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Abstract: In this paper, a planar air-bearing test bed with unmanned aerial vehicles (UAV) was used
to test a microsatellite motion control system. The UAV mock-ups were controlled by four ventilator
actuators that imitated the satellite thrusters and provided the required acceleration vector in the
horizontal plane, and torque along the vertical direction. The mock-ups moved almost without
friction along the planar air-bearing test bed due to the air cushion between the test bed surface
and the flat mock-up base. The motion of the mock-ups motion imitated the motion of satellites in
the orbital plane. The problem of space debris can be solved using special microsatellite missions
able to dock to space debris objects and change their orbit. In this paper, two control algorithms
based on the virtual potentials approach and the State Dependent Ricatti Equation (SDRE) controller,
were proposed for docking to a non-cooperative space debris object. The algorithms were tested
in a laboratory facility, and the results are presented and analyzed, including their main features
demonstrated during the laboratory study. It was shown that the SDRE-based control was faster,
although the virtual potential-based control required less characteristic velocity.

Keywords: motion control; laboratory verification; space debris removal; microsatellite

1. Introduction

Before the launch of any spacecraft mission, all of its systems go through a series of lab-
oratory tests to confirm their performance. In particular, motion control systems are tested
in a laboratory facility using aerodynamic suspensions, which makes it possible to simulate
the conditions of orbital flight in some ways. There are two common types of aerodynamic
test bed: a three-axis motion simulation for attitude, and a translational motion simulation
for planar movement. A planar air-bearing test bed allows the performance of a number of
tests regarding relative motion control algorithms in satellite formation flying missions [1],
and is also used to study the docking performance of different capturing systems including
robotic manipulators [2]. Some mock-ups are able to move in five degrees of freedom
as in [3], but most provide imitation of only three degrees of freedom relative to attitude
and translational motion. Nevertheless, the simplified planar translational and single-axis
attitude motion of satellite mock-ups helps developers to reveal the main algorithm features
of implementation in hardware that are not evident during the numerical simulation of the
controlled motion [4–6].

Cold-gas thrusters can be utilized for satellite relative motion control in orbit. During
laboratory experiments on the planar air-bearing test bed, such a control system can be
used as it is (as in [5,7,8]), although the magnitude of the thrust in the condition of the
Earth’s atmosphere condition is different. Moreover, the onboard tanks with compressed
gas require safety conditions in the laboratory that could be difficult to organize in some
cases, especially if the laboratory facility is intended for educational purposes. Another
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approach is to imitate the thrusters by actuators based on the ventilators of an unmanned
aerial vehicle, as in [9]. It is quite clear that the ventilator cannot work in orbit, but it
provides the corresponding value thrust to the cold-gas thrusters. Simplified versions of
the control algorithm for the planar motion case can be tested by using UAV mock-ups
with such thruster imitators.

The important problem of space debris in near-Earth orbits requires the development
of special missions for active space debris object removal. The current state-of-the art
developments in this field are presented in reviews [10,11]. One of the approaches implies
the use of microsatellites capable of capturing a space debris object and changing its orbit by
using onboard propulsion. There are a number of such missions, such as RemoveDEBRIS
that used a net and a harpoon to capture an object [12], ESA CleanSpace mission also
considered a harpoon to catch a debris object [13], and e.Deorbit mission used a robotic
arm to grasp the launch adapter ring of the ENVISAT, which was considered debris [14].
Some elements of close proximity operations for an active space debris removal mission
can be tested in the laboratory environment. A docking control algorithm for a satellite
with flexible appendages was tested in [6]. In [4], a path planning method of a robotic
arm was verified at an air-bearing test bed. Visual relative navigation algorithms were
experimentally studied in [15,16].

This paper is devoted to the experimental study of two control algorithms for close-
range approach to the defined point of a non-cooperative space debris object. The algo-
rithms were based on the State Dependent Riccati Equation (SDRE) and a method based
on virtual potentials. The equations of relative motion were nonlinear. The equations of
motion were linearized near the current state vector to implement SDRE control [17–19].
Papers [20,21] presented a comparative study between SDRE and LQR based algorithms,
and the SDRE based algorithm showed its advantages in terms of fuel consumption, ap-
proach time and trajectory accuracy. Algorithms based on SDRE have been used to solve
various problems such as position and attitude control of a single spacecraft [22], or the
relative motion control for formation flying of satellites [20]. For the problem of capturing
a space debris object, it is necessary to take into account the effect of kinematic coupling,
when the relative motion is considered not only as the motion of centers of mass of two
bodies, but as the motion between two specific points fixed in the body reference frames,
as considered in [23]. In [24], the application of control, based on SDRE for this type of
relative motion equations, was investigated. In [1], the influence of the parameters of the
control system on the execution of the control algorithm based on SDRE of the relative
motion during capturing was studied, taking into account the saturation of the reaction
wheels and the deviation of the thrust vector from the center of mass of the satellite.

