The attitude error kinematics (15) can alternatively be described using the Gibbs vector

as [33]
˙̃g =

1
2
(g̃g̃T + [g̃×] + I3)ω̃. (16)

On the other hand, by replacing (13) and (14) into (4) and considering Assumption 1, the
attitude error dynamics can be described by

˙̃ω = J−1
b

[
Jbωb/r

b ×
]
ωb/r

b + J−1
b

(
τ̄c

b + τd
b

)
− D̃ ˙̄ωb/r

b + [ω̃×]D̃ω̄b/r
b . (17)

By defining x1 , g̃, x2 , ω̃, u , τ̄c
b, d , τd

b , the error kinematics (16) and dynam-
ics (17) can be inserted into the state-space model

ẋ1 = f1(x1, x2), (18)

ẋ2 = f2(x1, x2) + Bu + Bd, (19)
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where B , J−1
b ,

f1(x1, x2) ,
1
2
(x1xT

1 + [x1×] + I3)x2, (20)

f2(x1, x2) , B
[
B−1ωb/r

b ×
]
ωb/r

b − D̃ ˙̄ωb/r
b + [x2×]D̃ω̄b/r

b .

Now, let us define the attitude sliding variable

s , ẋ1 + Cx1, (21)

where C ∈ R3×3. The corresponding sliding set is

S ,
{
(x1, ẋ1) ∈ R6 | s = 03

}
.

From Assumption 2, one can see that the system is in the sliding set S at the initial
time instant. Therefore, by designing a control u such that the inequality V̇ ≤ −βV1/2 [37],
with β ∈ R>0, is satisfied from the very beginning, it holds that (x1, ẋ1) ∈ S during the
entire time, and, consequently, (x1(t), ẋ1(t)) = (03, 03), ∀t ≥ 0. Therefore, from (20), it
holds that x2(t) = 03, ∀t ≥ 0. In other words, the system is capable of exactly tracking the
attitude and angular velocity commands during the entire time, i.e., Db/r(t) = D̄b/r(t) and
ωb/r

b (t) = ω̄b/r
b (t), ∀t ≥ 0.

By differentiating (21) and using (18) and (19), we can obtain the dynamic equation for
s (for conciseness, we omit the function-independent variables):

ṡ = Cf1 +
∂f1

∂x1
f1 +

∂f1

∂x2
f2 +

∂f1

∂x2
Bu +

∂f1

∂x2
Bd. (22)

Regarding the disturbance d, consider the following assumption.

Assumption 3. The disturbance d is bounded according to |d| ≤ τmax, where τmax ∈ R3 is a
known vector with positive components.

The boundedness in Assumption 3 is reasonable in practice, but one can rarely ob-
tain a non-conservative estimate of the bound τmax without a switching-gain adaptation
scheme [38].

Lemma 1 gives a control law that ensures that the system (18) and (19) has an integral
sliding mode in S .

Lemma 1. Under Assumptions 2 and 3, the following control law guarantees the integral sliding
mode of the system (18) and (19) in S :

u = −Ξ−1(u0 + K1sign(s)), (23)

where
u0 , Cf1 +

∂f1
∂x1

f1 +
∂f1
∂x2

f2,

Ξ , ∂f1
∂x2

B, and K1 ∈ R3×3 is a positive-definite diagonal matrix satisfying

K113 ≥ |Ξ|τmax + 13
β√
2

. (24)

Proof. Consider the Lyapunov candidate function V(s) = sTs/2. From Assumption 2, the
system (18) and (19) starts the motion in the sliding set S . Therefore, to prove the integral
sliding mode, it is sufficient to show the satisfaction of the inequality V̇ ≤ −βV1/2. To
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this end, differentiating V(s) with respect to time, using (22) and (23), and choosing K1
according to (24), one can show that

V̇(s) = −sT(K1sign(s)− Ξd),

= −|s|Tdiag(sign(s))(K1sign(s)− Ξd),

= −|s|T(K113 − diag(sign(s))Ξd),

≤ −|s|T(K113 − |Ξ|τmax),

≤ −|s|T13
β√
2
≤ − β√

2
‖s‖ = −βV1/2.

Thus, we complete the proof.

Attitude Command Generator

The attitude command generator (ACG) converts n̄r and ψ̄ into D̄b/r. Since the
heading angle ψ is defined as the third rotation in the 1-2-3 Euler angle representation of
Db/r, it is appropriate to parameterize D̄b/r also using the Euler angles (φ̄, θ̄, ψ̄) in the 1-2-3
sequence, i.e.,

D̄b/r,

 cψ̄cθ̄ cψ̄sθ̄sφ̄+sψ̄cφ̄ −cψ̄sθ̄cφ̄+sψ̄sφ̄

−sψ̄cθ̄ −sψ̄sθ̄sφ̄+cψ̄cφ̄ sψ̄sθ̄cφ̄+cψ̄sφ̄

sθ̄ −cθ̄sφ̄ cθ̄cφ̄

, (25)

where c∗ and s∗ are short notations for cos(∗) and sin(∗), respectively.
From the definition of n̄r given after Equation (12), it can be seen that its transpose is

equal to the third line of the attitude command D̄b/r. Then, the commands φ̄ and θ̄ in (25)
can be calculated from n̄r, respectively, as

φ̄ = −tan−1
(

eT
2n̄r

eT
3n̄r

)
, (26)

θ̄ = sin−1(eT
1n̄r). (27)

Regarding the smoothness of D̄b/r in Assumption 2, consider the following remark.

Remark 1. For the attitude command D̄b/r to be in fact (h− 1)th-order differentiable with respect
to time, such that its first-time derivative is Lipschitz-continuous, as supposed by Assumption 2,
it can be seen from (25)–(27) that n̄r and ψ̄ must have the same smoothness degree. In turn, the
required smoothness of n̄r and ψ̄ can be achieved by properly designing the guidance method and the
position control law.

3.3. Position Control Law

Using Assumption 1 and the fact that the attitude loop has an integral sliding mode,
which ideally imply that Db/r(t) ≡ D̄b/r(t) and nr(t) ≡ n̄r(t), ∀t ≥ 0, the position control
law can be designed using the fully actuated model (5) and (6) with f c

r given by (12) instead
of (7).

Therefore, consider the objective of tracking a time-varying position command r̄b/r
r (t).

To this end, define the position and linear velocity errors, respectively, by

r̃ , r b/r
r − r̄ b/r

r , (28)

ṽ , v b/r
r − v̄ b/r

r . (29)

Then, the translational error kinematics and dynamics are obtained, respectively, by substi-
tuting (28) into (5), and (12) and (29) into (6), yielding
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˙̃r = ṽ, (30)

˙̃v = −ge3 + m−1
(

f̄ c
r + f d

r

)
− ˙̄v b/r

r . (31)

Consider the following assumption regarding the disturbance force f d
r .

