
Citation: Chleboun, J.; Amorim, T.;

Nascimento, A.M.; Nascimento, T.P.

An Improved Spanning Tree-Based

Algorithm for Coverage of Large

Areas Using Multi-UAV Systems.

Drones 2023, 7, 9. https://doi.org/

10.3390/drones7010009

Academic Editor: Diego

González-Aguilera

Received: 16 November 2022

Revised: 14 December 2022

Accepted: 20 December 2022

Published: 23 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

An Improved Spanning Tree-Based Algorithm for Coverage of
Large Areas Using Multi-UAV Systems
Jan Chleboun 1, Thulio Amorim 2, Ana Maria Nascimento 3 and Tiago P. Nascimento 1,3,*

1 Department of Cybernetics, Czech Technical University in Prague (CTU), 121 35 Prague, Czech Republic
2 Natalnet Associate Laboratories, Universidade Federal do Rio Grande do Norte (UFRN),

Natal 59078-970, RN, Brazil
3 Laboratory of Systems Engineering and Robotics (LASER), Department of Computer Systems,

Universidade Federal da Paraíba (UFPB), João Pessoa 58055-000, PB, Brazil
* Correspondence: tiagopn@ci.ufpb.br or pereiti1@fel.cvut.cz; Tel.: +55-83-99911-5577

Abstract: In this work, we propose an improved artificially weighted spanning tree coverage (IAW-
STC) algorithm for distributed coverage path planning of multiple flying robots. The proposed
approach is suitable for environment exploration in cluttered regions, where unexpected obstacles
can appear. In addition, we present an online re-planner smoothing algorithm with unexpected
detected obstacles. To validate our approach, we performed simulations and real robot experiments.
The results showed that our proposed approach produces sub-regions with less redundancy than its
previous version.

Keywords: robot exploration; spanning tree; UAV; trajectory planning

1. Introduction

Drones (unmanned aerial vehicles (UAVs)) have gained popularity in recent years due
to their ability to perform a diverse range of tasks. Environmental surveillance [1], object
transportation [2], and historical site documentation [3], are among such tasks. A common
commercial UAV is a small, lightweight helicopter with a minimum of four propellers
(see Figure 1). The advantage of a UAV is the capability of an agile flight and a small
size. In contrast, the biggest weakness is its short autonomy and its limited computational
capability. Frequently, applications tend to use multiple UAVs.

Figure 1. An example of multi-rotor UAV platform [4].

In multi-robotics, a commonly encountered problem in various applications consists of
determining an optimal path involving all points of a given area of interest while avoiding
sub-regions with specific characteristics, such as obstacles or no-fly zones [5]. One of these
problems is the coverage path planning (CPP) problem. It consists of covering a large area
through the application of path-planning approaches that minimize time-of-flight. One
technique often employed is the use of a multi-robot system.

Drones 2023, 7, 9. https://doi.org/10.3390/drones7010009 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7010009
https://doi.org/10.3390/drones7010009
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-9319-2114
https://doi.org/10.3390/drones7010009
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7010009?type=check_update&version=2

Drones 2023, 7, 9 2 of 18

To deal with more sophisticated requirements, multi-robot systems with proper path
planning provide a promising solution that can significantly enhance effectiveness and
robustness when compared with a single-robot system [6]. In contrast, addressing the CPP
problem is more difficult when working with multiple robots [5].

The work of Huang et al. [7] explained that although the state-of-the-art literature
presents different multi-robot coverage path planning (MCPP) algorithms to solve the
coverage path planning (CPP) problem of robots in specific areas, in outdoor environments,
complex geographic environments reduce the task execution efficiency of robots. The same
authors further explain that existing CPP approaches have hardly considered environmental
complexity, while other studies have considered robot applications but had a small study
area and a single cover type, such as a sweeping robot. Thus, robots are always assumed
to have a constant visual field and moving speed in the entire area in existing multi-robot
coverage path planning (MCPP) algorithms. The performance efficiency of robots in
emergency search and rescue tasks is seriously affected due to the complexity and variation
of the environmental surface, so a robot may have different visual fields and moving speeds
in different environments. In the case of this study, we tackled not only a large area with a
considered variation of the environment complexity but also the speed of the UAVs and
the implications of that on the resulting trajectory.

A common approach to deal with the MCPP problem is the spanning tree cover-
age (STC) algorithm. This approach guarantees an optimal covering path in linear time
when certain conditions are met [5]. Despite the impressive contributions from previous
works [5,6,8], the STC algorithms are still an active research topic with promising develop-
ment opportunities. In this work we proposed an improved artificially weighted spanning
tree coverage (IAWSTC) approach designed to minimize the redundancy regions for the
coverage area of the multi-UAV system and to enable the UAVs to handle unexpected
obstacles. Thus, the main contributions are:

1. an Overlapping Region Reduction approach designed to minimize the redundancy
regions for the coverage area;

2. a trajectory smoothing approach based on last square solutions that we call trajec-
tory smoothing using least squares solution (TSULSS). This approach enables a fast
smoothing of long trajectories;

3. An obstacle avoidance and replanning approach for unexpected obstacles (i.e., moving
obstacles or fixed obstacles that exist but are unknown due to the absence of a map).

2. Related Works

In 2006, Agmon et al. [9] presented one of the early works that tried to solve the CPP
problem. The authors had proposed to construct spanning trees. The drawback of their
approach was the coverage of the desired regions was not guaranteed to be performed
more than once, causing redundancy on the planned path.

Many other approaches for the CPP problem have been proposed. Some approaches
use a single robot, others multiple robots. Methods that use a single robot to solve the CPP
problem used geometric approaches such as the decomposed polygon [10] and polygonal
environments with geometric vector algorithm [11], game-theory approaches [12], Dubins
traveling salesman problem [1], and so on. Most of the approaches in the literature either
perform only simulations or do not consider obstacles or uncertainties.

