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Abstract: Multi-UAV cooperative trajectory planning (MUCTP) refers to the planning of multiple
flyable trajectories based on the location of each UAV and mission point in a complex environment.
In the planning process, the complex 3D space structure increases the difficulty of solving the
trajectory points, and the mutual constraints of the UAV cooperative constraints can degrade the
performance of the planning system. Therefore, to improve the efficiency of MUCTP, this study
proposes MUCTP based on feasible domain space and adaptive differential evolution algorithm
(FDS-ADEA). The method first constructs a three-dimensional feasible domain space to reduce the
complexity of the search space structure; then, the constraints of heterogeneous UAVs are linearly
weighted and transformed into a new objective function, and the information of the fitness value
is shared in accordance with the adaptive method and the code correction method to improve the
search efficiency of the algorithm; finally, the trajectories are smoothed to ensure the flyability of the
UAVs performing the mission by combining the cubic B-spline curves. Experiments 1, 2, 3, and 4
validate the proposed algorithm. Simulation results verify that FDS-ADEA has fast convergence,
high cooperative capability, and more reasonable planned trajectory sets when processing MUCTP.

Keywords: multi-UAV cooperative trajectory planning; 3D feasible domain space; adaptive differential
evolutionary algorithm; key trajectory points; code correction method

1. Introduction

Multi-UAV cooperative trajectory planning (MUCTP) is the planning of multiple safe,
reasonable, and collision-free flyable trajectories based on the spatial location of UAVs,
mission points, and threat obstacles in a complex planning environment [1,2]. Single
UAV trajectory planning hardly accomplishes complex military missions due to its limited
maneuverability and payload. MUCTP has the advantage of being more flexible and
more efficient in performing missions compared with single UAVs; therefore, it gradually
replaces single UAVs in performing complex missions. However, MUCTP also increases
the difficulty of the combat system; for example, in the calculation process, the complex
mountain type and radar detection area generate substantial no-fly data, and the combat
system hardly parses these data in a short time; in the cooperative planning process, the
heterogeneous UAVs’ own constraints and mutual constraints between multiple UAVs may
lead to conflicting execution relationships between each UAV and mission point, eventually
leading to mission failure [3,4].

In recent years, to improve the planning efficiency of MUCTP, researchers have pro-
posed many algorithms, which have shown good performance in solving MUCTP problems,
and these algorithms are mainly divided into three categories:

(1) Cooperative trajectory planning based on intelligent optimization algorithms

Intelligent optimization algorithms are a probability-based random search evolution-
ary algorithm, which guides the searching direction by constructing heuristic information,
such as MUCTP fitness function [5,6]. In [7], the author proposed MUCTP based on mis-
sion requirement constraints and studied a new dynamic particle swarm algorithm and
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comprehensive learning particle swarm algorithm, which improve the execution speed of
MUCTP. Yi et al. [8] proposed MUCTP based on the improved PF-RRT* algorithm, which
uses a dichotomous method to create a new parent node at a node near an obstacle instead
of updating the parent node in an existing random tree node, thereby greatly reducing the
cost of each UAV trajectory.

(2) Cooperative trajectory planning based on reinforcement learning

Reinforcement learning (RL) is one of the paradigms and methodologies of machine
learning, where each UAV obtains observation information from the current environment
and takes specific behavior or strategies according to this information. At the same time,
the learning system evaluates the quality of the behavior, and if the system evaluates the
behavior correctly, it conducts positive rewards and strengthens the behavior training to
maximize the benefits [9]. Nie et al. [10] adopted the Q-based learning algorithm to solve
the shortest trajectory of each UAV and to calculate the cooperative range and obtained the
trajectory group of each UAV by adjusting the selection strategy of each UAV. Liu et al. [11]
investigated a closed-loop model using the UAV six-degree-of-freedom nonlinear model to
predict flight trajectory and adopted a trajectory mapping network based on deep learning
to improve the planning calculation speed and prediction accuracy.

(3) Cooperative trajectory planning based on spline interpolation algorithm

The spline interpolation algorithm draws an approximately smooth curve according
to key trajectory points discretely in 3D space. However, this method cannot be used alone
when solving MUCTP and must be combined with other algorithms to determine the key
trajectory points in advance [12]. Qu et al. [13] proposed UAV trajectory planning based
on the RL gray wolf optimization algorithm, which determined the key trajectory points
by improving the gray wolf algorithm, and then used the B-spline curve to reverse the
control points to ensure that the fitted trajectory passed through all key trajectory points.
Zong et al. [14] proposed a trajectory planning framework in a 3D dynamic environment,
designed a UAV trajectory predictor using the least squares method, and then used a
segmented Bezier curve to represent the generated trajectory.

The differential evolution algorithm (DEA) is a population-based evolutionary algo-
rithm that was first proposed by Storn et al. in 1995. This algorithm has stable operation,
fast convergence speed, and good parallelism, and it performs well in solving global opti-
mization problems with continuous variables [15–17]. However, MUCTP still suffers from
many difficulties, which are listed as follows:

(1) Compared with the two-dimensional plane, the three-dimensional space contains
more information within higher complexity and experiences more difficulty in seeking
key trajectory points. Although the DEA can search in 3D complex spaces, the
complexity of space structures greatly reduces search efficiency. Therefore, how to
simplify the space effectively according to the actual mission and environmental
information is one of the challenges in optimizing the trajectory.

(2) The set of key trajectory points is the population individual of the DEA; the key
trajectory points can not only display the optimization direction of the algorithm but
also display the search efficiency of the algorithm. MUCTP requires quickly finding a
better set of key trajectory points in a short time, which means that the diversity and
convergence of population individuals must achieve a good balance. Therefore, how
to solve the better key trajectory points quickly and accurately is another difficulty in
measuring the performance of the algorithm.

The abovementioned difficulties must be addressed. In this work, we propose a
cooperative multi-UAV trajectory planning based on a feasible domain space adaptive dif-
ferential evolutionary algorithm (FDS-ADEA) using a centralized computational approach
with fixed-wing UAV as the research object. The main contributions of this study are listed
as follows:
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(1) In terms of assigning grid point information: The current space segmentation method
mostly adopts the 3D grid method, and each grid point has trajectory point information;
however, no effective distinguishing information exists between grid points. Therefore,
when constructing the grid point form, in addition to taking the UAV sequence, mission
point sequence, and obstacle information as the main features, the corresponding
trajectory cost information and coordination information are also added to avoid the
blindness of the evolutionary direction in the process of algorithm search.