The method of virtual potentials is effective in solving the problems of nonlinear con-
trol. To control a dynamical system using this method, it is necessary to construct a virtual
potential field. The control actions are based on the vector fields obtained as a gradient
of an artificial potential function. Such a field can be selected using various mathematical
functions. For example, one of the types of potential functions was proposed in [25] in the
form of an inverse-square function, which was applied to control the motion of a mobile
robot. The virtual potential field can be constructed using harmonic functions and Laplace
equations [26,27], artificial gyroscopic forces [28], flow functions from hydrodynamics [29],
or using exponential series [30–32]. The method of virtual potential fields is used in physics,
chemistry and biology [30], and in other areas. This method has been effectively applied
for robotic control, for example, for traffic control problems for vehicles [32], cylindrical
robots [33], unmanned aerial vehicles [34–37], and unmanned ground vehicles. Thus,
artificial potential fields are widely used to control various dynamical systems.

The structure of this paper is as follows. In Section 2, a laboratory facility description
is provided and its architecture is described. In Section 3, a short problem statement and
the motion equations are presented. In Section 4, the description of the control algorithms
and their simplification for laboratory testing is provided. In Section 5, the results of the
experiments and algorithms comparison are presented.
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2. Laboratory Facility Description

The laboratory facility COSMOS was developed by SputniX Ltd. for the Keldysh
Institute of Applied Mathematics (KIAM), of the Russian Academy of Sciences. Its main
parts are presented in Figure 1. An air duct was located under the table surface, and
excessive atmospheric air pressure was created using the industrial ventilator. The air
flowed through the holes on the table surface, thus, creating an air cushion under the flat
base of the mock-ups. The table surface consisted of two aluminum plates. The size of the
table was 1.5 by 2 m. The mass of the test bed was about 200 kg.
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The main advantage of such an aerodynamic test bed is that it provides the air cushion
by itself. It is more convenient compared with other types of test beds with solid flat
surfaces, where the air cushion must be produced by satellite mock-ups. However, the “air
hockey”-like test beds are characterized by additional disturbances due to non-uniform
airflow through the holes in the surface.

Satellites mock-ups were placed on the aerodynamic table, and Figure 1 shows two
types of mock-ups. The mock-up control system was constructed using the hardware of
the OrbiCraft constructor, developed by the SputniX company [38]. The satellite mock-up
mass was 6 kg. The mock-ups consisted of the following systems:

• On-board computer Raspberry PI B+;
• Power system including the battery and PCU;
• Command transmitting system;
• A set of sensors for motion determination;
• Control actuators: one-axis reaction wheel, and four ventilators for thruster imitation;
• Passive magnetic docking system;
• Wi-Fi module.

The flowchart of all hardware component interactions is presented in Figure 2.
On the top of the mock-ups, ArUco markers [39] were placed for motion determination.

Images from the observation camera above the table were processed for the mock-ups’
centers of mass and attitude angle estimation. A desktop computer provided general
experiment management, processed the observing camera images, transmitted the posi-
tion measurements to the mock-ups, and logged the experiment data. Those data were
transmitted to the mock-ups’ onboard computers via Wi-Fi, and the measurements were
processed by Kalman filter for the estimation of linear and angular velocity. Current state
vectors were used for the reference trajectory calculation for each mock-up. The control
commands for actuators were calculated according to the goal of the current task, taking
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into account the disturbances acting on the mock-ups. The common control block-scheme
is presented in Figure 3.
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A special software was developed to run the required experiments in the laboratory
facility. Its architecture allowed the addition of new blocks in the available experiment
library, which met the testing experiment requirements. The software system consisted
of a desktop program “Station”, and “Sat” programs which were executed by the mock-
ups’ onboard computers. The experiment and test bed configurations were set by the
input parameters from the config-file, the Station program connected to the Sat programs
via Wi-Fi, and the Sat programs were initialized by the parameters from the experiment
configuration. The Sat programs were launched by the bash-script from the desktop PC
which then waited for connection to the Station program. The Station program was able to
start and finish the experiment on the Sat program after successful connection. A general
block-scheme of the Station–Sat interaction is presented in Figure 4.

In the next section, we consider the mock-up motion model used in the control
algorithms for the problem of docking to the space-debris object.
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3. Motion Model and Problem Statement
3.1. Mock-up Motion Equations

A planar air-bearing test bed only allows a partial imitation of the orbital flight
conditions. Clohessy–Wiltchire equations [40] are often used as a relative motion model for
satellite formation flying in near-circular orbits:

..
x = −2

.
zω,

..
y = −yω2,
..
z = 2

.
xω + 3zω2.