When investigating multi-robot system approaches to solve the CPP problem, an
example is the work of Avellar et al. [13]. When involving a multi-robot system to
solve the CPP, the problem of CPP is then expanded to a MCPP problem. In their work,
Avellar et al. [13] adopted a more practical perspective, taking into account environmental
factors that exist in real-world scenarios such as maximum time-of-flight, setup time, and
the state of the battery of the robot. In addition, Kapoutsis et al. [5] presented an approach
to deal with the path planning problem of a team of mobile robots, to cover an area of
interest with prior-defined obstacles. The proposed technique transformed the original

Drones 2023, 7, 9 3 of 18

MCPP into several single-robot CPP problems, the solutions of which constitute the optimal
MCPP solution, alleviating the original MCPP explosive combinatorial complexity.

Recently, Dong et al. [6] extended the work of Kapoutsis et al. [5], proposing the
artificially weighted spanning tree coverage (AWSTC) algorithm as a suitable solution
for multi-UAV area coverage in a distributed manner. The algorithm decomposes the
environment in cells. The robots take turns and insert a new cell into their coverage
subregion iteratively, using a formula to assign a score to each cell. This formula tries to
ensure that each robot visits the uncovered cells while avoiding cells already explored by
its partners. After this, a STC algorithm converts the subregion into a trajectory. Since the
generated path contains many rough turns, a trajectory smoothing algorithm minimizes
this issue using Bézier curves. In addition, the authors performed experiments with real
robots in a controlled environment, with no unexpected obstacles.

In the AWSTC, the environment is divided, such that:

Cu = {ci| ci ∈ C, ci ∩ A = ∅, ci ∪O = ∅}, (1)

in which A is an obstacle occupied area O divided into equal-sized cells C.
When using multiple robots, the coverage problem involves finding a suitable path

for each agent such that:

min max ‖Pj‖,

s.t.
N⋃

j=1

Pj = Cu,
(2)

in which the Pj is the obtained path for the jth robot, and N is the number of robots.
As indicated in Equation (2), to ensure efficient coverage, the algorithm must minimize

the lengths of the resulting trajectories. However, the AWSTC approach ends up with sev-
eral redundancies within the calculated trajectory and does not take re-planing into account.
Furthermore, the smoothing algorithm the authors used could be further improved.

Thus, we modified the algorithm of Dong et al. [6] aiming to minimize the redundancy
of the calculated trajectories. We also focused on a decentralized version that ensures equal
distribution of computational load and trajectory length. Finally, we treated the unexpected
obstacle problem while smoothing the trajectories to be performed by the UAV.

3. Problem Formulation

Generally, the abstraction of the problem depends on the sensors and actuators in-
stalled on the robot. However, we assumed that the area to be covered is inside a 2D
rectangle, which we can discretize into a finite set of cells with equal size. The position of
each obstacle inside the area is known, and the robot can accurately locate itself, traveling
from its current location to any unblocked adjacent cell without any motion uncertainty [5].
The environment division and its terminologies can be seen in Figures 2 and 3.

Figure 2. An agent is a UAV performing the desired task.

Drones 2023, 7, 9 4 of 18

Figure 3. Environment and grid definitions.

For ease of understanding, we formally added the required terminology and defini-
tions for accurate descriptions of the algorithms.

Definition 1. An environment is a workspace used to perform the coverage task and the grid
division of the environment is called environment representation. The objective of our approach is to
perform a full coverage of the environment.

Definition 2. A cell is considered as explored after a robot passes above its center or above each
sub-cell center that is part of the respective cell. A cell is unexplored if it is not visited by the robot.

Definition 3. A trajectory is defined as a path that is composed of a sequence of points in a
2D workspace.

Definition 4. The Manhattan distance of cells C1, C2 is a metric defined as:

DC1,C2 = |xC1 − xC2 |+ |yC1 − yC2 |, (3)

where xC1 , yC1 are the first cell center coordinates, xC2 , yC2 are the second cell center coordinates,
and DC1,C2 is the resulting Manhattan distance.

Definition 5. Two cells C1, C2 are neighbor cells if:

DC1,C2 = CS, (4)

where CS is the side length of a cell.

Definition 6. Two C1, C2 cells are diagonal neighbor cells if:

dC1,C2 ≤ CD, (5)

where CD is the diagonal length of a cell. For every adjacent cell, there is a diagonal neighbor cell,
but not the reverse.

Definition 7. The status of exploration of a cell is the binary information on whether the cell is
explored (i.e., either already visited by the robot or containing an obstacle), or unexplored.

Drones 2023, 7, 9 5 of 18

4. Improved Artificially Weighted Spanning Tree Coverage

We addressed the MCPP problem in the same way as Dong et al. [6], using a STC
algorithm. As formally described in Section 3, the main objective of the coverage process is
to divide the environment into a workspace represented by subregions. These subregions
must be covered by each robot. Finally, each robot generates its trajectories such that each
subregion is fully explored.

4.1. Partition of the Environment

In this step, each robot selects its subregion of exploration S in a distributed manner.
Iteratively, the robots take turns evaluating all unexplored cells, choosing the cells with the
highest calculated scores. Then, these cells are included in the subregion S and marked as
explored. This process repeats until all cells in the workspace are explored. We outline the
complete process in Algorithm 1. To improve the behavior of the previous environment
partitioning [6], we modified the formula used to calculate the score of the suitable cells.
The original evaluation formula taken over from the previous work [6] consists of three
terms Ea

j , Eb
j,k, and Ec

j . Here, the ith robot calculates the score Ei,j of the jth cell through the
equation below.