(2) In terms of constructing space structure: In consideration of the substantial 3D space
information, some researchers find key trajectory points through numerous circular
iterations, which seriously reduces the search efficiency. Through substantial experi-
mental verification when the location of each UAV and mission point is determined,
the planned trajectory often only appears in a limited area on both sides of the ver-
tical section. In accordance with this idea, a 3D feasible domain space, which only
calculates the key trajectory point evaluation indexes in the feasible domain as the
key trajectory point set, is constructed in this work.

(3) In terms of constructing the adaptive algorithm: The diversity and convergence of
key trajectory points mainly depends on the mutation strategy of the DEA, and deter-
mining the relevant mutation strategy through repeated testing is time consuming.
Therefore, an adaptive rule based on fitness values is first constructed, and each indi-
vidual can choose their own mutation strategies according to the adaptive rule in this
work. Second, a reasonable coding correction method is used to delete or supplement
eligible individuals. This method breaks away from the limitations and constraints of
balancing exploratory and exploitative, increases the feasible domain coverage of the
search space, and improves the efficiency of searching key trajectory points.

The rest of this paper is organized as follows: related work about simplifying 3D
space structural models is presented in Section 2; Section 3 provides the 3D environment
model, multi-UAV cooperative constraints, and objective function; Section 4 describes the
proposed algorithm in detail; and in Section 5, the performance of FDS-ADEA is compared
with other algorithms. Finally, a summary is presented in Section 6.

2. Related Work

First, the common methods to simplify the 3D simulation space are described in this
section. Second, the basic concept and principle of DEA are introduced.

2.1. Simplify 3D Simulation Space

Compared with the 2D plane, the 3D simulated space structure contains substantial
information, making it difficult to select key trajectory points. When the traditional 3D grid
method is used for trajectory planning, the amount of calculation is often increased due
to insufficient information of each grid point. At the same time, when searching the key
trajectory points of the trajectory, numerous loops are used to search the optimal trajectory,
but the same amount of information between the grid points easily makes the algorithm
fall into local optimum.

Han et al. [18] proposed an optimization UAV indoor trajectory planning algorithm
based on grids in a complex environment. It was the first time to adopt the GeoSOT-3D
method, which was used to reduce the computational complexity of indoor 3D space
modeling through spatial subdivision; the method is commonly used in indoor scenes and
complex “dead zone” spaces. Liu et al. [19] proposed a spatial representation algorithm
based on weight meshing, which first divides and meshes the simulation space and then
encodes all meshes. Second, the latitude, longitude, and height coding of the simulated
spatial mesh is used to represent the geometric space, which is often used in the scene of
outdoor wide-area space but not dense obstacles. Nicolas et al. [20] proposed trajectory
planning based on grid neighborhood algorithm, which is used in combination with
the A* algorithm, and the combined algorithm can remarkably reduce the complexity of
the computation.
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2.2. Differential Evolution Algorithm

The DEA is a robust and efficient heuristic evolution algorithm that is highly competi-
tive in solving continuous and multi-constraint optimization problems [21]. The basic idea
of the DE algorithm has the following steps: first, the boundary of the solution is deter-
mined in accordance with the optimization problem, and new individuals are generated
through the mutation operator; second, the next generation of individuals is generated
through the crossover operators; and finally, the high-quality individuals are retained by
the selection operator, and the inferior individuals are eliminated. A schematic of the DE
algorithm is shown in Figure 1.
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Figure 1. Schematic of classical DEA.

(1) Initialize population

Randomly and uniformly generate NP individuals in solution space:{
X(0)

∣∣∣xL
j,i ≤ xj,i(0) ≤ xU

j,i; i = 1, 2, ..., NP; j = 1, 2, . . . ., D
}

, (1)

xj,i(0) = xL
j,i + rand(0, 1) · (xU

j,i − xL
j,i). (2)

where NP represents the population size; xL
j,i and xU

j,i denote the boundary of the j-th “gene”
of the i-th “individual” in the population, respectively, when the iteration number equal to
0 is the j-th gene” of the i-th “individual.”

(2) Mutation operator

A mutation operator is one of the key factors affecting the performance of the DE
algorithm, and an excellent mutation strategy must have good exploratory and exploitative
characteristics. Xu et al. [2] proposed a multi-strategy fusion mutation operator, which
can adaptively determine the values of the control parameters F and CR. Yu et al. [22]
proposed a rank-based mutation strategy, providing individuals with improved fitness
values and a higher selection probability to improve the development performance of the
algorithm. Three commonly used mutation strategies are listed below:

• DE/rand/1

vj,i(g + 1) = xj,r1(g) + F× (xj,r2(g)− xj,r3(g)), (3)

• DE/best/1
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vj,i(g + 1) = xj,best(g) + F× (xj,r1(g)− xj,r2(g)), (4)

• DE/current-to-best/1

vj,i(g + 1) = xj,i(g) + F× (xj,best(g)− xj,i(g) + ...
... + xj,r1(g)− xj,r2(g))

,

v,j,i(g + 1) = xj,i(g) + F× (xj,best(g)− xj,i(g) + ...
... + xj,r1(g)− xj,r2(g))

.
(5)

where the indices r1, r2, and r3 are three randomly selected integers; xj,r1(g) represents
the j-th gene of the r1 individual in the g-th generation population; xj,best(g) represents the
best individual of generation g; vj,i(g + 1) is the experimental individual; parameter F is
the scaling factor; and F is the scaling factor, which directly affects the global optimization
ability of the algorithm.

(3) Crossover operator

The sequence of offspring individuals is obtained by the variation operator, each of
which is selected with a certain probability to generate the test individuals. That is, they
are partially swapped from xj,i(g) and vj,i(g + 1) to form a new trial vector uj,i(g + 1).

uj,i(g + 1) =
{

vj,i(g + 1) , i f rand ≤ CR or j = jrand
xj,i (g) , otherwise

, (6)

where CR is the crossover rate, which determines the degree to which the number of
experimental individuals is exchanged with the parent individual.

(4) Selection operator

The DEA uses a greedy algorithm to select individuals to enter the next generation of
populations based on fitness values, as shown in Equation (7), which calculates the fitness
values of the test vector uj,i(g + 1) and the original vector xj,i(g), respectively, and selects
the better individuals to enter the next generation.

xj,i(g + 1) =
{

uj,i(g + 1), i f f (uj,i(g + 1)) ≥ f (xj,i(g))
xj,i(g), otherwise

. (7)

3. Problem Description

In this section, the 3D environment modelling is first introduced, followed by the objec-
tive functions of MUCTP, the UAV constraints and the multi-UAV cooperative constraints.