Assumption 4. The disturbance force is bounded according to |f d
r | ≤ f max, with f max ∈ R3 being

a known vector with positive components. Moreover, f d
r is (h− 1)th-order differentiable with respect

to time, being h the smoothness parameter defined in Assumption 2, such that f d(1)
r is Lipschitz and

f d(h−1)
r has a known Lipschitz constant vector γp > 03.

Assumption 4 is not very restrictive. It essentially states that the disturbance is limited
and has a Lipschitz-continuous first and (h− 1)th derivative with respect to time, which is
reasonable in practice. In fact, model uncertainties and external aerodynamic disturbances
usually fulfill such an assumption [39].

In order to satisfy the smoothness requirements for D̄b/r as discussed in Remark 1,
while ensuring robustness with respect to the disturbance force, we design the position
control law by combining a proportional–derivative (PD) policy with an SMDO. This
control law is given by

f̄ c
r = m

(
ge3 + ˙̄v b/r

r −K2r̃−K3ṽ
)
− f̂

d
r , (32)

where K2 ∈ R3×3 and K3 ∈ R3×3 are positive-definite diagonal matrices, and f̂
d
r ∈ R3 is

the disturbance force estimate to be provided by the SMDO.
To estimate the disturbance force, let us define an auxiliary sliding variable

σ , mṽ + β, β(0) = −mṽ(0), (33)

β̇ = −f̄ c
r + mge3 + m ˙̄v b/r

r . (34)

By substituting (31) and (34) into the time derivative of (33), we obtain σ(i) = f d(i−1)
r ,

∀i ∈ {1, . . . , h}. Then, the following multi-input high-order sliding mode differentiator
(SMD) [31] is used to estimate σ(i) and, consequently, f d(i−1)

r :

żd
0 = wd

0,

wd
0 = −Λd

0Ψ(γp)
1/(h+1)Ψ(|zd

0 − σ|)h/(h+1)sign(zd
0 − σ) + zd

1,

żd
1 = wd

1,

wd
1 = −Λd

1Ψ(γp)
1/hΨ(|ηd

1|)(h−1)/hsign(ηd
1) + zd

2,
...

żd
h−1 = wd

h−1,

wd
h−1 = −Λd

h−1Ψ(γp)
1/2Ψ(|ηd

h−1|)
1/2sign(ηd

h−1) + zd
h,

żd
h = −Λd

hΨ(γp)sign(ηd
h),

(35)

where ηd
k , zd

k −wd
k−1, with k ∈ {1, . . . , h}, Λd

j ∈ R3×3 is a positive-definite diagonal

matrix, with j ∈ {0, . . . , h}, and Ψ(|·|) , diag(|·|) maps a vector into a diagonal matrix.
The SMD (35) initial conditions are set as zd

0(0) = σ(0) and zd
i (0) = 03, ∀i ∈ {1, . . . , h}.

Lemma 2 establishes the convergence properties of the SMD (35).
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Lemma 2 ([31]). Consider the SMD of Equation (35). For any given Λd
h satisfying

Λd
h13 > 13,

there exists a set of positive-definite diagonal matrices {Λd
0, . . . , Λd

h−1} that provides the finite-time
convergence of zd

0 and zd
i , respectively, to σ and σ(i), ∀i ∈ {1, . . . , h}.

Then, since σ(i) = f d(i−1)
r and zd

i → σ(i), ∀i ∈ {1, . . . , h}, the estimate of the distur-
bance force and its time derivatives are simply given by

f̂
d(i−1)
r = zd

i , ∀i ∈ {1, . . . , h}. (36)

The proposed SMDO is represented by Equations (33)–(36) and exhibits low sensitivity to
parameter variations, making it easy to tune. The tuning trade-off is that the larger the
gains Λd

j , the faster the convergence and the higher the sensitivity to measurement noise,
time discretization, and unmodeled dynamics [31].

Substituting the control law (32) into (31), the closed-loop position dynamics can be
described by

˙̃v = −K2r̃−K3ṽ + m−1
(

f d
r − f̂

d
r

)
. (37)

Given the disturbance force bound of Assumption 4, it holds that the disturbance estimation
error is bounded during the SMDO (33)–(36) convergence phase and vanishes after a finite
time. Then, the origin (r̃, ṽ) = (03, 03) of the system described by (30) and (37) can be made
asymptotically stable by suitably choosing the gains K2 and K3.

Now, to satisfy the smoothness requirement for n̄r as discussed in Remark 1, f̄ c
r must

have the same smoothness degree. Regarding the smoothness of f̄ c
r , consider the follow-

ing remark.

Remark 2. For the control force command f̄ c
r to be (h− 1)th-order differentiable with respect to

time and have a Lipschitz-continuous first-time derivative, it can be seen from (32) that, since f̂ d
r

already satisfies this requirement (see (33)–(36)), the acceleration command ˙̄v b/r
r must have the

same smoothness degree. Such a command will be properly generated by the guidance strategy
presented in Section 4.

Once we have fulfilled the smoothness requirement of D̄b/r by properly designing ψ̄

and f̄ c
r , the initial conditions D̄b/r(0) = Db/r(0) and ω̄b/r

b (0) = ωb/r
b (0) of Assumption 2

must also be assured. Consider the initial conditions Db/r(0), ωb/r
b (0), and the initial

total thrust magnitude f (0). The latter is generally not available for measurement, but,
from Assumption 1, we can replace f (0) with f̄ (0). From (25)–(27), it can be seen that, by
choosing ψ̄(0) = ψ(0) and n̄r(0) = nr(0), it holds that D̄b/r(0) = Db/r(0). The condition
n̄r(0) = nr(0) is satisfied if f̄ c

r (0) = f̄ (0)nr(0). Therefore, by choosing r̄ b/r
r (0) = r b/r

r (0)

and v̄ b/r
r (0) = v b/r

r (0), given that f̂
d
r (0) = 03, the initial acceleration command ˙̄v b/r

r (0) that
makes f̄ c

r (0) = f̄ (0)nr(0) and consequently n̄r(0) = nr(0) can be calculated from (32) as

˙̄v b/r
r (0) =

f̄ (0)nr(0)
m

− ge3. (38)

In summary, by calculating ˙̄v b/r
r (0) according to (38) and choosing ψ̄(0) = ψ(0), we

indirectly ensure that D̄b/r(0) = Db/r(0).
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The relation between the 1-2-3 Euler angles α b/r , (φ, θ, ψ) that parameterize Db/r

and the angular velocity ωb/r
b is

α̇ b/r = Aα

(
α b/r

)
ωb/r

b , (39)

where

Aα ,


cos(ψ)
cos(θ) − sin(ψ)

cos(θ) 0

sin(ψ) cos(ψ) 0
− cos(ψ)tan(θ) sin(ψ)tan(θ) 1

.