(1)

Here r = r2 − r1 = (x, y, z) is a radius vector of one of the satellites relative to the
second written in the local-vertical-local-horizontal (LVLH) reference frame OXYZ, and
ω is the orbital angular velocity. The origin O of the LVLH is moving along the reference
circular orbit, OZ axis is aligned with the radius vector RO of point O from Earth center, OY
is aligned with the orbital angular momentum, and the OX axis completes the right-handed
triad (see Figure 5). These equations have the following solution:

x(t) = −3C1ωt + 2C2 cos ωt− 2C3 sin ωt + C4,
y(t) = C5 sin ωt + C6 cos ωt,
z(t) = 2C1 + C2 sin ωt + C3 cos ωt

(2)

where C1 − C6 are the constants dependent on the initial conditions. From (2) it can be
noted that the motion along the OY axis is independent and finite. In many formation
flying control tasks, bounded relative trajectories are required to be achieved. Since the
motion along the OY axis is already bound, it may be omitted. Motion in the OXZ plane
corresponds to the motion in the orbital plane. Therefore, it is possible to imitate the orbital
plane motion at the surface of the laboratory facility table.

The controlled motion equations in the orbital plane are as follows:

..
x = −2

.
zω + ux,

..
z = 2

.
xω + 3zω2 + uz,

(3)
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where u = [ux, uz]
T is the vector of the control acceleration of the center of mass. For the

tasks of docking with space debris, when the relative trajectory is close enough, the terms of
non-inertial forces are negligible and can be compensated by the control algorithm, such as:

ux = 2
.
zω + ũx,

uz = −2
.
xω− 3zω2 + ũz,

(4)

where ũx, ũz are the control accelerations calculated according to the control algorithm.
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This results in the following mock-up motion control equations:

..
x = ũx,
..
z = ũz.

(5)

Attitude motion cannot be completely modeled in the laboratory. General angular
motion is described by the Euler equations:

J
.
ω+ω× Jω = M, (6)

where J is the inertia tensor,ω is the angular velocity vector of the body reference frame
relative to the inertial reference frame; M is the external torque. There are three degrees
of freedom for the angular motion of a satellite in orbit. However, angular motion on
the aerodynamic test bed has only one degree of freedom. Despite the limitations on
orbital motion imitation, uniaxial angular motion makes it possible to test some simplified
control algorithms.

Thereby, the motion equations of mock-ups on the test bed are:

m
..
R = F + Fdist,

J
..
α = M + Mdist,

(7)

where m is the mock-up mass; R is the radius vector of the center of mass in the reference
frame fixed in the test bed; F is the control force acting upon the mock-up; Fdist is the
disturbance force acting upon the mock-up; J is the moment of inertia relative to the axis
perpendicular to the plane of the test bed (vertical axis); α is the mock-up angle of rotation
relative to the vertical axis; M is the vertical component of the torque acting upon the
mock-up; and Mdist is the vertical component of the disturbance torque. There are two
translational degrees of freedom and one angular. There are two types of disturbances:
gravitational force defined by the test bed surface curvature, and aerodynamic forces due
to the local heterogeneity of an airflow. It was assumed that the disturbance force and
torque were negligible enough to be compensated by the thrusters’ imitators.
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3.2. Motion Equations for a Given Point of Satellite Relative to the Point of Space Debris

For the laboratory study of active debris-removal control algorithms, it was assumed
that the satellite mock-up was equipped with a docking system capable of capturing
the debris mock-up. Motion equations of the capturing system position relative to the
capturing point of the space debris are required for the development of control algorithms.
It was assumed that the capturing point was defined before the application of the docking
algorithms.

Consider the relation between vectors of the j-th point at the surface of the space debris
object with radius vector rj

D (capturing point), and the i-th point of satellite ri
C (capturing

system position) (Figure 6):
ρij = ρ0 + ri

C − rj
D (8)

where ρij is the radius vector between two points in a debris-fixed reference frame, ρ0 = [x; y; z]T

is the radius vector from the center of mass of the debris object to the satellite center of
mass. The dynamical equations can be obtained as a result of second derivative calculation
assuming that rj

D = const in the debris reference frame:

..
ρij =

..
ρ0 +

.
ω× ri

C +ω× (ω× ri
C) (9)

whereω =ωD −ωC is the vector of relative angular velocity. In the case of the mock-up
motion along the table surface, vectorω has only one componentω =

[
0 0 ω

]T , and
the equations for

..
ρij can be rewritten as follows:

..
ρij =

..
ρ0 +

.
ω× ri

C −ω2ri
C (10)
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In this paper, it was assumed that the space debris mock-up motion was free, and the
satellite mock-up was controlled. The center of mass translational motion relative to the
mock-up center of mass can be obtained according to the equation

..
ρ0 = u, then the final

relative motion equations between two points are as follows:

..
ρij = u +

.
ω× ri

C −ω2ri
C (11)

For the relative angular motion of two mock-ups, the equations are as follows:

JD
.

ω = JD JC
−1TC (12)
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For the attitude control algorithms, it is convenient to use the unit vectors directed to
the capturing system position eC and to the capture point of space debris eD:

eC =
ri

C∣∣ri
C

∣∣ , eD =
rj

D∣∣∣rj
D

∣∣∣ , (13)

where each vector is correspondingly written in each body reference frame. The relative
vector between these vectors can be calculated as follows:

e = DeC + eD , (14)

where D is the transition matrix from satellite to debris mock-up reference frame.
Using the second derivative of the vector e, the following dynamical equations can

be obtained: (
d2e
dt2

)
=
( .
ω
×
+ω×ω×

)
(e− eD), (15)

whereω× is a skew-symmetric matrix defined by the components of vectorω, and angular
acceleration vector

.
ω is defined by Equation (12).