3.1. Environment Modeling

In this paper we use a regular structure of radar obstacles and no-fly zone obstacles
and irregular terrain obstacles will increase the difficulty of solving cooperative multi-UAV
trajectory planning. During environmental modeling, terrain obstacles and threatening
obstructions considerably affect the trajectories. This study uses USGS24kdem to read
format USGS 1:24,000 digital elevation map files as a terrain obstacle, which contain real
longitude arrays, latitude arrays, and altitude arrays. The threat obstacles consist mainly
of radar and no-fly zones, presented by hemispheres and cylinders, respectively, and the
MUCTP must avoid these risk areas wherever possible. Terrain obstacles and threatening
obstructions in the environment are shown in Figure 2.
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The probability of radar-detecting UAVs is mainly determined by the distance between
UAVs and radar. The expression can be expressed by:

FRadar =

{
0 dr ≥ Rr

(k/dr)
4 dr < Rr

, (8)

dr =

√
(xi − xr)

2 + (yi − yr)
2 + (zi − zr)

2, (9)

where Fradar is the threat value of the radar; k indicates the degree of radar threat; dr is the
distance from the UAV to the center of the radar circle; (xr, yr, zr) is the center of the radar
circle; (xi, yi, zi) is the location of the UAV; and Rr is the maximum radius of the radar scan.

The no-fly zone includes air traffic control areas, etc., and it is expressed as follows:

Fzone =

{
0 dz ≥ Rz

Rz
4 /(Rz

4 + dz
4) dz < Rz

. (10)

where Fzone is the threat value of the no-fly zone; dz is the distance of the UAV from the
center of the no-fly zone; Rz is the maximum radius of the no-fly zone.

3.2. Establish MUCTP Objective Functions and Constraints
3.2.1. Objective Functions

MUCTP is a set of key trajectory points with optimal trajectory targets in a sequence
of key trajectory points that satisfy the constraints. That is, the optimal Pareto solution is
found for all missions in the optimization goal. The Pareto solution is a set of improved
feasible solutions that are constrained by objective functions. Therefore, the essence of
solving the MUCTP problem is to solve the multi-objective optimization problem, while
collaborative cooperation is mainly reflected in the cooperation of multiple heterogeneous
UAVs to collaboratively complete the specific execution plan planned with a reasonable
mission cost and reasonable mission ration.

A new objective function construction method is adopted, and it is mainly considered
from three aspects: flight distance cost, execution time cost, and constraint violation cost.
The flight distance cost refers to the total flight distance of each UAV to perform a mission.
The execution time refers to the maximum time taken by each UAV to complete the mission.
The constraint violation cost includes the number of times the key trajectory points cross
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obstacles and whether each UAV satisfies the limit constraints. The objective function of
MUCTP is described by the following expression:

min f (x) = µ
n
∑

i=1

m
∑

j=1
d(i,j)D(i,j)

+λ(max
n
∑

i=1

m
∑

j=1
t(i,j)D(i,j)) + τ

L
∑

l=1
cl

, (11)

where D(i,j) is the decision variable between UAV i and mission point j; d(i,j) is the flight cost
of UAV i to reach mission point j; t(i,j) is the time cost of UAV i to reach mission point j; cl is
the penalty function corresponding to the constraint, which is set to effectively reduce the
number of cases where conflicts occur between UAVs performing mission points. µ, λ, and
τ are the scale factors of flight distance cost, time cost, and penalty function, respectively,
and the three of them are kept on the same magnitude.

Flight distance cost is the most key part of the MUCTP objective function. Flight
distance cost can not only show the flight distance of each UAV mission but is also used as
one of the indicators to test the distance between key trajectory points and obstacles.

The trajectory of UAV U executing mission point T is taken as an example, as shown
in Figure 3. It shows that the 3D trajectory is mapped to the xoy plane. Among them, the
dark blue circle and triangle are the UAV departure points U(x1, y1, z1) and location of
mission points T(x1, y1, z1), respectively. A represents auxiliary key trajectory points. The
dark blue pentagram is a key trajectory point (k1, k2, k3, k4); the gray semicircle represents
the radar scanning area with ri as the radius; dist(U, A) is the distance between the UAV
departure point and the auxiliary key trajectory point A; and dist(k3, k4) is the distance
between key trajectory points k3 and k4. Calculating the distance between trajectory points
and obstacles can effectively avoid crossing obstacles.
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Figure 3. Construction of fitness value of objective function.

According to the triangle theorem, calculating the distance between each key trajectory
point and the UAV departure point and the mission point can further reduce the height
of the key trajectory point. Each UAV flies close to the mountain, which can reduce the
probability of being detected by radar. The calculation method of flight distance cost is
displayed in Algorithm 1.
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Algorithm 1: The range cost is established in the MUCTP objective function.

Input: Uav (Unmanned aerial vehicle), Target (Mission points), Auxi (Auxiliary trajectory points),
Crtp (Key trajectory points);
Output: Flight distance cost of key trajectory points;
1 The distance between the auxiliary trajectory point and the departure point is calculated and
assigned to dist1;
2 dist1 = sqrt((Uav((1) − Auxi(1,1))ˆ2 + (Uav(2) − . . .
−Auxi (1,2))ˆ2 + Uav(3) − Auxi (1,3))ˆ2);
3 The distance between each key trajectory point is calculated and assigned to dist2;
4 for i = 1:(size(Crtp,1) − 1)
5 dist2 = dist + sqrt((Crtp(i + 1,3) − Crtp(i,3))ˆ2 + (Crtp(i + 1,2) − Crtp (i,2))ˆ2 + (Crtp (i + 1,1) −
Crtp (i,1))ˆ2);
6 end for
7 The distance between the mission point and the UAV departure point is calculated and assigned
to dist3;
8 dist3 = sqrt((Uav(1) − Target(1))ˆ2 + (Uav(2)− . . .
−Target(2))ˆ2 + (Uav(3) − Target(3))ˆ2);
9 Calculate the distance between the key trajectory point and the mission point and the departure
point and record dis4;
10 for i = 1:size(Auxi,1)
11 dis4 = dis4 + (sqrt((Crtp(i,3) − Uav(3))ˆ2 + (Crtp(i,2) − Uav(2))ˆ2 + (Crtp(i,1) − Uav(1))ˆ2) +
sqrt((Auxi(i,3) − Target(3))ˆ2 + (Crtp(i,2) − Target(2))ˆ2 + (Crtp(i,1) − Target(1))ˆ2));
12 end for
13 Output dist1, dist2, dist3, dis4 and calculate the total fitness value;
14 TotFitness = 0.15*dist1 + 0.15*dist2 + 0.2*dist3 + 0.5*dist4;
15 Solu = FDS-ADEA (TotFitness); /* Output key trajectory points */
16 end

3.2.2. Constraint Function

Cooperative constraint function and coordination relation:

(1) UAV and target point decision variable constraints: each UAV must execute a target
point, and each target point must be executed by a UAV.