From (39), it can be seen that, since D̄b/r(0) = Db/r(0), by making ˙̄α b/r(0) = α̇ b/r(0), we
have that ω̄b/r

b (0) = ωb/r
b (0). The equality ˙̄α b/r(0) = α̇ b/r(0) holds true if

˙̄ψ(0) = eT
3Aα(α b/r(0))ωb/r

b (0), ˙̄θ(0) = θ̇(0), and ˙̄φ(0) = φ̇(0). However, it can be seen
from (26) and (27) that ˙̄θ(0) = θ̇(0) and ˙̄φ(0) = φ̇(0) hold true if ˙̄nr(0) = ṅr(0). The initial
condition ṅr(0) is known and can be calculated from the definition of nr, given immediately
after Equation (7), using Db/r(0) and ωb/r

b (0). Therefore, the equality ˙̄nr(0) = ṅr(0) must
be ensured by the position control law. Knowing that n̄r = f̄ c

r /‖f̄ c
r ‖, ˙̄nr(0) can be calculated

in terms of the initial control force command as

˙̄nr(0) = Φ(0) ˙̄f c
r (0), (40)

where

Φ(0) ,
I3

‖f̄ c
r (0)‖

−
f̄ c

r (0)
(

f̄ c
r (0)

)T

‖f̄ c
r (0)‖3

.

The time derivative of the control force command ˙̄f c
r (0) can be calculated by differentiating

(32) and using (37). The resulting expression is

˙̄f c
r (0) = m ¨̄v b/r

r (0)−K3f d
r (0). (41)

Substituting (41) into (40), one can see that the initial jerk command ¨̄v b/r
r (0) that makes

˙̄nr(0) = ṅr(0) is

¨̄v b/r
r (0) =

(Φ(0))−1ṅr(0)
m

+ K3f d
r (0). (42)

By calculating ¨̄v b/r
r (0) according to (42) and choosing ˙̄ψ(0) = eT

3Aα(α b/r(0))ωb/r
b (0), we

ensure that ω̄b/r
b (0) = ωb/r

b (0). However, the initial disturbance force f d
r (0) appearing on

the right-hand side of (42) is unknown. To deal with this lack of information, we gradually
increase the derivative gain K3 from K3(0) = 03.

The adaptation of K3 must be quick enough to provide good performance to the
position control loop. To guarantee the position control smoothness (see Remark 1), the
adaptive gain K3 must be (h− 1)th-order differentiable with respect to time, such that its
first-time derivative is Lipschitz. To achieve this, we increase K3(t) during a prescribed
time ts ∈ R>0 according to

K3(t) = K̄3 −
K̄3

th
s
(ts − t)hI[0,ts)(t), (43)

where K̄3 ∈ R3×3 is a positive-definite diagonal matrix corresponding to the final desired
value of K3, and I[0,ts)(t) is an indicator function that is equal to one if t ∈ [0, ts) and equal
to zero otherwise.
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3.4. Control Allocation

The control allocation calculates f̄ r from f̄ and τ̄c
b as a solution to the control allocation

Equation [35]: [
f̄

τ̄c
b

]
= Γf̄ r. (44)

Assuming that the rotor set is configured in such a way that Γ is always of full-row rank,
i.e., rank(Γ) = 4, the solution of (44) is unique when nr = 4 and is simply calculated
by inverting Γ. For nr > 4, a simple solution can also be obtained, but now using the
pseudo-inverse method [40].

4. Guidance Design

Consider that the MAV flies among no ∈ Z>0 obstacles and define a set I containing
the identification of the obstacles. Moreover, consider a point Ci fixed to the center of mass of
obstacle i ∈ I and denote its position and velocity by r i/r

r ∈ R3 and v i/r
r ∈ R3, respectively.

To guarantee the smoothness requirement of ψ̄ and r̄b/r
r as discussed in Remarks 1 and 2,

the proposed guidance algorithm generates these commands using reference filters, as
depicted in Figure 4. The heading reference filter is designed using an overdamped LPF
to make ψ̄ converge smoothly to a target heading ψ∗ ∈ (−π, π] provided by the CCO
method. Similarly, the position reference filter consists of an overdamped LPF to make v̄ b/r

r
smoothly converge to a target velocity v∗r ∈ R3, also given by the CCO, and an integrator for
calculating r̄ b/r

r . We assume that the MAV is aware of the obstacles’ position and velocity
O ,

{(
r i/r

r , v i/r
r

)
, ∀i ∈ I

}
. Then, to avoid collision with accelerated obstacles, we use a

high-order SMD [31] to provide an estimate of the acceleration of obstacle i, denoted by
zi

1 ∈ R3, from observations of v i/r
r . In summary, the CCO receives the desired position ř b/r

r
and the desired heading ψ̌ as input and the MAV states r b/r

r , v b/r
r , D b/r, and ω b/r

b , as well
as zi

1, ∀i ∈ I , and O, as feedback. Using this information, it chooses v∗r and ψ∗ aiming at
avoiding collisions with the obstacles and respecting the linear velocity constraint (10) and
the rotor thrust constraint (11).

Figure 4. Block diagram of the proposed guidance strategy.

The heading reference filter consists of a hth-order overdamped LPF to guarantee the
necessary smoothness of ψ̄ and ensure that it has no overshoot with respect to the input ψ∗.
This reference filter can be represented by the state-space model

ẏψ = Eyψ + Fψ∗, (45)

where yψ ,
(

ψ̄, ˙̄ψ, . . . , ψ̄(h−1)
)
∈Rh, F ,

(
0h−1, τ−h

ψ

)
∈Rh, τψ ∈ R>0 is a time constant, and
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E ,

[
0h−1×1 Ih−1

E1 E2 . . . Eh

]
∈ Rh×h,

Ek+1 , − h!
k!(h− k)!

τ
−(h−k)
ψ , ∀k ∈ {0, 1, . . . , h− 1}.

The initial heading and heading rate commands are set equal to the respective MAV
initial conditions, while the remaining filter states are set equal to zero, i.e.,

yψ(0) , (ψ(0), ψ̇(0), 0, . . . , 0). (46)

It is worth noting that the target heading ψ∗(t) given by the CCO may be discon-
tinuous [16]. Then, designing the heading reference filter using an LPF of order h guar-
antees that ψ̄ is minimally (h − 1)-times differentiable with respect to time and has a
Lipschitz-continuous first-time derivative. As a result, the smoothness requirement for ψ̄
can be satisfied.

Similarly, to guarantee the necessary smoothness of ˙̄v b/r
r , the position reference filter

is designed using an overdamped LPF of order h + 1 and an integrator, being represented
by the state-space model

ẏp = Ayp + Bv∗r , (47)

where yp ,
(

r̄ b/r
r , ˙̄r b/r

r , . . . , r̄ b/r(h+1)
r

)
∈ R3(h+2),

B ,
[
03×3(h+1) I3τ

−(h+1)
p

]T
∈ R3(h+2)×3,

τp ∈ R>0 is a time constant, and

A ,

[
03(h+1)×3 I3(h+1)

03×3 A1 A2 . . . Ah+1

]
∈ R3(h+2)×3(h+2),

Ak+1 , − (h + 1)!
k!(h + 1− k)!