3.3. Problem Statement

In this paper, the following orbital situation was modelled using space debris and
active satellite mock-ups. It was assumed that the satellite was initially in the vicinity of
the space debris object, i.e., the problem of far-range maneuvering was already solved. An
active satellite is equipped with thrusters providing continuous actuation for the relative
translational and angular motion, and these thrusters were imitated by the ventilators
on the satellite mock-up. The orbital motion of a space debris object is not controlled,
although its free motion on the aerodynamic table was modelled using the debris mock-up
thrusters. All parameters of the satellite and the debris object were considered as known,
and the relative motion was estimated by the on-board algorithms using the observation
system data.

The satellite mock-up was equipped with a magnetic capturing system able to catch
the space debris mock-up at the capturing point. It was assumed that the capturing system
could be placed with a certain precision at the capturing point for successful docking.
Moreover, the unit directional vector to the point of capturing system eC was required to be
antiparallel to the unit directional vector to the capturing point eD. The successful docking
conditions can be written in terms of the center of mass position vector error ∆ρ = ρ0 − ρd,
where ρ0 is the current position vector between the centers of masses and ρd is the required
vector, defined by the following:

ρT
d = K · eT

D, K >
∣∣∣ri

C

∣∣∣+ ∣∣∣rj
D

∣∣∣ (16)

In this paper, the docking was considered successful when the following conditions
were satisfied:

|∆ρ| < ερ,
∣∣∆ .
ρ
∣∣ < εv, |e| < εe,

∣∣ .
e
∣∣ < ε .

e (17)

where ερ, εv, εe, ε .
e are parameters determining an acceptable approach error.

The problem was stated as establishing a control for translational and angular motion
of a satellite to provide successful docking conditions (17). For the simplified version of
the algorithms, tests were performed on the air-bearing test bed with mock-ups of a space
debris and an active satellite.

3.4. The Ventilator Actuators Thrust Model

The ventilator actuators were used to imitate the thrusters in the laboratory condi-
tions. The force in the horizontal plane was generated using the ventilators, which allowed
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the control translational acceleration of the mock-up center of mass to be established.
Additionally, the actuators provided the control torque along the vertical axis. For simul-
taneous application of horizontal force vector and vertical torque, four ventilators were
required. The selected mock-up ventilators’ configuration layout is presented in Figure 7.
The rotational direction of the ventilators was fixed in the body reference frame.
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In this paper, the following thrust model of the ventilator actuator was used:

F =
1
2

Sρ(V2
e −V2) (18)

where V is the air velocity before entering the ventilator, Ve is the air velocity after leaving
the ventilator, ρ is the air density, and S is the area of the ventilator disc. The mock-up
motion model under the action of a single ventilator can be presented by the following equa-
tions: ..

x =
(

B− AV2) cos(ϕ− ϕ0)/m,
..
y =

(
B− AV2) sin(ϕ− ϕ0)/m,

..
ϕ = C

(
B− AV2), (19)

where x, y, ϕ are the center of mass position coordinates and the attitude angle of the mock-
up on the air-bearing test bed, ϕ0 is the thrust vector attitude angle in the mock-up body
reference frame, A = Sρ/2, B = SρV2

e /2, C = R/J, R is the moment–arm distance of the
ventilator thrust, and J is the inertia moment relative to the vertical axis. For this ventilator
model, air velocity after leaving the ventilator was a function of the control Ve = Ve(u),
where u is the control command. The calibration procedure was used to determine this
dependency, and was implemented as a separate experiment.

When the mock-up was placed on the test bed at the initial state vector
q0 =

[
x(t = 0) y(t = 0) ϕ(t = 0)

]T and one of the actuators was turned on with a
given control command u, the mock-up started to move according to the motion equations
(19). Position and attitude of the mock-up on the test bed were monitored with the optical
independent measurement system. The vector of the calibration parameters ξ = [A, B, C]
was different for every ventilator actuator. It was determined by the minimization of the
following function:

Φ(ξ) =
N

∑
i=1

(
qi −

~
qi

)2
(20)

where qi is the state vector obtained with the independent measurement system,
~
qi is

the state vector obtained with the motion equation integration, and N is the number of
measurement samples. With the minimization of (20), the dependency function Ve = Ve(u)
was estimated for a given value of u. To determine the full dependency function, it was
necessary to conduct a series of experiments with different values of the control command
u. In Figure 8, an example of the thrust value for every actuator of one of the mock-
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ups is shown as a dependency on a dimensionless control parameter, which was varied
from 0.55 to 1 in dimensionless units (it is a ratio of the applied voltage to the maximum
available control voltage). The control parameter was the input value for the ventilator’s
control block, which was converted to voltage in the electrical thrusters’ engines. In
the case of low voltage, the ventilators could not start rotation. It was experimentally
obtained that the minimum value of the control input was 0.55, at which the ventilators
provided rotation. This dependence was approximated by the quadratic functions for
onboard implementation.
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Using four ventilators, the required translational and angular control was implemented
according to the conversion of the control vector u into the thrust of the ventilators. This
conversion is described in [16].