N
∩

i=1
D(i,j) = 1 ∀j = 1, ..., M N = M, (12)

where N is the number of drones and M is the number of mission points.

(2) Constraint of maximum flight distance cost: the total flight distance cost of each UAV
missions point is

n

∑
i=1

m

∑
j=1

d(i,j)D(i,j) ≤
n

∑
k=1

Dk, ∀k = 1, ..., n , (13)

C1violation =

{
0 d(i,j) ≤ Di
1000 d(i,j) > Di

, (14)

where d(i,j) represents the flight distance cost, and Dk represents the limited maximum
flight distance cost of each UAV. Equation (14) indicates that UAV i is penalized when it
exceeds its limited maximum flight distance.

(3) Constraints of UAV min/max speed V(km/h)

V(i)= [V(i)min, V(i)max], (15)

C2violation =

{
0 V(i)min ≤ V(i) ≤ V(i)max

1000 V(i)max ≤ V(i) or V(i) ≤ V(i)min
, (16)
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where in Equation (15), V(i)min is the minimum speed of the UAV i, and V(i)max is the
maximum speed of the UAV i; Equation (16) indicates that the UAV i exceeds the limited
minimum/maximum speed to be penalized.

(4) Constraint of maximum flight time Ttime: the maximum time required by each UAV
to conduct a mission.


max

{
n
∑

i=1

m
∑

j=1
t(i,j)D(i,j)

}
≤

k
∑

i=1
Tk ∀k = 1, ..., n

Tmax = max
{ d(i,j)D(i,j)

vi
, ∀i, j ∈ N

} , (17)

C3violation =

{
0 Treal(i) ≤ T(i)
1000 Treal(i) > T(i)

, (18)

where, according to Equation (13), maximum flight distance cost and Equation (15) maxi-
mum/minimum speed constraint, the maximum flight time can be calculated. Equation (18)
means UAV i will be punished for exceeding the limited maximum sailing time.

(5) UAV maximum payload constraint Umissile: This constraint reflects the maximum
payload of UAVs.

max

{
n

∑
i=1

m

∑
j=1

Umissile(i, j)D(i,j)

}
≤ Uk ∀k = 1, ..., n, (19)

C4violation =

{
0 Umissile(i) ≤ Umax(i)
1000 Umissile(i) > Umax(i)

. (20)

(6) Constraint of time sequence between mission points Tsort: this constraint reflects the
importance of mission points. Important mission points are executed first, and other
mission points are executed in accordance with their constraints.

{
Tjmax < T(j+τ)min
∀τ ∈ N and τ < m− j

, (21)

C5violation =

{
0 Tjmax < T(j+τ)min
1000 Tjmax ≥ T(j+τ)min

. (22)

Equation (21) indicates that mission point j must be executed later than mission point
j + τ, and τ is a positive integer. Equation (22) indicates that the mission point is not hit
according to the set timing.

(7) Constraint of wait time Twait: to ensure that UAVs reach their designated targets,
some UAVs are allowed to wait for a period of time before leaving.

Twait(i) ≤ Tmax(i), (23)

C6violation =

{
0 Twait(i) ≤ Tmax(i)
1000 Twait(i) > Tmax(i)

. (24)

4. Design of FDS-ADEA Algorithm

At present, research on MUCTP simulation space is mostly on 2D simulation space
or 3D simulation space and order UAV trajectory planning. The reasons are as follows:
(1) The amount of 3D spatial information is large, and key trajectory points are difficult to
solve. Although key trajectory points can be found through numerous loop iterations, this
method seriously reduces the search efficiency [23,24]. (2) Many algorithms adopt fixed
parameter combinations and single-preference mutation strategies, which cannot satisfy
the various needs in the dynamic optimization process of MUCTP.
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Therefore, this section proposes a multi-UAV trajectory planning based on FDS-ADEA,
which constructs a reasonable UAV feasible domain space through the location of UAV,
mission points, radar scanning area, no-fly zones, and mountain terrain in space. Then, the
adaptive DEA is used to construct the mutation strategy archive and the coding correction
method to obtain the key trajectory point set. Finally, the flight trajectory is fitted by the
B-spline function. The algorithm framework of FDS-ADEA is shown in Algorithm 2:

Algorithm 2: Framework of the FDS-ADEA

Input: obj (The start points of the UAVs: Us; The target points of the UAVs: Ts; The population
size: Pop; The generations: Gen); The random sequence population: Mx; Auxiliary trajectory
points: Auxi; Key trajectory points: k; Mutation rate: Pc; Crossover rate: Sc.
Output: Set of key trajectory points:M t; Fitted trajectory: Ft.
1 Construct threat barriers Obstacle according to Equations (8)–(10). Choose a simulated Terrain.
Determine the coordinates of each UAV Us and mission point Ts in 3D space.
2 The feasible domain space of each UAV is established to obtain the location of key trajectories;

V = DirectionAngle (obj)
3 The arccosine function is used to define the angle between the key trajectory points of each
candidate;

Angle = TargetArccosine (obj, Auxi, k);
4 In accordance with Equation (11) and Equations (12)–(21), the objective function of MUCTP is
established;

fitness = DEFitness (obj);
5 /* The FDS-ADEA algorithm is used to obtain the key flight path points */

Solu = FDS-ADEAoperate (obj, Mx);
for gen = 1: obj.Gen

Vs = MutationOperator (Mx); /* Mutation operator */
Cs = CrossOperator (Vs); /* Crossover operator */
Ft = DEFitness (Cs); /* Selection operator */