I3τ
−(h+1−k)
p , k ∈ {0, 1, . . . , h}.

The initial position and velocity commands are set equal to the corresponding MAV initial
conditions, while the remaining states of the filter are set equal to zero, i.e.,

yp(0) ,
(

r b/r
r (0), v b/r

r (0), 03, . . . , 03

)
. (48)

Analogous to ψ∗, the target velocity v∗r (t) calculated by the CCO may be discon-
tinuous [16]. Then, by using an LPF of order h + 1, we guarantee that the acceleration
command ˙̄v b/r

r is minimally (h − 1)-times differentiable with respect to time and has a
Lipschitz-continuous first-time derivative. As a result, the smoothness requirement of ˙̄v b/r

r
is satisfied.

From the choice of yp(0), we have that r̃(0) = 03 and ṽ(0) = 03. Therefore, by properly
designing the position control law (32), r̃ and ṽ can be limited, respectively, as

‖r̃(t)‖ ≤ εr, (49)

‖ṽ(t)‖ ≤ εv, (50)

where εr ∈ R≥0 and εv ∈ R≥0 can be chosen as time-dependent functions. It is worth
noting that εr and εv cannot be analytically calculated, but they can be approximated from
numerical simulations of the position closed-loop system (30) and (37) using a great amount
of values of the disturbance force inside the bounds provided in Assumption 4.
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Assume that obstacle i and the MAV can be contained, respectively, in the closed
spheres B(Ci, ρi) and B(B, ρb), where ρi ∈ R>0 and ρb ∈ R>0 are of a given radius.
Therefore, a collision between the MAV and obstacle i is assumed to take place if and only if∥∥∥r b/r

r (t)− r i/r
r (t)

∥∥∥ ≤ ρbi, (51)

where ρbi , ρb + ρi.
Using the position error bound (49) and the position error definition (28), condition (51)

can be tightened to obtain ∥∥∥r̄ b/r
r (t)− r i/r

r (t)
∥∥∥ ≤ ρbi + εr, (52)

whose satisfaction implies that condition (51) is true.
To prevent collisions, the adopted strategy is to avoid satisfying (52) in a future time

horizon of finite length τ ∈ R>0. To this end, we must predict r̄ b/r
r (t) and r i/r

r (t) inside
the time interval [t0, t0 + τ], where t0 ∈ R≥0 is the current time. By using the length τ, we
only consider the obstacles that can cause imminent collisions, i.e., collisions that can occur
inside [t0, t0 + τ]. This can be effective to reduce the computational burden when there are
many obstacles. However, the parameter τ must be chosen based on the physical bounds
of the obstacles’ trajectories and the MAV dynamics in such a way that the MAV can avoid
a collision when it is detected as imminent.

From (47), one can see that the future values of r̄ b/r
r are unknown once they depend

on the future values of v∗r , which are calculated in real time by the CCO and dependent on
the unknown future behavior of the obstacles. In this context, we predict r̄ b/r

r on the time
interval [t0, t0 + τ] by considering v∗r as a constant. Therefore, to support the forthcoming
derivations, Lemma 3 provides a unique solution to (47) with a given initial condition
yp(t0), while considering v∗r as a constant.

Lemma 3. Considering v∗r as a constant input, the solution of (47) in t ∈ [t0, ∞) with initial
condition yp(t0) is given by

yp(t) = eAδtyp(t0) + G(δt)v∗r , (53)

where δt , t− t0,

G(δt) ,
[
I3(h+2) 03(h+2)×3

]
eĀδt

[
03×3(h+2) I3

]T
,

Ā ,

[
A B

03×3(h+2) 03×3

]
∈ R3(h+3)×3(h+3).

Proof. See Appendix A.

Considering v∗r as a constant input, the predicted values of the MAV position command
r̄ b/r

r (t), which we denote by ˆ̄r b/r
r (t) ∈ R3, can be obtained from (53) as

ˆ̄r b/r
r (t) = C1eAδtyp(t0) + G1(δt)v∗r , (54)

where G1(δt) , C1G(δt) and C1 , [I3 03×3(h+1)] ∈ R3×3(h+2).
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The earlier VO-based approaches generally assume that the obstacles keep a constant
velocity. In practice, however, this assumption only ensures collision avoidance against
obstacles with low acceleration capacity or under a large τ. Here, instead of predicting the
obstacles’ trajectories using a first-order approximation, we consider a set of possible future
trajectories for the obstacles based on estimates of their acceleration bounds calculated
from zi

1 provided by the SMD. In this context, the predicted position r̂ i/r
r ∈ R3 of obstacle i

inside the time interval [t0, t0 + τ] belongs to

Ri ,
{

r(t) = r i/r
r (t0) + δtv i/r

r (t0) + âmax
i ϑ

δt2

2
, δt ∈ [0, τ], ϑ ∈ B(03, 1)

}
, (55)

where âmax
i ∈ R≥0 is a bound estimate of obstacle i acceleration.

Let v i/r
r be n-times differentiable with respect to time, where n ≥ 1, such that v i/r(n)

r
has a known Lipschitz constant vector γi > 03. Define a vector γ ∈ R3 such that γ > γi,
∀i ∈ I . To estimate the obstacle i acceleration, we use the high-order SMD [11,31]

żi
0 = wi

0,

wi
0 =−Λ0Ψ(γ)1/(n+1)Ψ(|zi

0−v i/r
r |)n/(n+1)sign(zi

0−v i/r
r ) + zi

1,

żi
1 = wi

1,

wi
1 = −Λ1Ψ(γ)1/nΨ(|ηi

1|)(n−1)/nsign(ηi
1) + zi

2,
...

żi
n−1 = wi

n−1,

wi
n−1 = −Λn−1Ψ(γ)1/2Ψ(|ηi

n−1|)1/2sign(ηi
n−1) + zi

n,

żi
n = −ΛnΨ(γ)sign(ηi

n),

(56)

where ηi
k , zi

k −wi
k−1, with k ∈ {1, . . . , n}; Λj ∈ R3×3 is a positive-definite diagonal

matrix, with j ∈ {0, . . . , n}; and Ψ(|·|) , diag(|·|) maps a vector into a diagonal matrix.
The SMD (56) initial conditions are set to zi

0(0) = v i/r
r (0) and zi

j(0) = 03, ∀j ∈ {1, . . . , n}.

Lemma 4 ([31]). Consider the SMD (56). For any Λn satisfying

Λn13 > 13,

there exists a set of positive-definite diagonal matrices {Λ0, . . . , Λn−1} that provides the finite-time
convergence of zi

k to v(k)
i , ∀k ∈ {0, . . . , n} and ∀i ∈ I .