Algorithm 1 Partition of the Environment

Create a workspace by performing a cell Cj division of the environment
for each Cj, j ∈ [1, 2, . . . , M] do

Cj ← unexplored
end for
Initialize subregions Si
for each subregion Si, i ∈ [1, N] do

Si ← ith starting point of the UAVSPi
SPi ← explored

end for
while unexplored and Ci exists do

for each UAVi, i ∈ [1, N] do
Analyze if each cell with one or more adjacent cells belongs to the region Si, by

using Equation (10)
find Cbest = argj max Ei,j
Add Cbest to Si
Cbest ← explored

end for
end while

Ei,j = Ea
j +

N

∑
k=1,k 6=i

Eb
j,k + Ec

j . (6)

where Ea
j is the distance between the visited cell and the center of the unexplored workspace.

Ea
j is used to ensure that cells that are located on the border of the unexplored

workspace are given higher scores. Ea
j can be calculated as:

Ea
j = σa (|xi − xce|+ |yi − yce|), (7)

in which xi, yi are coordinates of the center of the cell currently being explored, xce, yce
are the coordinates of the center of the environment (a fixed referential), and σa > 0 is a
positive constant used as a function gain.

Drones 2023, 7, 9 6 of 18

Furthermore, Eb
j,k is the distance between the jth cell and the region Sk belonging to

the kth agent. It increases the score of cells that are distant from the other UAVs, and is
given as:

Eb
j,k = σb min

[xj ,yj]∈Sk

(
|xj − xi|+ |yj − yi|

)
, (8)

in which xj, yj are the region Sk cell coordinates that belongs to the kth agent, and σb > 0 is
a positive constant used as a function gain.

Finally, the last term Ec
j specifies the status of exploration of the jth cell. It decreases

the score of visited cells, and it can be calculated as:

Ec
j =

{
0 if the cells are unexplored
−EM if the cells are explored,

(9)

in which EM > 0 is a large positive constant value.

4.2. Proposed Approach

Thus, here we propose modifications on the AWSTC algorithm, such that the score
calculated for the ith cell to be visited by the jth agent will now, be estimated as:

Ei,j = Ea
j +

N

∑
k=1,k 6=i

Eb
j,k + Ec

j,m + Ed
i,j, (10)

where Ec
j,m is a penalty term used to avoid redundancy in the coverage, and Ed

i,j is a positive
term applied to reward cluttered regions.

Note that the first and second terms, Ea
j and Eb

j,k respectively, remain the same from
the previous work [6]. However, the third term Ec

j,m, which is responsible for decreasing
the score of already explored cells, was modified. More formally:

Ec
j,m =

{
0 for unexplored cells
−EM Dj,u for explored cells,

(11)

where Dj,u is the Manhattan distance between the Cj cell and the closest unexplored cell.
Our approach starts by analyzing the unexplored cells first, where Ec

j,m = 0. Further-

more, we included a new reward term Ed
i,j that increases the score of cells from clusters. In

other words, we estimate how many diagonal adjacent cells of the jth cell are found in the
same region. More precisely:

Ed
i,j = σd NCi,j, (12)

where the number of diagonal adjacent cells of the cell Cj that belong to the region Si
corresponding to the ith robot is NCi,j, and σd > 0 is a positive constant used as a
function gain.

Our proposed approach also adds a mechanism to minimize the overlapping of
different regions, while counting the cells similarly. Every cell Cj that belongs to two or
more regions is removed from every Si region if it does not violate the continuity of Si.
Then, if the cell Cj does not belong to any region, it is listed as unexplored. Furthermore, the
robots take turns analyzing all unexplored cells using Equation (10) and picking the highest-
scored cell. At every turn, the respective robot will be the one in which the corresponding
region has the smallest set of cells. The algorithm repeats this process until no solvable
conflicts emerge. We summarize the entire process in Algorithm 2.

After the environment partitioning, the agent creates a trajectory that includes all cells
of its subregion by using STC. By combining the partition of the environment algorithm
with STC, we obtain the same AWSTC previous algorithm described [6]. However, if

Drones 2023, 7, 9 7 of 18

we instead combine STC with our modified version of the partition of the environment
algorithm, we obtain our proposed IAWSTC algorithm.

Algorithm 2 Reduction of Overlapping Regions

for each cell Cj, j ∈ [1, M] do
if NRCj > 1, where NRCj is the number of regions Si, i ∈ [1, N] which satisfy Cj ∈ Si

then
for each region Si, Cj ∈ Si do

if Si \ Cj is continuous then
remove Cj from Si

end if
end for
if NRCj = 0 then

Cj ← unexplored
end if

end if
end for
while unexplored Cj exists do

i← agent with the least cells in its region Si
Analyse each cell with one or more adjacent cells that belong to region Si using

Equation (10) as viewed by agent i
find Cbest = argj max Ei,j
Add Cbest to Si
Cbest ← explored

end while

4.3. Complexity

Both the classic and improved versions of the partition of the environment
(Algorithm 1) algorithm’s time complexity is O(N2). In addition, the STC time complexity
is O(N). Therefore, as a result, we have a O(N2) for both the AWSTC by Dong et al. [6]
and our proposed IAWSTC.

5. Trajectory Smoothing Using Least Squares Solution

The trajectories generated by both algorithms contain many rough turns. Generally, a
smoothing algorithm attenuates these turns to enable the controller of the UAV to track the
resulting path. Note here that we do not tackle the well-known “smoothing problem” [14,15],
which is the problem of estimating an unknown probability density function recursively
over time using incremental incoming measurements. In the path planning field of research,
there is another definition of “smoothing problem”, which is the problem of generating
polyline segments after the initial path points are obtained (or generated) from a path
planning algorithm (such as A*, RTT, and so on) [16–18]. Thus, one must consider that the
UAV usually deviates from the given reference due to the controller’s inability to perfectly
follow the desired trajectory, especially when there is a turn exceptionally sharp. Thus,
a smoothing algorithm is decisive in keeping the UAV closer to the planned path and
exploring the environment adequately.