4. Control algorithms for Mock-ups Rendezvous

The two control algorithms proposed in this paper aimed to achieve docking con-
ditions (17). One of the algorithms was based on the SDRE control approach using the
difference of the unit vectors from (14), and the other algorithm was based on the virtual
potentials method for the control of the center of mass of the mock-ups. In this section, the
basics of the control approaches are described and the application details of each algorithm
are provided.

4.1. SDRE-based Control

SDRE control was applied to the nonlinear system in the following form:

.
x = f(x) + g(x, u) (21)

where x is the system state vector, f(x) is the nonlinear function of the system dynamics,
g(x, u) is the nonlinear control function, and u is the control vector. In the vicinity of the
current state, the system can be linearized in the following form:

.
x = A(x)x + B(x)u (22)
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where A(x) and B(x) are the matrices of dynamics and control, respectively, which depend
on the state vector. The control is formed as the closed-loop feedback control aiming for the
following function minimization:

J̃ =
1
2

t f∫
0

[
x(t)TQ x(t) + u(t)TR u(t)

]
dt (23)

where Q, R are the constant positive definite matrices, and t f is the fixed finite time. The
control vector is calculated as follows:

u(x) = −R−1
(

BT(x)P(x)
)

x (24)

where matrix P(x) is calculated as the solution of the following Riccati equation:

P(x)A(x) + AT(x)P(x) − P(x)B(x)R−1BT(x)P(x) + Q = 0 (25)

For the problem of the mock-ups’ rendezvous, the state vector is defined as follows:

x =


e
.
e

∆ρij
∆

.
ρij

 (26)

where ∆ρij = ρij − ρd
ij, ρij is the radius vector between the j-th point of the space debris

mock-up (capturing point) and i-th point of the satellite mock-up (capturing system point),
and ρd

ij is the required radius vector between these two points. In this paper, the vector ρd
ij

was set to be constant in the debris mock-up reference frame, its value was determined by
the acceptable error of the magnetic capturing system, and it was parallel to the unit vector
of the capturing point:

ρd
ij = K · eD, K > 0 (27)

Taking into account the mock-ups’ motion along the table surface, Equation (15) for
vector e can be written in the following linearized form:

[ .
e
..
e

]
4×1

=

 0 I2×2(
.
ω

_
J 2×2 −ω2I2×2

)
0


4×4

[
e
.
e

]
4×1

+

[
02×1

−
_
J 2×2eD

C
(

JC
)−1

]
4×1

[TC] 1×1 (28)

where I2×2 is identity matrix, and
_
J 2×2 is the symplectic matrix:

_
J =

[
0 −1
1 0

]
(29)

Assuming that the mock-up center of mass free motion is affected by small value dis-
turbances, the approximation of the relative free motion can be considered as translational
motion with constant velocity. In this case, the dynamical matrix of the system is as follows:

A =


 02×2 I2×2(

.
ω

_
J 2×2 −ω2I2×2

)
02×2

 04×4

04×4

[
02×2 I2×2
02×2 02×2

]
, (30)
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The control vector consists of the control torque T and the control force vector F written
in the debris mock-up reference frame:

u =

[
T
F

]
(31)

The control matrix, in this case, is as follows:

B =


02×1 02×2

−
_
J 2×2eD

C
(

JC
)−1 02×2

02×1 02×2
02×1 I2×2/m

. (32)

4.2. Virtual Potentials-based Control

The other control approach proposed in the paper was based on the virtual potentials
method application. Its main idea was that the control of the satellite mock-up center
of mass aimed to approach the mock-up space debris at a defined relative distance, and
the satellite mock-up would move along the circle around the debris mock-up. In other
words, the satellite mock-up would achieve the radial equilibrium position. Due to the
debris mock-up angular motion, at some time moment, the satellite mock-up center of mass
would achieve an acceptable position for docking to the debris mock-up capturing point.
The acceptable position was defined by the sectorial area in the debris-mock-up reference
frame. In this sector, the parameters of the virtual potentials were replaced by a different
set of parameters in order to achieve the docking conditions.