End
Mt = Fitnessbest; /*Obtain the best key flight path points */

6 B-spline was used to fit the flight path;
Ft= SplineFittingFunction (obj,Mt);

7 Obtain the parameters of each trajectory.

4.1. Construct Feasible Domain Space for UAVs

Figure 4 is a schematic of setting the feasible region between the starting point and
the mission point, where the black circle is the position of the UAV U(xi, yi, zi), the black
triangle is the location of the mission point T(xj, yj, zj), and the cuboid represents the
feasible domain space for generating key trajectory points. When the execution relationship
between UAV U and mission point T is determined, the vertical section between the two is
established and expanded into a feasible domain space. Then, the feasible domain space
produces key trajectory points kn.
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Figure 5 shows the spatial structure of the feasible domain. The dark blue five-pointed
star is the key trajectory point k = [k1, k2, k3, k4, k5], the gray dotted line is the execution
relationship between the UAV and the mission point, and the hemispherical sphere is the
radar scanning area. V = [xi + ∆x, yi + ∆y, zi + ∆z, ] is the feasible domain space of the
UAV, and each key point is generated in V. At the same time, in accordance with the current
maneuvering performance of fixed wing UAVs, 120◦ ≤ α ≤ 180◦ angles must be satisfied
between key trajectory points. This angle range effectively prevents excessive bending of
the trajectory point connection. The specific algorithm is shown in Algorithm 3.

Algorithm 3: Set the feasible flight area of the UAVs

Input: Us (UAV), Ts(Mission point), Radar (Radar position), Nk (Number of key trajectories), ∆x,
∆y, ∆z (Range of UAV feasible domains), Pop (Population size);
Output: Key flight trajectory points that satisfy the constraints;
1 Construct auxiliary flight path points;
(xf, yf, zf ) = (obj.Us(1) + 10, obj.Us(1) + 5, obj.Us(1) + 5);
2 Set feasible domain space parameters ∆x, ∆y, ∆z;
3 while (i < obj.Pop)
4 while (i < Nk)
5 comb = 1;
6 while comb
7 C = [Start(i, 1) + rand(1)*∆x, Start(i, 2) + rand(1)*∆y, Start(i, 3) + rand(1)*∆z];
8 if C (1,3) > 50; /* Generate the flight assist plane */
9 C (1,3) = 50;
10 end if
11 Radar = (xi, yi, zi, ri); /*Extract the threat obstacle parameters */
12 Disence = sqrt(sum (bsxfun (@minus), Radar,C). ˆ2, 2));
/* Calculate the distance between flight path points and obstacles */
13 comb = any (Disence < Radius);
14 end while
15 The arc cosine formula is used to solve the position of the next flight path point;
16 if (120o ≤ α ≤ 180o) /* Determine flight path point generation Angle */
17 Pop(i + 1,:) = C; /* is used to judge whether the next point generated satisfies the angle */
18 i = i + 1;
19 end if
20 end while
21 end while
22 end
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4.2. Adaptive DEA
4.2.1. Classical Mutation Strategy

Mutation strategy is one of the key factors affecting the performance of the DEA; an
excellent mutation strategy must have good exploratory and exploitation capabilities at the
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same time and must also maintain a good balance between the two. Currently, the mutation
strategies applied to MUCTP are relatively homogeneous, for example, mutation strategies
that facilitate solving more key trajectories in the search space: DE/rand/1 and mutation
strategies conducive to finding the optimal key trajectory points quickly: DE/best/1. The
schematic of the two mutation strategies are shown in Figure 6a,b, respectively.
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In Figure 6a,
→

A1A is the difference vector between individual xj,r2(g) and xj,r3(g),
→

A1A2 is the vector after scaling factor scaling, and
→

oA2 is the mutation vector obtained by

summing the scaling vector with the individual xj,r1(g). The mutation vector
→

oB2 can be
obtained in the same manner. As shown in Figure 6a, the mutation strategy can effectively
expand the exploratory nature and obtain more solutions that satisfy the conditions in the
search space.

In Figure 6b, vj,i(g + 1) represents the experimental individual obtained by the ex-
ploitation mutation strategy; given that individuals with better fitness values are selected
during each mutation process, the algorithm is prone to fall into local optimum, and the
diversity of individual populations is missing.

4.2.2. Adaptive DEA Based on Fitness Values

In recent decades, researchers have designed various adaptive parameter combinations
and improved mutation strategies, which show different preferences and good characteris-
tics. However, similar to many practical applications, MUCTP is a “black box” problem.
In contrast to its internal structure and characteristics, whether each UAV can effectively
complete the corresponding mission must be considered more. Therefore, an adaptive DEA
based on fitness values is proposed in this section. A schematic of the algorithm is shown
in Figure 7.

In ADEA: First, the entire population is randomly divided into multiple groups
with the same number of individuals, and the fitness values of each parent population
are calculated and preliminarily classified. Second, the archive of mutation strategies is
constructed to store three mutation strategies with different characteristics: (1) mutation
strategy I: “DE/rand/1” is beneficial to improve individual exploration, (2) mutation
strategy II: “DE/target to best/2” is conducive to balancing the exploratory and exploitation
of the population, and (3) mutation strategy III: “DE/best/1” is conducive to enhancing
individual exploitation.

Table 1 shows the parameters of F and CR for each mutation strategy. The better
offspring population is composed of better adapted parent individuals, and its main
advantage is to guide the population to search for the optimal region quickly. While the
primary mission of the inferior population is to maintain diversity, the better or moderate
individuals can be regarded as their parent population individuals; therefore, inferior
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individuals have access to a great deal of exploitation and exploratory information. The
adaptive mutation strategy I, II, and III selection methods are shown in Algorithm 4.
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Table 1. Parameter selection of mutation strategy.