Several trajectory smoothing approaches have been proposed in the past and they
can be divided into three classifications: special curves, interpolation-based, and opti-
mization [19]. The interpolation-based methods use polynomial interpolation [20], Bézier
curves [21], cubic splines [22], B-splines [23], or NURBS curves [24]. Special curves usually
use Dubin’s curves [25], Clothoid [26], Hypocycloid [27], and other types of curves [19].
Optimization methods treat trajectory smoothing as a problem in which energy, time of
execution, and other criteria are minimized.

In this work, we propose, along with other contributions, a smoothing algorithm that
aims for simplicity and low computational cost, while going through each of the original

Drones 2023, 7, 9 8 of 18

trajectory points. The final smoothened trajectory is sent to the UAV control system that is
composed of an MPC tracker and a SE(3) controller. This control pipeline was proposed by
our group in the past [4]. It is interesting to note that the MPC tracker checks the feasibility
of the given trajectory based on the UAV dynamics. However, our smoothing approach
“easy up” the computational processing for this tracker since the smoothing approach
already gives a more feasible path for the UAV to follow. Thus, the visit to all points must
be ensured in order to explore all the desired cells. Thus, we proposed the TSULSS. Our
approach is based on the addition of equally distant p points between every couple of
points from the original trajectory (see Figure 4). Then, we minimize the function of the
curvature of the entire new trajectory τ. For this function, we use the sum of squared
angles between pairs of consecutive vectors vi, vi+1 ∈ τ. Nevertheless, we are not able to
formulate this function as the least squares solution of a system of linear equations. Thus,
we decompose the vectors vi, vi+1 into three consecutive points Pi, Pi+1, Pi+2, while the
distance dmid,i from the middle point Pi+1 to the center of mass of the three points are used
to describe the angle between the two vectors vi, vi+1. Finally, we can describe the function
of the curvature of τ as the sum of the squared distances dmid,i for every three consecutive
points from the resulting path τ. This function is calculated as:

f (τ) =
N−2

∑
i=0

[(
Pi,x + Pi+1,x + Pi+2,x

3
− Pi+1,x

)2

+

(Pi,y + Pi+1,y + Pi+2,y

3
− Pi+1,y

)2
]

. (13)

0 0.5 1 1.5 2 2.5 3

x coordinate [m]

0

0.5

1

1.5

2

2.5

3

y
 c

o
o

rd
in

a
te

 [
m

]

Smoothed p = 5

Smoothed p = 4

Smoothed p = 3

Smoothed p = 2

Original trajectory

Figure 4. The meaning of the p parameter—with higher values of p, more points are inserted into the
trajectory, which leads to smoother turns.

The equation of the trajectory curvature τ is presented by Equation (13) below. How-
ever, one must also consider the shift of individual points. Thus, for each Pi point, we
replace it with Pi + λi δi, where λi is a binary variable that ensures the points of the original
trajectory will not be changed during the smoothing process, and therefore, the UAV will
explore all the cells, δi is the change of the ith point of the trajectory, and

λi =

{
0 Pi comes from the original trajectory
1 Pi added on the first phase.

Drones 2023, 7, 9 9 of 18

The final function can be seen in Equation (14).

f (τ) =
N−2

∑
i=0

[(
Pi,x + λi δi,x

3
− 2

Pi+1,x + λi+1 δi+1,x

3
+

Pi+2,x + λi+2 δi+2,x

3

)2

+

(Pi,y + λi δi,y

3
+ 2

Pi+1,y + λi+1 δi+1,y

3
+

Pi+2,y + λi+2 δi+2,y

3

)2
]

. (14)

f f (τ) = f (τ) +
(

PN−1,x + λN−1 δN−1,x

3
− 2

P1,x + λ1 δ1,x

3
+

P2,xλ2 δ2,x

3

)2

+(
PN−1,y + λN−1 δN−1,y

3
− 2

P1,y + λ1 δ1,y

3
+

P2,yλ2 δ2,y

3

)2

. (15)

f f (τ) = ‖A x− b‖2, (16)

where

A =

λ1
3 0 − 2 λ2

3 0 λ3
3 0 0 0

0 λ1
3 0 − 2 λ2

3 0 λ3
3 0 0

...
...

...
...

...
...

. . .
...

...
...

...
...

...

0 0 λN−2
3 0 − 2 λN−1

3 0 λN
3 0

0 0 λN−2
3 0 − 2 λN−1

3 0 λN
3

− 2 λ1
3 0 λ2

3 0 0 λN−1
3 0 . . . 0

0 − 2 λ1
3 0 λ2

3 0 0 λN−1
3 0 0

,

x =

[
δ1,x δ1,y δ2,x δ2,y δ3,x δ3,y . . . δN,x δN,y

]T

,

b =

− 1
3 P1,x +

2
3 P2,x − 1

3 P3,x

− 1
3 P1,y +

2
3 P2,y − 1

3 P3,y

...

− 1
3 PN−2,x +

2
3 PN−1,x − 1

3 PN,x

− 1
3 PN−2,y +

2
3 PN−1,y − 1

3 PN,y

.

For trajectories in which P1 = PN , we added another term to round off the connec-
tion between the beginning and the end of the trajectory. The resulting function to be
minimized can be seen in Equation (15). Note that we can rewrite this equation in matrix
form for better clarity, as presented in Equation (16). Thus, our optimization problem is
formulated as:

Drones 2023, 7, 9 10 of 18

min
x∈R2N

‖A x− b‖2. (17)

Finally, to improve the UAV control capability over the trajectory resulting from
our approach, we used the Tikhonov regularization to penalize significant changes and
introduced a µ parameter that set up the level of the smoothing that we desired on the
trajectory. Thus, the final function is given by:

min
x∈R2N

(
‖A x− b‖2 + µ‖x‖2

)
. (18)

Either singular value decomposition, QR decomposition, or normal equations solve this
optimization problem. We have chosen the last one due to its lower computational complexity.