The virtual potentials for the problem of docking were defined by exponential func-
tions corresponding to the attractive and repulsive fields of central forces, Vatt and Vrep, of
the following form:

Vrep = Crepe
− ρ0

lrep ,

Vatt = −Catte
− ρ0

latt ,

V = Vrep + Vatt = Crepe
− ρ0

lrep − Catte
− ρ0

latt ,

(33)

where Catt and Crep are positive attractive and repulsive parameters of the virtual fields of
the forces, latt and lrep are the influence radiuses of the virtual fields, and ρ0 is the distance
between the mock-ups centers of masses. The center of mass motion equations under the
application of the virtual potentials control were defined as follows:

..
ρ0 = −grad(V(ρ0)) (34)

This dynamical system was conservative, and the equilibrium position was defined
by the following equation:

grad(V) = 0 (35)

which led to the following:
Catt

latt
e−

ρ∗0
latt −

Crep

lrep
e
− ρ∗0

lrep = 0 (36)

The stability of the radial equilibrium position ρ∗0 is defined by the parameter values,
which must satisfy the relation latt > lrep. For the asymptotic stability, a virtual radial
friction a f r should be applied to the system using the control actuators. The corresponding
friction acceleration is defined by the formula:

ap = − fr
.
ρrer (37)
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where fr is the virtual friction in the radial direction,
.
ρr is the velocity radial component,

and er = ρ0/‖ρ0‖ is the unit vector along the radial direction.
The resulting satellite mock-up motion equations have the following form:

..
x =

(
−Catt

latt
e−

ρ0
latt +

Crep
lrep

e
− ρ0

lrep

)
x
ρ0
− fr

.
ρr

x
|ρ0|

,

..
y =

(
−Catt

latt
e−

ρ0
latt +

Crep
lrep

e
− ρ0

lrep

)
y
ρ0
− fr

.
ρr

y
|ρ0|

.
(38)

For docking, the satellite mock-up capturing system must always be oriented to the
debris mock-up center of mass. In order to achieve this orientation, the SDRE-based
attitude control was applied in terms of vector eC. After linearization, the dynamical
motion equations were as follows:

d
dt

[
∆eC
∆

.
eC

]O

=

[
02×2 I2×2(

−ω2
CI2×2

)
02×2

][
∆eC
∆

.
eC

]O

+

[
02×1

_
J 2×2eD

C
(

JC
)−1

]
TC (39)

where
∆eC = ΘCOeC + er (40)

where er is a unit vector along the radius vector between the mock-ups’ centers of masses,
defined by:

er = −
ρ0
|ρ0|

(41)

Two proposed control algorithms were experimentally studied on the mock-ups
moving along the air-bearing test bed.

5. Results of the Laboratory Experiments

Due to the difference between the motion of the mock-ups along the surface and the
satellite orbital motion, and due to the difference in the characteristics of the actuators, it is
almost impossible to study real satellite control algorithm performance such as accuracy
and time of docking. Nevertheless, the laboratory experiments revealed some features of
the proposed algorithm scheme, and estimations on the range of algorithm parameters
which provide successful docking.

During the experiments, the space debris mock-up tracked the defined trajectory
along the test bed surface imitating free orbital motion on a circular orbit. The trajectory is
described by the following:

x = x0 + A cos(ωt + ψ0),
y = y0 + A sin(ωt + ψ0),
ϕ = ϕ0 + Ωt,

(42)

where (x0, y0) are coordinates of the center of the orbit circle, A is the radius of the orbit,
ω is the angular velocity, ψ0 is the initial phase angle, Ω is the constant angular velocity
of the debris mock-up rotation around vertical, and ϕ0 is the initial attitude angle of the
mock-up. During the experiments, the following parameters were used:

(x0, y0) = (0.8, 0) m, A = 0.05 m, ϕ0 = ψ0 = 0, ω = Ω = 6 deg/s (43)

The initial conditions for the translational and angular motion of the mock-ups were
determined randomly, although the initial distance between the mock-ups was about 1 m.
The algorithm control parameters are presented in Table 1.



Drones 2023, 7, 7 14 of 27

Table 1. Control parameters.

Control Parameter Value

Virtual potentials control

Virtual potentials parameters
latt, = 5, lrep = 2.755,
Catt = 4.5, Crep = 5,
fr = 0.5

Virtual potentials parameters in the docking sector
latt, = 5, lrep = 2.755,
Catt = 12, Crep = 1,
fr = 0

Matrix Q for the attitude control I4×4

Matrix R for the attitude control 0.1

Docking sector size, deg 20

SDRE-based control

Matrix Q I8×8

Matrix R
[

0.1 01×2
02×1 104 · I2×2

]
Docking conditions

Acceptable position error, m 0.05

Acceptable attitude angle error, deg 10

For safety reasons, when the satellite mock-up approached the debris mock-up in a
manner not acceptable for docking conditions, the collision avoidance control was applied
to the satellite mock-up. The dangerous distance was set in the experiments as 0.5 m. The
collision avoidance control was applied in the direction along the radius vector from the
debris mock-up center of mass to the satellite mock-up center of mass, with the aim of
increasing the relative distance and avoiding dangerous proximity.

5.1. Virtual Potentials-based Control

Virtual potentials-based control provided the satellite mock-up trajectory with constant
distance relative to the space debris mock-up, and the magnetic capturing mechanism of
the satellite mock-up was oriented towards the debris mock-up center of mass. When the
satellite mock-up entered the acceptable area for capturing, the parameters of the virtual
potentials were replaced by another set, allowing the capturing system to approach the
capturing point at the debris mock-up. The scheme of the experiment with algorithm
implementation is shown in Figure 9.