Type Mutation Strategy Scale Factor F Crossover Rate CR

Type I DE/rand/1 F = 1.0 CR = 0.9
Type II DE/target to best/2 F = 0.8 CR = 0.5
Type III DE/best/1 F = 0.5 CR = 0.1

Algorithm 4: Adaptive mutation strategy selection

Input: Np (Number of individuals); Mutation strategies I, II, III;
Output: A population individual conforming to a fitness value;
1 Determine the population size and randomly divide the population individually;
2 The fitness value of each parent is calculated, and the individual is divided;
3 for i = 1:Np
4 if xj,r1(g) is the optimal fitness value, it is the better individual.
5 Mutation strategy III can be selected to produce offspring vj ,i(g + 1);
vj,i(g + 1) = xj,best(g) + F× (xj,r2(g)− xj,r3(g))
6 else if xj,r1(g) is the middle fitness value, it is the moderate individual;
7 Mutation strategy III or II can be chosen to produce offspring vj ,i(g + 1);

vj,i(g + 1) = xj,i(g) + F× (xj,best(g)− xj,i(g)) + ...
+F× (xj,r2(g)− xj,r3(g))

8 else if xj,r1(g) is the poor fitness value, it is the inferior individual;
9 Mutation strategies III, II, or I can be selected to produce offspring vj ,i(g + 1);
vj,i(g + 1) = xj,r1(g) + F× (xj,r2(g)− xj,r3(g))
10 end if
11 end for
12 end

The key trajectory points of MUCTP candidates are all integer discrete sequences. If
the sequence values are rounded to the mutation result, then the mutated solution obtains
invalid values. If the invalid value continues to participate in the evolutionary calculation,
the algorithm stalls. Therefore, invalid discrete values must be corrected, and the coding
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correction method can map the invalid sequence directly to obtain a new discrete sequence.
For alternative key trajectory points to satisfy planning requirements, the coding correction
method must satisfy the following conditions:

Rule 1: Mapping uniqueness: During the correction process, the mapped discrete
sequences must be unique. As shown in Figure 8, the invalid sequence individuals are
0, 9, 5. When differential individual 1 is selected as the gene mapping of a newly added
individual, the position of the sequence in which the original differential individual 1 is
located must be deleted, and the other differential values are mapped in turn. This method
guarantees that the mapping is unique.
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Rule 2: Mapping validity: The mapped invalid discrete sequences no longer participate
in the later variation strategy calculation. Although the mapped sequence is overwritten
in Rule 1, the variation strategy information is still stored in the individual. Therefore,
the invalid mapping matrix must be removed. At the same time, the mapped individual
sequence participates in the later mutation strategy calculation, and this method can
improve the performability of the algorithm.

4.3. Cubic Spline Curves

The FDS-ADEA algorithm can quickly solve trajectories that satisfy the cooperating
conditions, but these trajectories consist of a series of key trajectory point segments, which
are not suitable as actual trajectories for UAVs to fly. Therefore, the currently obtained
trajectory connection must be smoothed. Yakimenko, O [25] proposed a direct method
for rapid prototyping of near-optimal vehicle trajectories. Kaminer, I et al. [26] proposed
a cooperative control algorithm for small UAVs, whose main features include trajectory
generation for multiple UAVs, which takes into account their aerodynamic characteristics
and ensures deconfliction.

In this work, the three B-splines are used to smooth the trajectory, and all the points
in the trajectory Lij = (Ui, Auxii, ki1, ki2, ..., kik, Tj) are used as the control points of the
B-spline curve. By iteratively curve fitting in 3D space, smooth flyable trajectories can be
obtained directly.

When n = 3, the basis function of the B-spline can be expressed as:
F(0,3)(t) = 1/6(−t3 + 3t2 − 3t + 1)
F(1,3)(t) = 1/6(3t3 − 6t2 + 4)
F(2,3)(t) = 1/6(−3t3 + 3t2 + 3t + 1)
F(3,3)(t) = 1/6(t3)

t = 0, 1, 2, ..., n. (25)

The cubic B-spline matrix is as follows:

P0,3(t) =
1
6
[1, t, t2, t3]


1 4 1 0
−3 0 3 0
3 −6 3 0
−1 3 −3 1




P0
P1
P2
P3

, t = 0, 1, ..., n. (26)
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From the matrix Equation (26), the discrete starting point, auxiliary trajectory point,
key trajectory points and mission points of each UAV can be used as the control points of
the spline curve to approximate the smooth trajectories of the fitted UAVs.

4.4. Flowchart Based on FDS-ADEA Algorithm

Figure 9 shows the flowchart based on FDS-ADEA algorithm, including the construc-
tion of the UAV’s own constraints and co-constraints, the construction of the MUCTP
objective function, and the principle of the adaptive differential evolution algorithm.
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5. Experimental Simulation, Result, and Analysis

To verify the effectiveness of FDS-ADEA-based MUCTP, this study conducts three
sets of simulation experiments in MATLABR2016a. In Experiment 1, single UAV and
single mission point are selected to analyze the effectiveness and stability of FDS-ADEA;
in Experiment 2, multiple UAV and multiple mission points are selected to analyze the
effectiveness of FDS-ADEA; in Experiment 3, the effect of the spatially feasible domain on
the performance of FDS-ADEA is analyzed; in Experiment 4, the performance of FDS-ADEA
is analyzed in comparison with similar algorithms.

5.1. Experiment 1: Analyze the Feasibility and Stability of Single UAV Trajectory Planning Based
on FDS-ADEA

Table 2 shows the position of UAV U1 and mission point T1 in the simulation space,
respectively. Dr denotes the radar coordinates; Rr represents the scanning radius;Dz and
Dh indicate the coordinates and height of the no-fly zone, respectively; Pn is the population
size; Gen is the iteration number; Pc is the mutation rate; and Sc is the crossover rate.

Table 2. Experiment 1: UAV, mission point, environment modeling, and algorithm parameters.

0 U (km) T (km) Dr (km) Rr (km) Dz (km) Dh (km) Pn Gen Pc Sc

1

(0 0 0) (140 180 30)

(60,180,5) 25 (20,80) 80 50 500 0.4 0.5
2 (70,110,5) 30 (50,200) 50 50 500 0.4 0.5
3 (130,70,4) 23 (100,50) 50 50 500 0.4 0.5
4 (120,140,4) 26 (120,100) 30 50 500 0.4 0.5

The verification of the feasibility of the feasible domain space construction is shown
in Figure 10; the light-green semicircle is the scanning area of the radar, the dark-green
cylinder is the no-fly zone, the yellow circle is the position of the UAV, the yellow pentagram
is the position of the mission point, and the red circle is the location of the key trajectory
point. The connection of each key trajectory point indicates the correspondence between
the UAV and mission point.

As shown in Figure 10a, a total of 12 key correspondences are generated between the
UAV and mission point; each correspondence generates 20 sets of feasible domain spaces,
and each group has a total of 20 key trajectory points. Figure 10b,c observed the fit between
the key trajectory points and the simulation environment from different angles. Figure 10d
hides obstacles, such as mountains and radar, to show whether UAV angle constraints are
met between trajectory points. The simulation results show that the feasible domain space
after planning is relatively uniform, and the maneuverability performance of UAV is in line
with each trajectory point. Therefore, the UAV trajectory planning based on FDS-ADEA
has good feasibility.