6. Online Obstacle Avoidance and Re-Planning

After generating the trajectory, each UAV goes to its starting position and follows the
planned path. During this process, they inform the others about cells that were explored
and periodically check for obstacles within their path. Whenever the UAV detects an
obstacle, it immediately stops, observes it for to seconds, and then classifies the object as
static if its position does not change during the waiting time or dynamic otherwise.

Definition 8. An obstacle is the representation of any object that blocks the UAV from entering a
cell. The robot is not allowed to explore a cell that is within an obstacle. Thus, a cell that contains
an obstacle is considered by our algorithm as visited on the first run of the algorithm that the
robot performs.

Definition 9. A moving obstacle is the representation of any object that temporarily blocks the
UAV from entering a cell. A moving obstacle is only considered after the resulting path is generated.
The moving obstacle is considered to be aware of its surroundings (e.g., an autonomous robot, a
human, an animal, etc.).

As above stated, as the moving obstacles are aware of their surroundings, the UAV
does not need to consider an obstacle-avoiding procedure. Upon the moving obstacle
detection, the UAV suspends the execution of the trajectory tracking temporarily and waits
for the moving obstacle to pass and the pass to be clear.

Alternatively, the appearance of a new static obstacle triggers the information exchange
between the robots and the suspension of the current trajectory execution. After including it
on the map, each agent replans its trajectory with the new obstacle, revising the exploration
status of each cell and re-executing the coverage algorithm.

7. Quantitative Tests

Multiple quantitative tests were performed to validate our approach. We performed
mainly two quantitative tests: improvement of the environment partition, and evalua-
tion of the trajectory smoothing. All quantitative tests were performed numerically in
Matlab 2020a.

7.1. Improvement of the Environment Partition

First, we have launched the original (AWSTC [6]) and modified (IAWSTC) versions on
1000 worlds with dimensions 10 × 10 cells, on 500 worlds with dimensions 20 × 20 cells,
and on 200 worlds with dimensions 30 × 30 cells with 2, 4, and 8 agents. The worlds and
the robot starting points were generated in a random fashion.

Definition 10. The redundancy ratio ζr is a metric that describes the coverage redundancy of the
resulting trajectory. he redundancy ratio ζr is as follows:

Drones 2023, 7, 9 11 of 18

ζr =

N
∑

i=1
card(Si)

card(E f ree)
, (19)

where card(Si) is the number of cells within the ith region Si, N is the number of robots, and
card(E f ree) is the number of cells from the environment representation where there is no obstacle.

Definition 11. The ratio of equality ζe is a metric that measures the difference between the sizes of
the subregions corresponding to each individual robot. This metric can be calculated as:

ζe =

max
i∈{1,...,N}

card(Si)

1
N card(E f ree)

, (20)

Definition 12. The increased length ratio ζi is a metric that defines the growth of the length of the
resulting trajectory due to the smoothing step. It can be estimated as:

ζi =
length(τs)

length(τ)
, (21)

in which length(τs) is the smoothed trajectory length τs, and length(τ) is the original trajectory
length τ.

We used both the redundancy ratio ζr and the equality ratio ζe as metrics for the
comparison. As shown in Figure 5, the IAWSTC algorithm improves both ratios.

2 3 4 5 6 7 8

Number of UAVs

1

1.05

1.1

1.15

1.2

1.25

R
e
d
u
n
d
a
n
c
y
 R

a
ti
o

AWSTC on 10x10 world

IAWSTC on 10x10 world

AWSTC on 20x20 world

IAWSTC on 20x20 world

AWSTC on 30x30 world

IAWSTC on 30x30 world

(a) Redundancy ratio

2 3 4 5 6 7 8

Number of UAVs

1

1.05

1.1

1.15

1.2

1.25

E
q
u
a
lit

y
 R

a
ti
o

AWSTC on 10x10 world

IAWSTC on 10x10 world

AWSTC on 20x20 world

IAWSTC on 20x20 world

AWSTC on 30x30 world

IAWSTC on 30x30 world

(b) Equality ratio
Figure 5. The relation between the redundancy ratio and equality ratio with respect to the number of
drones and world size.

7.2. Evaluation of the Trajectory Smoothing

We also analyzed the performance of our TSULSS algorithm with respect to the values
given to the p and µ parameters. We tested an average of 100 random worlds with different
sizes, such that s ∈ {10× 10, 11× 11, . . . , 25× 25} with the number of exploring robots
varying according to N ∈ {2, 3, . . . , 6}.

Definition 13. The turn intensity ζt is a metric that specifies the intensity of the smoothness of
each turn present in the resulting trajectory. An increase in turn intensity means an increase in the
sharpness of the turns. It can be calculated as:

ζt =

√
M−2
∑

i=1

(
arccos

(
vi ·vi+1
|vi | |vi+1|

))2

M− 2
, (22)

Drones 2023, 7, 9 12 of 18

in which M is the number of points P1, . . . , PM ∈ τ. Furthermore, vi, vi+1 can be calculated as:

vi = Pi+1 − Pi (23)

vi+1 = Pi+2 − Pi+1 (24)

Finally, this definition can be extended to consider closed trajectories. Thus, we append points
PM+1 = P1 and PM+2 = P2 to the end of the resulting trajectory.

We used the ratio of length increase ζi, and the turn intensity ζt, as indicated in
Figure 6. We verified that the results proved that the higher the value of either the µ or the
p parameter, the smoother will be the trajectory and the shorter it will be its length. We
also saw that the contrary is also valid.

0 0.1 0.2 0.3

1.005

1.01

1.015

1.02

1.025

L
e
n
g
th

 i
n
c
re

a
s
e
 r

a
ti
o

p = 3

p = 4

p = 5

(a) Length

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
12

14

16

18

20

22

24

T
u
rn

 i
n
te

n
s
it
y

p = 3

p = 4

p = 5

(b) Turn intensity
Figure 6. The effect of the increase on the length ratio and turn intensity on the parameters p and µ.