Before the execution of the main part of the algorithm, all the parameters were initial-
ized according to the experiment configuration obtained from the Station software. This
included initialization of the motion equations parameters, Kalman filter parameters, and
virtual potentials parameters; and all the initially obtained measurements were linked to
the corresponding mock-ups. In the case that the initialization was performed and a new set
of measurements was obtained, the algorithm main loop began to execute. Relative motion
parameters were estimated by the onboard Kalman filter, and the current trajectory was
calculated. The control was calculated according to the virtual potentials. If the docking
conditions were not satisfied, the calculated control was implemented by the actuators.
Otherwise, the experiment was over, as the docking was successful. If the algorithm failed
to provide the docking, the mail loop was interrupted manually.

An example of the experiment results may be considered, and the video of the con-
ducted experiment can be accessed in [41]. Figure 10 presents the satellite and debris
mock-ups’ center of masses trajectories in the table-fixed reference frame. The initial po-
sition of the satellite mock-up, equilibrium distance and docking point are shown. The
relative distance time–history plot is presented in Figure 11. The equilibrium distance
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in this experiment was set at 0.81 m. At about 53 s after the start of the experiment, the
satellite mock-up entered the acceptable capturing area, and the virtual potentials was
replaced by another set to provide the mock-up approaching the capturing point. The
control provided the tracking of the unit vector of the capturing system direction eC and
the radius vector from the satellite mock-up center of mass to the debris center of mass, and
the angle between these two vectors is presented in Figure 12. This angle was inside the
acceptable area during the time of the whole experiment due to the control implementation.
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The calculated translational control acceleration according to the virtual potentials
in (38) is presented in Figure 13. After the convergence to the equilibrium distance, the
values of the control were low, and it compensated the disturbance forces acting on the
satellite mock-up center of mass. At the point of entering the acceptable area, the values
of the control became higher to provide the approach to the capturing point of the debris
mock-up. In Figure 14, the angular control acceleration is presented, which is aimed at
tracking the debris mock-up’s center of mass by the direction of the capturing system. Note
that the values of the angular control exhibited similar behavior as the deviation angle in
Figure 12. This was due to the fact that the control aim was to set the angle to zero, while
the disturbance torque caused some oscillations in this vicinity. The calculated translational
and angular control was converted into the control commands of the thrusters; its values
are provided in Figure 15. Note that according to the ventilators control implementation
algorithm [16], at each instant, only three of the four ventilators were controlled.
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Figure 16 presents the angle of deviation between two unit vectors directed to the
capturing system position eC and the opposite vector of the capturing point of the
space debris −eD. This angle represents the capturing conditions for the relative vector
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e = DeC + eD explained in (17). It can be seen that due to the debris rotation, the value of
this angle crossed the boundaries of acceptable error for docking. The acceptable area for
docking capture is also defined by the angle between the unit vector eD and the satellite
mock-up radius vector in the debris body reference frame, as presented in Figure 17.
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Thus, this experiment example demonstrated the proposed control scheme application
for the mock-ups’ rendezvous problem.

5.2. SDRE-based Control

A further experiment demonstrated the application of the proposed SDRE-based
control. The video of the experiment is presented in [42]. The main difference of the
control scheme was that the satellite mock-up aimed to achieve the center of mass and
angular position required for docking, instead of waiting for the acceptable conditions at
the equilibrium distance as in the case of virtual potentials-based control. The scheme of
the experiment with SDRE-based algorithm implementation is shown in Figure 18.
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Before the execution of the main part of the algorithm, all the parameters were ini-
tialized according to experiment configuration obtained from the Station software. This
procedure was similar to the one from the virtual potentials control algorithm. If the
initialization was performed, and a new set of measurements was obtained, the algorithm
main loop began to execute. Relative motion parameters were estimated by the onboard
Kalman filter. If the mock-up docking conditions were not satisfied, and there was no
dangerous proximity between the satellite and debris mock-ups, the SDRE-based control
was calculated and implemented by the thrusters’ imitators. If the required relative position
according to the SDRE algorithm was achieved, the satellite mock-up slowly approached
the debris mock-up until the docking was successful. If the satellite mock-up was closer
to the debris mock-up than the dangerous distance, and it was out of the docking sector,
the collision avoidance control was applied in order to increase the relative distance. If the
docking conditions were satisfied, the algorithm was switched to the joint trajectory motion
mode, and it jointly stabilized the current position and attitude of both mock-ups. In the
case that the algorithm failed to achieve docking, the main loop was interrupted manually.