The stability of the feasible domain space construction is verified in Figure 11 and
Table 3. Re is the correspondence between UAV execution mission points. Considering that
individuals have a certain randomness in the search process of intelligent algorithms, the
average value of repeated experiments is more representative when the parameters are the
same. To verify the stability of the algorithm, four evaluation indexes are selected in this
section to evaluate the algorithm performance:

(1) Average time:At =
n
∑

i=1
Time(i)/Num.

(2) Average cost: Ac =
n
∑

i=1
Cost(i)/Num.

(3) Optimal cost: minimum cost of flight in experiments.
(4) Optimal solution. The optimal solution represents the percentage of the number of

times of falling into the local optimal and the number of times currently superior to
the average cost in the total number of experiments. The following conclusions can be
drawn by combining Figures 10 and 11 and Table 3:
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Figure 10. Verification of the feasibility of the feasible domain space construction. (a) indicates that a
single UAV, a single mission point, was selected to verify the feasibility of the feasible domain space
with a defined execution relationship; (b,c) indicate that the feasible domain flight space was observed
from different angles, respectively; (d) indicates that obstacles were hidden for better observation.
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Table 3. Stability data analysis.

Type Correspondence
Number

Repetition
Number

Average
Time (s)

Average
Cost (km)

Optimal
Cost (km)

Maximum
Cost (km)

Optimal
Solution

Experiment 2

Re = 12 20 16.29 603.49 600.92 635.49 91%
Re = 26 20 28.37 606.63 603.12 637.01 85%
Re = 39 20 40.95 607.98 602.93 640.18 82%
Re = 52 20 55.22 611.32 606.10 846.06 76%

Conclusion 1: As shown in Figure 10 and Table 3, when the relationship between UAV
and mission point execution is determined, the FDS-ADEA-based MUCTP can quickly gen-
erate key trajectory points in a short time. The high feasibility, high optimization rate, and
short running time indicate that the algorithm has improved exploration and exploitation.

Conclusion 2: As shown in Figure 11 and Table 3, although the number of execution
relationships between UAVs and mission points is increased, the average generation value
difference between Re = 12, Re = 26, Re = 39, and Re = 52 is small, and the optimal generation
value is close to the average generation value, which indicates that the trajectory points
solved by the feasible domain space of the algorithm are close to the optimal solution.

5.2. Experiment 2: Analyze the Feasibility of MUCTP Based on FDS-ADEA

Eight UAVs and eight mission points were selected in Experiment 2. Each UAV
was required to strike a mission point, and each mission point was executed by a UAV.
Parameters are shown in Table 4. Upos, Tpos, and Rpos respectively represent the position
of UAV, mission point, and obstacle in space. D(km) is the maximum range of each UAV,
V(km/h) is the speed range of each UAV, Ttime is the maximum flight time of each UAV,
Umissile is the maximum payload capacity of each UAV, OrdT is the execution importance
of the mission point, and Twait is the execution importance of the mission point.

Figure 12d is the convergence curve of the UAV fitness value, with the red circle
indicating the differential seeking advantage and the blue asterisk indicating the adaptive
seeking advantage. We use the method of accurate calculation of the cost of the trajectory,
the accurate range cost through the 3D vertical cut, then a series of obstacles such as
mountainous terrain type will be used as part of the cost of affecting the range; this method
is not the actual shortest range, but makes full use of the 3D terrain information, the method
can improve the reliability and reasonableness of the implementation results. Figure 12
reveals that adaptive finding can expand the algorithm search space and find more local
advantages. At the same time, FDS-ADEA can converge quickly in a limited time.
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Table 4. Initial parameters of MUCTP.

1 2 3 4 5 6 7 8

Upos(km) (20,100,15) (25,55,12) (50,40,13) (80,50,15) (98,74,17) (130,30,12) (162,27,12) (175,70,13)
Tpos(km) (30,170,20) (90,210,13) (115,180,12) (130,220,13) (145,200,23) (160,165,12) (175,173,11) (180,150,12)
Rpos(km) (130,70,4,23) (120,140,4,26) (70,110,5,30) (60,180,5,25) (20,80,80) (120,120,30) (50,200,50) (100,50,50)

D(km) 1300 1400 1500 1500 1450 1500 1400 1500
V(km) (40 50) (30 60) (20 30) (35 45) (30 50) (30 60) (20 30) (35 45)

Ttime(s) 20 10 20 15 20 20 15 10
Umissile(Pcs) 2 1.5 1 2 1.5 1 1.5 1

OrdT (3 2) (5 2) (8 1) (7 4)
Twait(s) (1 5) (2 7) (4 10) (1 6) (2 4) (3 10) (5 12) (6 9)
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Figure 12. Multi-UAV coordinated trajectory execution relationship. (a) shows the multi-UAV
cooperative trajectory execution relationship; (b) hides the mountainous terrain type and shows
the effect of each obstacle on the UAVs; (c) can visually represent the planning of each UAVs; and
(d) shows the convergence curve of the total adaptation value of each UAV.

Table 5 shows the MUCTP execution relationship data, where SolU and SolT represent
the sequences of UAVs and mission points, respectively. Besides, SolC is the fitness value of
each UAV to perform the mission, SolF is the total flight cost, and Time is the planning time.



Drones 2023, 7, 55 20 of 26

Table 5. Cooperative path planning for multiple UAVs.

Experiment Parameter Execute Relationships SolF (km) Time (s)

Experiment 3

SolU 1 2 3 4 5 6 7 8

1958.91 13.04SolT 1 3 4 2 5 7 8 6

SolC 190.53 382.03 601.65 382.03 443.65 392.71 155.30 139.66

5.3. Experiment 3: The Influence of Spatial Feasible Domain on the Performance of FDS-ADEA
Was Analyzed

Given the complexity of three-dimensional spaces, the calculation of key trajectory
points cannot cover all key points in space. Spatially feasible domain Pa = [∆x, ∆y, ∆z]
quantifies the set of spaces according to actual missions and environmental information
and calculates only the key points in Pa. However, parameter value Pa = [∆x, ∆y, ∆z] of
the feasible region are determined with some randomness. In this section, four parameter
selection options are selected to analyze the effect of parameters on the generation of key
trajectory points. The parameters are shown in Table 6.

Table 6. Feasible domain parameter settings.