Note that, before the differentiator (56)’s convergence time, denoted by ti
c ∈ R>0, there

is no accurate information about the acceleration bound of obstacle i. In this context, we
choose to calculate âmax

i as

âmax
i (t) ,


max

ti
c≤δ≤t

‖zi
1(δ)‖ ∀t ≥ ti

c,

‖zi
1(t)‖ ∀t < ti

c.
(57)

According to (57), before ti
c, âmax

i is converging according to the SMD (56), and after ti
c, by

maximizing ‖zi
1‖ over the time interval [ti

c, t], âmax
i becomes an accurate estimate of obstacle

i’s acceleration bound inside the considered time interval. However, since ti
c is difficult to

calculate without conservativeness, a very intuitive choice to approximate it is by verifying
when the SMD states enter a small neighborhood of the sliding manifold, i.e., when

‖zi
0 − v i/r

r ‖+ ‖ηi
1‖+ · · ·+ ‖η

i
n‖ < α, (58)
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where α ∈ R>0 is satisfied.
Using ˆ̄r b/r

r (t) and r̂ i/r
r (t) given, respectively, by (54) and (55), the collision condi-

tion (52) can be further tightened to obtain∥∥∥∥G1(δt)v∗r − ci(δt)− âmax
i ϑ

δt2

2

∥∥∥∥ ≤ ρbi + εr, (59)

where ci(δt) , −C1eAδtyp(t0) + r i/r
r (t0) + δtv i/r

r (t0). In turn, we can also notice that the
collision condition (59) is always satisfied if

‖G1(δt)v∗r − ci(δt)‖ ≤ ρ+bi(δt), (60)

where ρ+bi(δt) , ρbi + εr + âmax
i

δt2

2 .
From the definition of G1(δt), one can see that it is nonsingular ∀δt > 0. Then, by

multiplying both sides of (60) by ‖G−1
1 (δt)‖, it can be shown that (60) is satisfied if∥∥∥v∗r −G−1

1 (δt)ci(δt)
∥∥∥ ≤ ‖G−1

1 (δt)‖ρ+bi(δt). (61)

Now, using (61), define a set of target velocities v∗r that may result in a collision with
obstacle i within (t0, t0 + τ] as

CCOτ
bi ,

⋃
0<δt≤τ

B
(

G−1
1 (δt)ci(δt), ‖G−1

1 (δt)‖ρ+bi(δt)
)

.

Therefore, the set of target velocities v∗r that may result in a collision with any obstacle
within (t0, t0 + τ] is given by

CCOτ
b ,

⋃
∀i∈I
CCOτ

bi.

In other words, we can guarantee collision avoidance against accelerated obstacles by
merely continuously choosing v∗r /∈ CCOτ

b , thus satisfying the position constraint (9).
To consider the linear velocity constraint (10), we can rewrite it in terms of the target

velocity v∗r . To this end, note that, given the choice of yp(0) in (48) and the design of the

position reference filter (47) using the adopted overdamped LPF, v̄ b/r
r presents no overshoot

relative to the input v∗r . Consequently, by choosing v∗r ∈ V , we guarantee that v̄ b/r
r ∈ V

since V is a convex set. Then, from the velocity tracking error definition (29) and bound (50),
one can see that by choosing

v∗r ∈ V 	 B(03, εv), (62)

it holds that v b/r
r ∈ V , thus respecting the velocity constraint (10). Then, the position and

velocity constraints (9) and (10) can be respected by continuously choosing

v∗r ∈ VR , (V 	 B(03, εv))\CCOτ
b . (63)

It should be noted that the set VR is generally non-convex.
On the other hand, to account for the rotor thrust constraint (11), it can be seen from

the control allocation Equation (8) and Assumption 1 that (11) results in the following
control command constraints: [

f̄
τ̄c

b

]
∈ U , (64)

where U , {ν ∈ Rnr | ν = Γf r, f r ∈ F}.
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Knowing that f̄ = ‖f̄ c
r ‖ and the attitude control loop has an integral sliding mode, i.e.,

D b/r ≡ D̄ b/r and ω b/r
b ≡ ω̄ b/r

b , by substituting the control torque command (23) and the
control force command (32) into (64), we obtain ∥∥∥ge3 + ˙̄v b/r

r −K2r̃−K3ṽ−m−1f̂
d
r

∥∥∥
˙̄ωb/r

b − J−1
b

[
Jbω̄b/r

b ×
]
ω̄b/r

b − 2K1sign(s)

 ∈ HU , (65)

where

H ,

[
m−1 01×3

03×3 J−1
b

]
.

To respect the rotor thrust constraint (11), our strategy is to guarantee the satisfaction
of (65) in the time horizon τ. To this end, we have to predict the left side of (65). However,

note that we cannot predict the terms K2r̃, K3ṽ, and f̂
d
r . In this sense, using the tracking

error bounds (49) and (50), Assumption 4, and the definition of sign(s), condition (65) can
be tightened to obtain ∥∥∥ ˙̄v b/r

r + ge3

∥∥∥
˙̄ωb/r

b − J−1
b

[
Jbω̄b/r

b ×
]
ω̄b/r

b

 ∈ HU 	
[

∆F
K1

]
, (66)

where K1 ,
{

γ ∈ R3 | |γ| = 2K113
}

and

∆F ,
{

x ∈ R | |x| ≤ ‖K2‖εr + ‖K3‖εv + m−1‖f max‖
}

.

A prediction for ˙̄v b/r
r inside the time interval [t0, t0 + τ] can be directly obtained from

(53). On the other hand, a prediction for ω̄b/r
b cannot be exactly obtained. To support this

statement, note that for the considered class of underactuated MAVs, the angular velocity
command is given by

ω̄b/r
b = e3 × D̄b/r ˙̄nr + ˙̄ψe3. (67)

Then, note that D̄ b/r depends on n̄r (see (25)–(27)), which is a unit vector that has the same
direction and orientation of the control force command f̄ c

r (see (12)). However, it can be
seen from (32) that f̄ c

r cannot be exactly predicted since the future values of the terms K2r̃,

K3ṽ, and f̂
d
r are unknown. As a result, we cannot obtain an exact prediction for ω̄b/r

b inside
[t0, t0 + τ].

On the basis of the above discussion, n̄r can be rewritten in terms of a nominal part
n̄n

r ∈ R3 and an unknown part ∆n̄r ∈ R3, i.e.,

n̄r = n̄n
r + ∆n̄r, (68)

where n̄n
r ,

˙̄v b/r
r +ge3

‖ ˙̄v b/r
r +ge3‖

.

Using (68), Equation (67) can be rewritten as

ω̄b/r
b = ω̄n

b + ∆ω̄b, (69)

where ω̄n
b , e3 × D̄b/r,n ˙̄nn

r + ˙̄ψe3, being D̄b/r,n calculated in the same way as D̄b/r in (25)
but considering n̄n

r instead of n̄r, and ∆ω̄b ∈ R3 is an unknown part.
Substituting (69), condition (66) can be rewritten as[ ∥∥∥ ˙̄v b/r

r + ge3

∥∥∥
˙̄ωn

b − J−1
b
[
Jbω̄n

b×
]
ω̄n

b + δω̄

]
∈ HU 	

[
∆F
K1

]
, (70)
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where
δω̄ , ∆ ˙̄ωb − J−1

b [Jb∆ω̄b×]ω̄ b/r
b − J−1

b [Jbω̄n
b×]∆ω̄b.