8. Results

We performed simulations using the realistic simulator of robotic operating system
(ROS) and Gazebo [28]. The parameter values used in the simulation and real-world
experiments are presented in Table 1.

Table 1. Used values of the parameters of our proposed algorithms.

Parameter Value

Partition of the Environment

σa 1

σb 100

σd 10

EM 10,000

Smoothing
p 5

µ 0.15

Replanning to 2 [s]

8.1. Simulation

In this subsection we present the results from both numeric and realistic simulations.
We performed several simulations on a computer with Intel Core i7, 8 GB RAM. Two case
studies of numerical simulations are presented and three other cases of realistic gazebo
simulations are also further presented.

8.1.1. Numeric Simulation

The numeric simulations aimed to demonstrate the robustness of our approach with a
larger environment and with more UAVs. These simulations used a world with a size of

Drones 2023, 7, 9 13 of 18

93 m × 93 m, resulting in a 31 × 31 cell grid. From the several performed simulations, we
present here two special cases. The first special case used 5 UAVs with a total of 15 fixed
obstacles known a priori Figure 7a. The second special case used 7 UAVs with a total of
4 fixed obstacles known a priori Figure 7b. Note that in both cases there is an almost even
distribution of regions allowing the coverage of the large area to be performed much easier.

-1 0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031
-1
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

UAV 0 trajectory
UAV 1 trajectory
UAV 2 trajectory

UAV 3 trajectory
UAV 4 trajectory
Obstacle

(a) First case of study

-1 0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435
-1
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

UAV 0 trajectory
UAV 1 trajectory
UAV 2 trajectory
UAV 3 trajectory

UAV 4 trajectory
UAV 5 trajectory
UAV 6 trajectory
Obstacle

(b) Second case of study
Figure 7. Numerical simulations with large worlds.

8.1.2. Realistic Simulation

The three realistic simulations were performed using the MRS system [4] and the
ROS/Gazebo realistic simulator. We used three drones in the first realistic simulation and
two drones in the other two cases of study to validate our approach. In this first simulation,
the world explored by the UAVs contained fixed obstacles known a priori. The simulated
world had a size of 45 m × 45 m, resulting in a 15 × 15 cell grid. The trajectories resulting
from the IAWSTC algorithm are shown in Figure 8.

Figure 8. IAWSTC algorithm in simulation.

Drones 2023, 7, 9 14 of 18

In this first simulation we had 13 fixed known obstacles that occupied the grid spaces
seen in yellow in the figure above. These were a priori known obstacles. After the gener-
ated trajectory was performed by our approach, the complete coverage was achieved by
the UAVs.

In the second realistic simulation, the two UAVs begin their fly in a world with a
30 m × 30 m of size, resulting in a 10 × 10 grid. This world had 8 fixed obstacles known a
priori. The UAVs started moving according to the resulting trajectory (Figure 9a). During
the simulation, one of the UAVs encounter a fixed obstacle that was unknown a priori. This
obstacle was detected using sensors onboard the UAV. After detection, the UAV stops its
movement and waits 5 s to check if it is moving or stationary. As UAV detected that it was
a fixed obstacle, both UAVs stopped so that our approach could replan the whole coverage
giving new trajectories to both UAVs (Figure 9b).

(a) Before encountering the fixed obstacle (b) After encountering the fixed obstacle
Figure 9. Realistic Simulation with unknown fixed obstacle. VIDEO : https://youtu.be/4wocoYXDiz4,
accessed on 17 December 2022.

In the third realistic simulation, the two UAVs begin their fly in a world with a
30 m × 30 m of size, resulting in a 10 × 10 grid. This world had 2 fixed obstacles known a
priori. The UAVs started moving according to the resulting trajectory (Figure 10a). During
the movement of the UAVs, a moving obstacle appears crossing the path of one of the UAVs
(Figure 10b). Once more the obstacle is detected using sensors onboard the UAV. After
detection, the UAV stops its movement and waits 5 s to check if it is moving or stationary.
As it is a moving obstacle, eventually it moves out of the path of the UAV, and thus the UAV
resumes its movement to track the planned trajectory (Figure 10c). The object is moving in
an oscillating manner, going forward and back and the path of the obstacle is given by the
blue line in the figures. Even with this oscillating movement, after the object clears the path
the drone restarts to track the planned trajectory (Figure 10d).

8.2. Real Robot Experiments

We also performed real robot experiments with three UAVs based on the F450 frame.
The UAVs have a GPS receiver for localization, 2D RPLiDAR for detecting obstacles, an
Intel i7-based onboard computer, and a down-facing Garmin LIDAR for altitude estimation.

The IAWSTC was validated on a field with 40 m × 40 m of area. This resulted in a
10 × 10 cell grid. Some snapshots of the real robot experiments can be seen in Figure 11.

https://youtu.be/4wocoYXDiz4

Drones 2023, 7, 9 15 of 18

(a) Started tracking (b) Encountered obstacle

(c) Checks if it is moving (d) Resume tracking

Figure 10. Realistic Gazebo Simulation with unknown moving obstacle. VIDEO: https://youtu.be/
KP-xCtVwBQs, accessed on 17 December 2022.

Figure 11. Snapshots of the performed real robot experiment. VIDEO: https://youtu.be/EjyLa0kJFaE,
accessed on 17 December 2022.

https://youtu.be/KP-xCtVwBQs
https://youtu.be/KP-xCtVwBQs
https://youtu.be/EjyLa0kJFaE

Drones 2023, 7, 9 16 of 18

We set the cell size to a 4 m × 4 m area so that the mechanism to predict collision with
obstacles would not affect the resulting trajectories. The results from the implementation of
IAWSTC are presented in Figure 12.