Figure 19 presents the trajectories of the satellite and debris mock-ups in the aerody-
namic table-fixed reference frame. The initial position and the achieved acceptable position
for docking are shown in the plot. After the achievement of the required relative center of
mass position and attitude, the approaching phase followed. During the approach, the re-
quired relative radius vector ρd length was slowly reduced until docking was achieved. The
relative distance between the centers of masses of the mock-ups is presented in Figure 20.
Due to the disturbances acting on the mock-ups and control implementation errors, the
relative distance during the approaching phase reduced with some oscillations, although
with linear trend, that led to the docking point. Figure 21 demonstrates the angle between
the unit vectors directed to the capturing system position eC and to the capture point of the
space debris −eD during SDRE-based control. It can be seen that the attitude acceptable
for docking was almost achieved after 3 s, although the error periodically exceeded the
limit value. The angle between the unit vector eD and the satellite mock-up radius vector
in the debris body reference frame is shown in Figure 22.
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5.3. Control Algorithms Experimental Study

The performance of the proposed control algorithms depended on a set of parameters.
One of the most influential parameters was the angular velocity of the debris mock-up. A
set of experiments with almost the same initial conditions for the satellite mock-up but with
a different value of angular velocity of the debris mock-up was carried out. The results of
the experiments were analyzed, the required ∆V for docking was calculated as the integral
of the control acceleration components, and the docking time between the experiment start
and successful docking was estimated. The results of the experiments are presented in
Table 2. It was concluded that at an angular velocity lower than 12 deg/s, both algorithms
successfully achieved docking, although at a value of 18 deg/s both algorithms failed to
dock with the debris mock-up for different reasons.

Table 2. Results of the experiments with different debris mock-up angular velocities.

Debris Angular
Velocity, deg/s

Virtual Potentials SDRE

∆V, m/s Docking Time, s ∆V, m/s Docking Time, s

3 6, 92 115 9, 07 20

6 6, 22 57 10, 35 20

12 6, 74 28 8, 77 23

18 17, 31 (fail) 62 (fail) 17, 69 (fail) 14 (fail)

In the case of successful docking with the same debris mock-up angular velocity, the
virtual potential-based control required a lower value of ∆V. The docking time was higher
compared with the SDRE-based control because the virtual potential-based control simply
waited for the acceptable relative position for docking, while the SDRE-based control
sought to actively achieve this condition. The required ∆V for the virtual potential-based
control was similar due to the low ∆V on the “waiting” distance, and differed for the SDRE-
based control due to different active controlled motion time while achieving conditions
acceptable for docking.

Examples of experiments with high angular velocity of the debris mock-up, when
the algorithms failed to achieve docking, may be considered. Figure 23 shows the relative
distance of the mock-ups’ centers of masses during a fast debris rotation experiment with
virtual potentials-based control. The satellite mock-up tried to dock three times during the
experiment, but the time interval during which the docking area sector faced the docking
satellite was too small to accomplish docking, as can be seen from Figures 24 and 25. This
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time interval was about 2 s, the satellite mock-up center of mass approached the debris
mock-up during this time. However, as the debris rotated, the docking satellite left the
acceptable area and the virtual potentials parameters were switched back to obtain the
equilibrium distance of 0.8 m. The control acceleration components are shown in Figure 26,
where the peaks at the moments of entering and leaving the area of conditions acceptable
for docking can be observed.

The case of SDRE-based control during the fast debris mock-up rotation experiment
is presented in Figures 27–30. This experiment also did not achieve docking. As can be
seen from Figures 27 and 28, the satellite mock-up entered a dangerous distance twice,
that resulted in a collision avoidance control application (see Figure 30). The experiment
was stopped after 15 s due to the fact that the satellite mock-up failed to move to the area
acceptable for docking because of the fast debris rotation.
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Thus, the laboratory experiments showed the performance of the proposed algorithms
and revealed their features using mock-up control systems. At high debris mock-up
angular velocity, both algorithms were not able to achieve docking. At very low angular
velocity, the virtual potential-based control waited for a considerable amount of time for the
achievement of allowable docking conditions. In the case of orbital motion, the probability
of entering the docking area may be low, depending on the debris angular velocity vector.
The SDRE-based control required higher values of ∆V, and could have led to a dangerous
proximity, that required collision avoidance application.

6. Conclusions

Two algorithms for active satellite motion control relative to space debris were pro-
posed to achieve successful docking, and were experimentally studied in this paper. The
performance of the controlled motion of a satellite mock-up on the aerodynamic test bed is
not the same as the performance of an orbital controlled motion, although the laboratory
study allowed testing of the whole control logic, and revealed control scheme features
such as principal dependence of the required ∆V and docking time on the debris mock-up
angular velocity. As a result of this study, the two control algorithms can be recommended
for onboard implementation in real active space debris removal missions with restrictions
on the acceptable angular velocity of a space debris object for successful docking.

This work demonstrates that the different control approaches in space debris removal
can be experimentally tested using the considered laboratory facility. Other types of control
algorithms such as optimal control, model-predictive control, or some others, can also
be adapted for mock-up application, and their performance can be tested. One of the
directions for algorithm improvement will be to take into account the particular docking
system features in the laboratory. The authors are planning to implement an autonomous
visual-based navigation, test its performance, and estimate its influence on features of
mock-up-controlled motion.
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