Considering that δω̄ ∈ ∆W̄ , condition (70) can be tightened one last time to obtain[ ∥∥∥ ˙̄v b/r
r + ge3

∥∥∥
˙̄ωn

b − J−1
b
[
Jbω̄n

b×
]
ω̄n

b

]
∈ HU 	 ∆U , (71)

where

∆U ,

[
∆F

K1 ⊕ ∆W̄

]
.

Regarding the set ∆W̄ , consider the following remark.

Remark 3. An analytic expression for ∆ω̄b is difficult to obtain since the relation between D̄ b/r

and n̄r is strongly nonlinear (see (25)–(27)). Consequently, it is complex to obtain an analytical
expression for the set ∆W̄ . Therefore, we approximate it based on computer simulations.

Now, we are able to predict the left side of (71) inside the time interval [t0, t0 + τ]. In
this sense, let us rewrite (71) in terms of the predicted values for each variable, i.e.,[ ∥∥∥ ˆ̄a b/r

r + ge3

∥∥∥
˙̄̂ωn

b − J−1
b
[
Jb ˆ̄ωn

b×
]

ˆ̄ωn
b

]
∈ HU 	 ∆U , (72)

where ˆ̄a b/r
r ∈ R3 and ˆ̄ωn

b ∈ R3 are, respectively, the predictions of ˙̄v b/r
r and ω̄n

b inside
[t0, t0 + τ].

The acceleration command prediction ˆ̄a b/r
r can be obtained from (53) using the same

strategy adopted to predict the position command r̄ b/r
r (t), i.e., considering v∗r as a constant

input inside the time interval [t0, t0 + τ], yielding

ˆ̄a b/r
r (t) = C3eAδtyp(t0) + G3(δt)v∗r , (73)

where G3(δt) , C3G(δt) and C3 , [03×6 I3 03×3(h−1)] ∈ R3×3(h+2).
On the other hand, note that the angular velocity prediction ˆ̄ωn

b can be calculated
by differentiating D̄b/r,n with respect to time. Here, we choose to predict D̄b/r,n(t) in-
side the interval [t0, t0 + τ] using the Euler angles 1-2-3 parameterization, denoted by
ˆ̄α b/r(t) , ( ˆ̄φ(t), ˆ̄θ(t), ˆ̄ψ(t)). The prediction of the heading command ˆ̄ψ is obtained by
adopting the same strategy used to predict r̄ b/r

r (t) and ˙̄v b/r
r (t), i.e., considering ψ∗ as a

constant input. Under this assumption, ˆ̄ψ(t) can be calculated from the actual time instant
t0 by solving Equation (45), yielding

ˆ̄ψ(t) = Cψ
1 eEδtyψ(t0) + Cψ

1 E−1
(

eEδt − Ih

)
Fψ∗, (74)

where Cψ
1 ,

(
1, 01×(h−1)

)
.

The predictions ˆ̄φ and ˆ̄θ inside [t0, t0 + τ] can be obtained from Equations (26) and (27)
and the definition of n̄n

r given after (68), being given by

ˆ̄φ = − tan−1 eT
2 ˆ̄nn

r

eT
3

ˆ̄nn
r

,

ˆ̄θ = sin−1(eT
1 ˆ̄nn

r ),
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where

ˆ̄nn
r =

ˆ̄a b/r
r + ge3

‖ ˆ̄a b/r
r + ge3‖

,

being ˆ̄a b/r
r the acceleration command prediction defined in Equation (73). Then, the angular

velocity prediction ˆ̄ωn
b can be immediately calculated by

ˆ̄ωn
b = Aα

˙̄̂α b/r, (75)

where

Aα ,

 cos( ˆ̄θ) cos( ˆ̄ψ) sin( ˆ̄ψ) 0
− sin( ˆ̄ψ) cos( ˆ̄θ) cos( ˆ̄ψ) 0

sin( ˆ̄θ) 0 1

.

The angular acceleration prediction ˙̄̂ωn
b is simply obtained by differentiating (75) with

respect to time.
The continuous selection of v∗r and ψ∗ such that condition (72) is satisfied in [t0, t0 + τ]

guarantees the satisfaction of the control command constraints (64) and, consequently, the
rotor thrust constraint (11).

Lastly, to completely solve Problem 1, we formulate a bilevel optimization problem [41]
that calculates v∗r and ψ∗, giving priority to collision avoidance. In this sense, we compute
v∗r and ψ∗ as the solution of the following minimization that aims to satisfy the linear
velocity and rotor thrust constraints, respectively, given by (10) and (11), and make the
MAV reach its desired position řb/r

r and desired heading ψ̌ without collision:

(v∗r , ψ∗) = arg min
(ν,β)

‖vpref − ν‖

s.t. ν ∈ VR,

β ∈ Z ,

(76)

where vpref ∈ R3 is a preferred velocity and Z is the set of solutions to the ν-parameterized
problem

min
z∈(π,π]

|ψ̌− z|

s.t. Û(t; ν, z) ∈ HU 	 ∆U , ∀t ∈ (t0, t0 + τ],

with

Û(t; ν, β),

[ ∥∥∥ ˆ̄a b/r
r (t; ν) + ge3

∥∥∥
˙̄̂ωn

b (t; ν, z)−J−1
b
[
Jb ˆ̄ωn

b(t; ν, z)×
]

ˆ̄ωn
b (t; ν, z)

]
.

Here, vpref is a vector that points to ř b/r
r and has a magnitude equal to the maximum

admissible velocity in this direction. To provide a smooth deceleration phase, the magnitude
of vpref is gradually decreased according to the remaining distance when the vehicle
is near ř b/r

r . However, we highlight that the design of vpref can be done using other
strategies [26,42].

When obstacles are present, the set VR is generally non-convex and can even become
empty in very dense scenarios. In this case, it is appropriate to choose a target velocity and
heading that result in the largest time to collide, while respecting constraints (10) and (11).
The shortest time for a collision to occur, denoted by tcol ∈ R>0, as a result of choosing a
certain target velocity ν is given by

tcol(ν) = min
0<δ≤τ

δ

s.t. ν ∈ CCOδ
b.
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Therefore, in case there is no solution to (76), i.e., VR = ∅, we propose to choose the
target velocity and heading that imply the largest tcol, while respecting constraints (10) and
(11), i.e.,

(v∗r , ψ∗) = arg max
(ν,β)

tcol(ν)

s.t. ν ∈ V 	 B(03, εv),

β ∈ Z .