Figure 12. IAWSTC algorithm on real UAVs.

In the real robot experiments we had 5 fixed known obstacles that occupied the grid
spaces seen in yellow in the figure above. These were also a priori known obstacles. After
the generated trajectory was performed by our approach, the complete coverage was
achieved by the UAVs.

9. Conclusions

In this work, we proposed an improvement of the AWSTC algorithm proposed by
Dong et al. [6]. As a second contribution, we introduced an algorithm for smoothing with
an online re-planner that avoids detected unexpected obstacles. Our modified version of
the algorithm produces subregions with less redundancy than the original paper, using a
mechanism to reduce intersections on multiple trajectories and with the ability to handle
unexpected obstacles.

We performed experiments in simulation and also using real drones. The results of
these tests verified that the IAWSTC algorithm produces subregions with less redundancy
than its previous version. Our proposed approach can be applied in environment explo-
ration in cluttered regions with the possibility of having dynamic obstacles. Further works
are to perform a sequence of tests in real scenarios and statistically analyze the coverage
rate using images acquired from the environments.

Author Contributions: Software, J.C.; experiments, J.C.; writing, T.A. and A.M.N.; writing–revision,
supervision and project administration, T.P.N. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by CTU grant no SGS20/174/OHK3/3T/13, by the Min-
istry of Education of the Czech Republic has funded my research by OP VVV funded project
CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for Informatics”, and by the Technology
Innovation Institute—Sole Proprietorship LLC, UAE, under the Research Project Contract No.
TII/ARRC/2055/2021.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Drones 2023, 7, 9 17 of 18

Abbreviations
The following abbreviations are used in this manuscript:

AWSTC artificially weighted spanning tree coverage
IAWSTC improved artificially weighted spanning tree coverage
STC spanning tree coverage
CPP coverage path planning
MCPP multi-robot coverage path planning
MAV micro air vehicle
UAV unmanned aerial vehicle
ROS robotic operating system
TSULSS trajectory smoothing using least squares solution

References
1. Faigl, J.; Váňa, P.; Pěnička, R.; Saska, M. Unsupervised learning-based flexible framework for surveillance planning with aerial

vehicles. J. Field Robot. 2019, 36, 270–301. [CrossRef]
2. Feng, K.; Li, W.; Ge, S.; Pan, F. Packages delivery based on marker detection for UAVs. In Proceedings of the 2020 Chinese

Control And Decision Conference (CCDC), Hefei, China, 22–24 August 2020; pp. 2094–2099. [CrossRef]
3. Smrčka, D.; Báča, T.; Nascimento, T.; Saska, M. Admittance Force-Based UAV-Wall Stabilization and Press Exertion for

Documentation and Inspection of Historical Buildings. In Proceedings of the 2021 International Conference on Unmanned
Aircraft Systems (ICUAS), Athens, Greece, 15–18 June 2021; pp. 552–559. [CrossRef]

4. Baca, T.; Petrlik, M.; Vrba, M.; Spurny, V.; Penicka, R.; Hert, D.; Saska, M. The MRS UAV System: Pushing the Frontiers of
Reproducible Research, Real-world Deployment, and Education with Autonomous Unmanned Aerial Vehicles. J. Intell. Robot.
Syst. 2021, 102, 26. [CrossRef]

5. Kapoutsis, A.C.; Chatzichristofis, S.A.; Kosmatopoulos, E.B. DARP: Divide Areas Algorithm for Optimal Multi-Robot Coverage
Path Planning. J. Intell. Robot. Syst. 2017, 86, 663–680. [CrossRef]

6. Dong, W.; Liu, S.; Ding, Y.; Sheng, X.; Zhu, X. An Artificially Weighted Spanning Tree Coverage Algorithm for Decentralized
Flying Robots. IEEE Trans. Autom. Sci. Eng. 2020, 17, 1689–1698. [CrossRef]

7. Huang, X.; Sun, M.; Zhou, H.; Liu, S. A Multi-Robot Coverage Path Planning Algorithm for the Environment With Multiple Land
Cover Types. IEEE Access 2020, 8, 198101–198117. [CrossRef]

8. Gabriely, Y.; Rimon, E. Spanning-tree based coverage of continuous areas by a mobile robot. In Proceedings of the 2001
ICRA. IEEE International Conference on Robotics and Automation, Seoul, Republic of Korea, 21–26 May 2001; Volume 2,
pp. 1927–1933. [CrossRef]

9. Agmon, N.; Hazon, N.; Kaminka, G. Constructing spanning trees for efficient multi-robot coverage. In Proceedings of the 2006
IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006; pp. 1698–1703. [CrossRef]

10. Jiao, Y.S.; Wang, X.M.; Chen, H.; Li, Y. Research on the coverage path planning of UAVs for polygon areas. In Proceedings of
the 2010 5th IEEE Conference on Industrial Electronics and Applications, Taichung, Taiwan, 15–17 June 2010; pp. 1467–1472.
[CrossRef]

11. Kang, Z.; Ling, H.; Zhu, T.; Luo, H. Coverage Flight Path Planning for Multi-rotor UAV in Convex Polygon Area. In Proceedings
of the 2019 Chinese Control And Decision Conference (CCDC), Nanchang, China, 3–5 June 2019; pp. 1930–1937. [CrossRef]

12. Ruan, L.; Wang, J.; Chen, J.; Xu, Y.; Yang, Y.; Jiang, H.; Zhang, Y.; Xu, Y. Energy-efficient multi-UAV coverage deployment in UAV
networks: A game-theoretic framework. China Commun. 2018, 15, 194–209. [CrossRef]

13. Avellar, G.; Pereira, G.; Pimenta, L.; Iscold, P. Multi-UAV Routing for Area Coverage and Remote Sensing with Minimum Time.
Sensors 2015, 15, 27783–27803. [CrossRef] [PubMed]