Mode Parameters Value Pa (km)

Parameter I: Pa = [10, 10, 5]

Parameter II: Pa = [10, 15, 5]

Parameter III: Pa = [15, 15, 5]

Parameter IV: Pa = [15, 20, 5]

Meanwhile, four evaluation indicators are selected: running time, optimal cost value,
average cost value, and maximum cost value comparison. This index can reasonably reflect
the interaction of different Pa, fitness values, and key trajectory points. The following
conclusions can be drawn from Figure 13 and Table 7:

Table 7. Influence of feasible domain parameters on fitness values.

Parameter Settings Populatio-n
Size

Iterations
Number

Repeat
Times Time (s) Optimal

Cost (km)
Average

Cost (km)
Maximum
Cost (km)

∆x = 10 ∆y = 10 ∆z = 5 50 500 10 15 4073.39 4146.71 4214.45

∆x = 10 ∆y = 15 ∆z = 5 50 500 10 16 4054.66 4152.13 4179.47

∆x = 15 ∆y = 15 ∆z = 5 50 500 10 15 4218.28 4381.72 4419.61

∆x = 15 ∆y = 20 ∆z = 5 50 500 10 15 4238.02 4292.91 4625.65

Conclusion 1: As shown in Figure 13a, the key trajectory points can be quickly solved
under four different Pa parameter settings. To compare the effect of each indicator in the
same graph clearly, the running time is multiplied by 230 s. The difference between the
average cost of the total flight, the optimal cost, and the highest generation value in a single
parameter scheme is small. According to the abovementioned, the larger the parameter
setting of Pa, the higher the probability that the algorithm solves the combination of poor
key trajectory points in the finite search time.

Conclusion 2: As shown in Figure 13b–d, the feasible domain parameter I: the optimal
generation value fluctuates, the average generation value and the highest generation
value fluctuate more, and the exploratory nature is better; however, the exploitability
worsened. The feasible domain parameter IV, the optimal generation value fluctuates
more, the average generation value and the highest generation value fluctuate less, and
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the exploratory nature is improved, whereas the average generation value and the highest
generation value are smoother, indicating that this parameter scheme can achieve a good
balance between exploratory and exploitability.

Figure 14 shows the simulation diagram of MUCTP based on FDS-ADEA. In Figure 14,
subpanels (a) and (b) represent the MUCTP simulation diagram in the obstacle environment,
and the convergence curve of each UAV execution point. Figure 14a shows that the MUCTP
based on FDS-ADEA can effectively generate flight trajectories and meet the constraints
and cooperative constraints of each UAV. Figure 14b shows that the UAV performs various
mission points with fast and strong convergence.
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Figure 14. Multi-UAV cooperative path planning based on FDS-ADEA.

Figure 15 hides the MUCTP simulation of mountainous and threatening obstacles. The
planned trajectory has good cooperative collision avoidance performance, and no intersection
exists between the trajectories. In conclusion, FDS-ADEA has good coordination ability.
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5.4. Experiment 4: Comparison of FDS-ADEA and Other Algorithms

In this section, FDS-ADEA was compared with MSFDE, MOGA, and the FS-ADEA
algorithm to verify the improvement of FDS-ADEA’s ability to solve key trajectory points.
Among them, Multi-Strategy Fusion Differential Evolution (MSFDE) adopts a multi-
strategy fusion DEA and the adopted mutation rate Pc = 0.8 and crossover rate [2].
Multi-Objective Genetic Algorithm (MOGA) adopts the real-valued cross-variation method,
mutation rate Pc = 0.3 and crossover rate Sc = 0.7 [1]. Full-Scale Adaptive Differential
Evolution Algorithm (FS-ADEA) adopts the same algorithm parameters as FDS-ADEA.
Other parameters, such as UAVs, number of mission points, population size, and number
of iterations are the same. The specific values are shown in Table 8.

Table 8. Parameter settings of FDS-ADEA and similar algorithms.

Experiment Algorithm Num Pn Gen Pc Sc

Experiment 4

FDS-ADEA N = M = 8 50 500 0.4 0.5

MSFDE N = M = 8 50 500 0.8 0.25

MOGA N = M = 8 50 500 0.3 0.7

FS-ADEA N = M = 8 50 500 0.4 0.5

Figure 16 shows the comparison of the average cost value of the four algorithms,
indicating that the average cost value of FDS-ADEA is considerably better than that of the
other three algorithms. In addition, the average cost is relatively stable, which indicates
that FDS-ADEA is more stable than the other three algorithms. The right table records
the convergence of the UAV execution mission points of each algorithm. As revealed by
data, the average flight cost marked in the gray part is smaller than that of the other three
algorithms. Although the average cost value of the adaptive DEA based on key trajectory
points is higher than that of the other three algorithms, the difference is small, and the
overall cost value is smaller than that of the other three algorithms. Therefore, solving the
MUCTP problem on the basis of FDS-ADEA is advantageous.
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6. Conclusions

In this work, an adaptive DEA based on feasible domain space is proposed to solve the
difficulties of MUCTP. In terms of spatial structure, a three-dimensional feasible domain
is constructed, and the influence of feasible domain parameters on key trajectory points
is analyzed in consideration of reducing the complexity search spaces. In terms of node
information, environmental information, cooperative information, and mission informa-
tion are added, and the recognition degree of individuals in three-dimensional spaces is
improved to avoid the blindness of algorithm search. In terms of algorithms, the adaptive
method and coding correction method are established to share information, such as fitness
values, generate key trajectory points, and improve the algorithm search efficiency, which
aims to balance individual exploration and exploitation. Finally, a cubic B-spline curve
is combined to smooth the flight path to ensure the flying ability of UAVs. Experimental
results show that the algorithm has faster convergence speed, stronger coordination abil-
ity, and more reasonable trajectory group when dealing with multi-aircraft cooperative
trajectory planning.

Future research will focus on considering the cooperative multi-UAV trajectory in
dynamic environments. Although the algorithm in this study can effectively deal with the
problem of MUCTP in a static environment, in real combat scenarios, the real-time changing
environment is often more complex and closer to reality. If the method of trajectory planning
in static environment is still followed, the global trajectory will mistakenly guide UAVs
into the radar scanning area or fail to reach the specified position, resulting in mission
failure. Therefore, MUCTP in dynamic environments is more important than MUCTP in
static environments.

7. Patents

This section is not mandatory but may be added if there are patents resulting from the
work reported in this manuscript.
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