(77)

In general, finding the global minima of a non-convex optimization problem, such
as the one in (76), is computationally intensive. Attempting to reduce the computational
burden, we approximate the solution of (76) using a fixed number of velocity samples calcu-
lated from a uniform distribution over V 	 B(03, εv) and creating an equally spaced fixed
number of heading angle samples inside the interval (−π, π]. When (76) has no solution,
we use the same sampling strategy to solve the optimization problem (77). Algorithm 1 is
proposed to solve (76) or (77).

Algorithm 1: Proposed sampling algorithm to solve the optimization problem
(76) (or (77) if (76) has no solution)

Data:
nv ← number of velocity samples
nψ ← number of heading angle samples
vpref ← preferred velocity
ψ̌← desired heading
CCOτ

b ←
⋃ CCOτ

bi, ∀i ∈ I
HU 	 ∆U ← admissible set
Result:
V∗ ← a set of nv random samples inside V 	 B(03, εv)
V∗o ← sort V∗ in ascending cost order
A∗ ← a set of nψ equally spaced samples inside (−π, π]
A∗o ← sort A∗ in ascending cost order
k← 0
for v ∈ V∗o do

k← k + 1
if v /∈ CCOτ

b then
for ψ ∈ A∗o do

if Û(t; v, ψ) ∈ HU 	 ∆U , then
return (v, ψ);

end
end

else
for ψ ∈ A∗o do

if Û(t; v, ψ) ∈ HU 	 ∆U , then
calculate tcol(v);
store (v, ψ) and break;

end
end

end
end
return the pair (v, ψ) that implies the largest tcol;

Algorithm 1 generates nv random velocity samples inside V 	B(03, εv) and nψ equally
spaced samples inside (−π, π], sorting them in ascending cost order. Then, it sequentially
checks that each velocity sample does not result in a collision, i.e., if it does not belong to
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CCOτ
b . When a velocity sample is collision-free, the algorithm tries to choose a heading

sample that, given this collision-free velocity, respects the rotors’ thrust constraints. If
such heading exists, the algorithm returns the corresponding pair of velocity and heading
samples. On the other hand, when a velocity sample is not collision-free, the algorithm
tries to choose a heading sample that respects the rotors’ thrust constraints and, if such
heading exists, it calculates the time to collision for this particular pair of samples. Then,
in the event that any velocity sample is free of collision, the algorithm returns the pair of
samples that results in the minimum time to collision and respects the velocity and rotors’
thrust constraints. For this case, the main for loop in Algorithm 1 iterates nv times and,
within each iteration, the nested else condition is executed. On the other hand, when the
first velocity sample in V∗o is collision-free and there is a heading sample that, given this
first velocity sample, respects the rotors’ thrust constraints, the main for loop is executed
only one time.

5. Numerical Simulation

The effectiveness of the proposed method is evaluated in a numerical simulation
implemented on the basis of the nonlinear equations of motion (1) and (4)–(8) and coded
in MATLAB utilizing the first-order explicit Euler method with a sampling time of 0.01 s.
The vehicle adopted for the simulation is an x-shaped quadcopter with a mass of 1 kg, arm
length of 0.5 m, and inertia matrix Jb = diag(0.015, 0.015, 0.03) kg m2.

The proposed method is compared with another one that uses the same control strategy
and the original CCO [30] as the guidance strategy. To compare the methods, we conduct
a Monte Carlo simulation where the quadcopter has an initial position (0, 0, 5) m, zero
initial velocity, and has to go to the desired position (38, 0, 5) m, while avoiding collision
with 270 quadcopters that are used to represent the obstacles, as depicted in Figure 5. The
obstacles are arranged between the MAV’s initial and desired positions in thirty evenly
spaced groups of nine. The kth group, where k ∈ {1, . . . , 30}, contains a static obstacle that
has the randomly uniformly selected position offsets ∆yb,k ∈ [−6, 6] m and ∆zb,k ∈ [−2, 7]
m relative to the line connecting the MAV’s initial and desired positions in the directions of
~yr and~zr, respectively. The remaining obstacles are circularly and uniformly distributed in
the plane ~yr–~zr and rotate around the static obstacle with a randomly uniformly selected
radius ρb,k ∈ [2, 5] and angular velocity ~ωk ∈ ([−0.4,−0.1] ∪ [0.1, 0.4])~xr.

desired
position

group 1

group 2

group k

group k

group 30

MAV

...

(a) (b)

Figure 5. Schematic illustration of the proposed Monte Carlo simulation scenario. (a) Overview of
the scenario showing the MAV, its target position, and the groups of obstacles. (b) The kth group of
obstacles in detail, where k ∈ {1, . . . , 30}.
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The vehicle can be circumscribed by a sphere of radius 0.5 m, while all obstacles can
be circumscribed by spheres of radius 0.7 m. The controlled quadcopter has the following
linear velocity and rotor thrust admissible sets:

V ,
{

v ∈ R3 | ‖v‖ ≤ 5
}

,

F ,
{

f r ∈ R4 | fi ∈ [1.25, 4], ∀i ∈ {1, . . . , 4}
}

.

Moreover, the vehicle is subject to the disturbances

f d
r (t) = 0.25[1,−1,−1]Tsin(0.5t)N,

τd
b(t) = 0.005[1,−1,−1]Tsin(0.5t)Nm.

Table 1 shows the adopted parameters for the proposed guidance and control strategies.

Table 1. Parameters of the proposed method.

Control Law Variable Value

Attitude control law
K1 diag(0.5, 0.5, 0.25)
C 5I3

h 2

Position control law

K2 2.5I3

K̄3 10I3

ts 0.2 s
Λ

p
0 4I3

Λ
p
1 2I3

Λ
p
2 I3

γp I3

Guidance method

τp 0.15 s
εr 0.06 m
εv 0.1 m/s
τ 5 s
n 2

Λ0 4I3

Λ1 3I3

Λ2 2I3

γ 1.5I3

τψ 0.2 s

Moreover, we have used in Algorithm 1 a total of 800 target velocity samples calculated
using a uniform distribution over V 	 B(03, εv) and 50 equally spaced target heading
samples inside the interval (−π, π].

The MAV receives the desired heading signal (in degrees)

ψ̌(t) =


0, if 0 ≤ t < 2,

50, if 2 ≤ t < 5,

10, if 5 ≤ t < 8,

−30, if t ≥ 8.

In order to conduct a more comprehensive analysis of the proposed method, we
present in Figures 6 and 7 the relevant results from a single iteration of the Monte Carlo
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simulation. A three-dimensional animation of this simulation is available at the following
link: https://youtu.be/d7K4e6Ytn8M (accessed on 23 September 2023).

Figure 6. Constraint plots for the proposed method. (a) Distance from the quadcopter to the obstacles.
(b) Euclidean norm of the quadcopter velocity and its bound. (c) Rotors’ thrusts and their bounds.

Figure 7. Position tracking performance, attitude tracking performance, and control commands
for the proposed method. (a) Position tracking performance. (b) Attitude tracking performance.
(c) Control force command. (d) Control torque command. Legend: vector first component,

vector second component, and vector third component.