14. Kim, M.; Ali Memon, S.; Shin, M.; Son, H. Dynamic based trajectory estimation and tracking in an uncertain environment. Expert
Syst. Appl. 2021, 177, 114919. [CrossRef]

15. Memon, S.A.; Ullah, I. Detection and tracking of the trajectories of dynamic UAVs in restricted and cluttered environment. Expert
Syst. Appl. 2021, 183, 115309. [CrossRef]

16. Li, F.F.; Du, Y.; Jia, K.J. Path planning and smoothing of mobile robot based on improved artificial fish swarm algorithm. Sci. Rep.
2022, 12, 659. [CrossRef] [PubMed]

17. Kurenkov, M.; Potapov, A.; Savinykh, A.; Yudin, E.; Kruzhkov, E.; Karpyshev, P.; Tsetserukou, D. NFOMP: Neural Field
for Optimal Motion Planner of Differential Drive Robots With Nonholonomic Constraints. IEEE Robot. Autom. Lett. 2022,
7, 10991–10998. [CrossRef]

18. Kim, T.; Park, G.; Kwak, K.; Bae, J.; Lee, W. Smooth Model Predictive Path Integral Control without Smoothing. IEEE Robot.
Autom. Lett. 2022, 7, 10406–10413. [CrossRef]

19. Ravankar, A.; Ravankar, A.; Kobayashi, Y.; Hoshino, Y.; Peng, C.C. Path Smoothing Techniques in Robot Navigation: State-of-the-
Art, Current and Future Challenges. Sensors 2018, 18, 3170. [CrossRef] [PubMed]

20. Huh, U.Y.; Chang, S.R. A G2 Continuous Path-smoothing Algorithm Using Modified Quadratic Polynomial Interpolation. Int. J.
Adv. Robot. Syst. 2014, 11, 25. [CrossRef]

http://doi.org/10.1002/rob.21823
http://dx.doi.org/10.1109/CCDC49329.2020. 9164677
http://dx.doi.org/10.1109/ICUAS51884.2021.9476873
http://dx.doi.org/10.1007/s10846-021-01383-5
http://dx.doi.org/10.1007/s10846-016-0461-x
http://dx.doi.org/10.1109/TASE.2020.2971324
http://dx.doi.org/10.1109/ACCESS.2020.3027422
http://dx.doi.org/10.1109/ROBOT.2001.932890
http://dx.doi.org/10.1109/ROBOT.2006.1641951
http://dx.doi.org/10.1109/ICIEA.2010.5514816
http://dx.doi.org/10.1109/CCDC.2019.8833382
http://dx.doi.org/10.1109/CC.2018.8485481
http://dx.doi.org/10.3390/s151127783
http://www.ncbi.nlm.nih.gov/pubmed/26540055
http://dx.doi.org/10.1016/j.eswa.2021.114919
http://dx.doi.org/10.1016/j.eswa.2021.115309
http://dx.doi.org/10.1038/s41598-021-04506-y
http://www.ncbi.nlm.nih.gov/pubmed/35027589
http://dx.doi.org/10.1109/LRA.2022.3196886
http://dx.doi.org/10.1109/LRA.2022.3192800
http://dx.doi.org/10.3390/s18093170
http://www.ncbi.nlm.nih.gov/pubmed/30235894
http://dx.doi.org/10.5772/57340

Drones 2023, 7, 9 18 of 18

21. Zhou, F.; Song, B.; Tian, G. Bézier curve based smooth path planning for mobile robot. J. Inf. Comput. Sci. 2011, 8, 2441–2450.
22. Li, X.; Gao, X.; Zhang, W.; Hao, L. Smooth and collision-free trajectory generation in cluttered environments using cubic B-spline

form. Mech. Mach. Theory 2022, 169, 104606. [CrossRef]
23. Biagiotti, L.; Melchiorri, C. Online trajectory planning and filtering for robotic applications via B-spline smoothing filters. In

Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013;
pp. 5668–5673. [CrossRef]

24. Hashemian, A.; Hosseini, S.F.; Nabavi, S.N. Kinematically smoothing trajectories by NURBS reparameterization—An innovative
approach. Adv. Robot. 2017, 31, 1296–1312. [CrossRef]

25. Lin, Y.; Saripalli, S. Path planning using 3D Dubins Curve for Unmanned Aerial Vehicles. In Proceedings of the 2014 International
Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, 27–30 May 2014; pp. 296–304. [CrossRef]

26. Brezak, M.; Petrović, I. Path Smoothing Using Clothoids for Differential Drive Mobile Robots. IFAC Proc. Vol. 2011, 44, 1133–1138.
[CrossRef]

27. Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Emaru, T. SHP: Smooth Hypocycloidal Paths with Collision-Free and Decoupled
Multi-Robot Path Planning. Int. J. Adv. Robot. Syst. 2016, 13, 133. [CrossRef]

28. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An Open-Source Robot Operating System;
ICRA Workshop on Open Source Software: Kobe, Japan, 2009; p. 5.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.mechmachtheory.2021.104606
http://dx.doi.org/10.1109/IROS.2013.6697177
http://dx.doi.org/10.1080/01691864.2017.1396923
http://dx.doi.org/10.1109/ICUAS.2014.6842268
http://dx.doi.org/10.3182/20110828-6-IT-1002.02944
http://dx.doi.org/10.5772/63458

	Introduction
	Related Works
	Problem Formulation
	Improved Artificially Weighted Spanning Tree Coverage
	Partition of the Environment
	Proposed Approach
	Complexity

	Trajectory Smoothing Using Least Squares Solution
	Online Obstacle Avoidance and Re-Planning
	Quantitative Tests
	Improvement of the Environment Partition
	Evaluation of the Trajectory Smoothing

	Results
	Simulation
	Numeric Simulation
	Realistic Simulation

	Real Robot Experiments

	Conclusions
	References