Figure 6a–c, respectively, show the distance between the quadcopter and the obstacles,
the Euclidean norm of the quadcopter’s velocity and its bound, and the rotors’ thrust and
their bounds. It can be seen that the proposed method guarantees the satisfaction of the po-
sition constraint (9), the linear velocity constraint (10), and the rotors’ thrust constraint (11),
which demonstrates the effectiveness and robustness of the proposed method.

Figure 7 presents the position and attitude tracking performance as well as the force
and torque control commands. In Figure 7a, it can be seen that the position commands
are satisfactorily tracked despite the presence of the disturbance force. Figure 7b shows
that the attitude commands are exactly tracked during the entire time despite the presence
of the disturbance torque, thus confirming that by combining the proposed sliding mode
attitude and smooth position control laws, an integral sliding mode exists in the attitude
loop. This fact is also confirmed by Figure 8, which shows that the Euclidean norm of
the attitude sliding variable s is restricted to a relatively small neighborhood of the origin
during the entire time. Figure 7c and Figure 7d, respectively, show the force and torque
control commands. These plots confirm the smoothness and the switching behavior of the
force and torque control commands, respectively.

https://youtu.be/d7K4e6Ytn8M
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Figure 8. Euclidean norm of the attitude sliding variable s.

5.1. Monte Carlo Simulation

We have performed, for each method, 100 iterations of the above-described Monte
Carlo simulation. For both methods, we have analyzed at each iteration whether collisions
have occurred and their number. For the proposed method, we have also analyzed whether
the linear velocity and rotors’ thrust constraints are satisfied. Table 2 shows the Monte
Carlo simulation results. It presents, for both methods, the collision rate (CR)

CR ,
nc

100
,

where nc ∈ Z≥0 is the number of iterations where collisions have occurred, and it also
shows the average number of collisions per iteration (ACI)

ACI ,
ncol
100

CR,

where ncol ∈ Z≥0 is the total number of collisions that have occurred in the 100 iterations.
For the proposed method, Table 2 also shows the percentage of iterations in which the
linear velocity and rotor thrust constraints are respected.

Table 2. Monte Carlo simulation results for the proposed and original CCO methods. N/A: not
applicable.

Proposed Original CCO

CR 25% 50%
ACI 2.16 1.74
Respected velocity constraint 100% N/A
Respected rotor thrust constraint 100% N/A

The results in Table 2 confirm the effectiveness of the proposed method in respecting
the linear velocity and rotors’ thrust constraints. Moreover, one can see that, by observing
the obstacles’ acceleration and considering the vehicle position tracking error bound εr, the
proposed method is more effective than the original CCO in preventing collisions. We em-
phasize that this is remarkable since the original CCO, by not considering the rotors’ thrust
constraints, has more control force and torque available to avoid collisions. To support
this statement, we also ran 100 iterations for the proposed method, disregarding the rotors’
thrust constraints. In this simulation, the proposed method had a CR = 0%, demonstrating
that the previous CR of 25% was only related to the inability to avoid collisions due to the
control force and torque limitations imposed by the rotors’ thrust constraints.
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5.2. Discussion

The results of the numerical simulations demonstrate the efficiency of the proposed
method in guiding underactuated MAVs subject to model uncertainties/disturbances as
well as velocity and rotors’ thrust constraints in the presence of obstacles that can accelerate.
These results have practical importance given the recent growing interest in autonomous
flight and the number of aircraft sharing the same air space. On the other hand, the
performed simulation study, although comprehensive, did not consider sensor noise and
inaccuracies. These uncertainties present in real-world scenarios could be immediately
considered in the proposed strategy by suitably increasing the MAV tracking error bounds,
the obstacles’ radii, and the guidance time horizon τ. Moreover, it is worth mentioning
that the proposed formulation considers that the MAV and the obstacles can be enclosed
by spheres. While this is not a significant limitation, as more complex shapes can be
approximated using a collection of spheres [43], there are situations where employing this
approach might lead to an increased level of complexity to represent the obstacles.

6. Conclusions

This paper proposes robust guidance and control methods for underactuated MAVs
equipped with fixed rotors subject to model uncertainties/disturbances and linear velocity
and rotor thrust constraints, in the presence of accelerated obstacles. The attitude and
position control laws are designed using a hierarchical SMC scheme that enforces the
attitude-position TSS. The former is designed using a multi-input ISMC strategy and the
latter is designed using a proportional–derivative policy combined with an SMDO. On
the other hand, the proposed guidance strategy is based on the CCO and designed using
a constraint-tightening approach for robustness against uncertainties/disturbances and
a high-order SMD to robustly estimate the maximum accelerations of the obstacles. A
Monte Carlo numerical simulation was performed using a quadcopter to compare the
proposed method with another one that uses the same attitude and position control design
and the original CCO in the guidance level. The proposed guidance method outperformed
the original CCO in avoiding collisions with moving obstacles that can accelerate and,
additionally, has been shown to be very effective in respecting linear velocity and rotor
thrust constraints. In future works, the proposed method can be evaluated experimentally
and applied to other mobile robotics systems. Moreover, Algorithm 1 can be further
improved in performance, aiming at its implementation in embedded systems.
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Abbreviations
The following abbreviations are used in this manuscript:

AVO Acceleration Velocity Obstacles
CCO Continuous Control Obstacles
GSMC Global Sliding Mode Control
ISMC Integral Sliding Mode Control
LPF Low-Pass Filter
LQR Linear Quadratic Regulator
MAV Multirotor Aerial Vehicle
NMPC Nonlinear Model Predictive Control
PD Proportional–Derivative
RRT Rapidly Exploring Random Tree
SMC Sliding Mode Control
SMDO Sliding Mode Disturbance Observer
SMD Sliding Mode Differentiator
TSS Time-Scale Separation
VO Velocity Obstacles

Appendix A

Proof of Lemma 3. The solution of the position reference filter differential Equation (47) is
given by

yp(t) = eAδtyp(t0) +
∫ t

t0

eA(t−τ)Bv∗r dτ, (A1)

where δt , t− t0.
The integral present in (A1) cannot be directly calculated since matrix A is singular

due to the position reference filter integrator. To analytically calculate (A1), we consider
v∗r as constant and define the vector ya

p , (yp, v∗r ) ∈ R3(h+3). Therefore, using (47), we can
write the dynamic model

ẏa
p = Āya

p, (A2)

where

Ā ,

[
A B

03×3(h+2) 03×3

]
∈ R3(h+3)×3(h+3).

Then, the solution of (A2) is ya
p(t) = eĀδtya

p(0), where

eĀδt =

[
eAδt ∫ t

t0
eA(t−τ)Bdτ

03×3(h+2) I3

]
. (A3)

Using (A3), Equation (A1) can be rewritten as

yp(t) = eAδtyp(t0) + G(δt)v∗r ,

where

G(δt) ,
[
I3(h+2), 03(h+2)×3

]
eĀδt

[
03(h+2)×3

I3

]
.

Thus, we complete the proof.
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