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Abstract: To reduce costs, an unmanned swarm usually consists of nodes with high-accuracy nav-
igation sensors (HAN) and nodes with low-accuracy navigation sensors (LAN). Transmitting and
fusing the navigation information obtained by HANs enables LANs to improve their positioning
accuracy, which in general is called cooperative navigation (CN). In this method, the accuracy of
relative observation between platforms in the swarm have dramatic effects on the positioning results.
In the popular research, constructing constraints in three-dimensional (3D) frame could only optimize
the position and velocity of LANs but neglected the attitude estimation so LANs cannot maintain a
high attitude accuracy when utilizing navigation information obtained by sensors installed during
maneuvers over long periods. Considering the performance of the inertial measurement unit (IMU)
and other common sensors, this paper advances a new method to estimate the attitude of LANs in
a swarm. Because the small unmanned nodes are strictly limited by relevant practical engineering
problems such as size, weight and power, the method proposed could compensate for the attitude
error caused by strapdown gyroscopic drift, which only use visual vectors built by the targets de-
tected by cameras with the function of range finding. In our method, the coordinates of targets are
mainly given by the You Only Look Once (YOLO) algorithm, then the visual vectors are built by
connecting the targets in the covisibility graph of the nodes in the swarm. The attitude transformation
matrices between each camera frame are calculated using the multivector attitude determination
algorithm. Finally, we design an information filter (IF) to determine the attitude of LANs based on the
observation of HANs. Considering the problem of positioning reference, the field test was conducted
in the open air and we chose to use two-wheeled robots and one UAV to carry out the experiment.
The results show that the relative attitude error between nodes is less than 4 degrees using the visual
vector. After filtering, the attitude divergence of LANs’ installed low precision IMU can be effectively
constrained, and the high-precision attitude estimation in an unmanned CN swarm can be realized.

Keywords: cooperative navigation; Wahba’s problem; attitude determination; covisibility graph

1. Introduction

With the rapid development of the robot industry, accurate and continuous positioning
for robots has become particularly important. The error of low-cost inertial navigation
systems (INS) accumulates quickly without global navigation satellite system (GNSS)
assistance when GNSS signals are blocked, which leads to a rapid deterioration of the
positioning accuracy of the integration system [1,2]. To solve this problem, researches on
multi-sensor autonomous navigation are conducted all over the world.

However, high precision sensors cannot be widely equipped in a swarm because of
size, weight, power and cost, which is summarized as a SWPAC problem. Therefore, CN
began to pay greater attention to researchers in the robot and navigation field, with an
interest in improving the positioning accuracy of other LANs by sharing the navigation
information of HANs in the swarm. Advanced sensors such as depth camera, lidar and
ultra-wide band (UWB) are applied to observe the relative position, attitude or velocity
between nodes in swarm.
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According to mathematical principles, the constraints in the three-dimensional coor-
dinate between nodes can be established by using the relative range and angle between
nodes in the swarm, which makes it possible for the accurate positioning of LANs based
on navigation information obtained by HANs.

At present, UWB is generally installed on various unmanned platforms to provide
the relative range between nodes in the research of CN. In general, this small sensor
generally weighs less than 0.2 kg and consumes less than 10 w. The ranging error of UWB
could be less than 0.5 m when measuring the target within 100 m under ideal conditions.
In the published papers, many scholars use the relative range and angle information
between nodes to conduct sufficient CN simulation experiments on different unmanned
platforms [3,4]. In their simulation, the observation in the filter is the state of nodes [4],
which is not suitable for the IMU-based unmanned platform to carry out state prediction
according to the next step of the Kalman filter. Paper [5] proves that although IMU-based
LANs could improve their positioning accuracy by CN, the attitude estimation would be
divergent because the motion equation of the IMU-based unmanned platform is highly
nonlinear and the higher-order term is always neglected in the Taylor expansion. The error
of attitude cannot be well compensated and affects the filter, leading to the deterioration of
the CN performance of the whole swarm. To solve this problem, a new method was needed
to obtain the relative attitude then calculate the optimal result of attitude estimation of
LANs through filters using the output of IMU installed on the platform.

Much work has been done on collaborative navigation to improve positioning accuracy.
However, the research focusing on attitude accuracy could be more satisfactory. On the
one hand, high-precision attitude estimation is an important means of precise cooperative
navigation but research literature rarely mentions which sensor can be used to directly
obtain the angle between two nodes. On the other hand, accurate attitude determination is
the basis for the cooperative swarm to carry out more work. Taking the target detection
work as an example, just taking the position information of each node cannot calculate the
coverage of airborne radar, camera, and other sensors of the node in real time, nor can it
achieve the tracking of moving targets.

In a word, how to obtain the relative attitude with high accuracy has become an urgent
problem for small robot cooperative navigation. In reference [6], the researchers used a
complex UWB array to locate and orient the ground robot. The orientation accuracy is
about 3 degrees when applying Kalman filtering, and the root mean square error (RMSE) is
reduced to about 1.5 degrees after using the graph optimization algorithm based on the
slide window. However, this method cannot apply to all unmanned swarms. First, complex
UWB arrays will cost a great deal; Second, the UWB array layout requires a larger platform;
Third, the severe electromagnetic signal interference will block communication between
nodes in the swarm.

In order to design a method that is easy to realize in practice, in this paper we selected
a camera commonly used by UAV to solve this problem. According to the principle of
polar geometry, the 3D coordinates of the target in the camera frame (Frame-C) can be
calculated by the coordinate in pixel frame (Frame-P) of the target and the distance from
the lens. When three or more identifiable targets are in the overlap of a HAN and a LAN,
the corresponding vectors can be obtained by connecting the targets, which should be
more than three as well. For convenience, the vectors obtained by camera are called visual
vector in this paper. The Euler between different nodes can be calculated by algorithms for
multivector attitude determination using visual vectors‘ projection in Frame-C.

Attitude determination is a measurement technology based on relative positioning [7].
By observing two or more baselines at the same time, the three-dimensional attitude
calculation of the carrier can be realized, which is widely used in aerial, marine and land
navigation. Generally, there are two methods to determine the three-axis attitude:

• Deterministic algorithm, such as TRIAD (Tri-Axial Attitude Determination) [8].
• Optimization algorithm, such as QUEST (Quaternion Estimator) [9] or SVD (Singular

Value Decomposition) [10].
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When using a double baseline to solve an attitude determination problem, determinis-
tic algorithm and several optimal algorithms could all work, but different algorithms have
their own advantages and disadvantages in various application scenarios.

SVD (1968) was first proposed by Markley, but, it was not widely used in practice in
the 1960s–1980s because of the large amount of calculation when the computational power
was seriously limited. In this century, with the rapid development of computer computing
power, Wahba’s problem has also been applied in more fields. Yang used the general root
of quartic equation to solve the optimal quaternion in 2013. The algorithm is fast, but a
problem still exists. It may not have a real root of characteristic polynomial, which will lead
to plural quaternion [11]. So in 2015, Yang introduced the idea of Riemannian manifold
and developed a more robust iterative method [12]. In 2017, Wu Jin designed a new fast
linear attitude estimator (FLAE) [13] where the analytical method and iterative method for
solving the eigenvalues are provided at the same time.

Multi-vector attitude determination algorithm has been studied to solve the relative
attitude problem between vehicles. In fact, the early research of attitude determination
algorithm mainly comes from solving the problem of satellite attitude determination. The
attitude of the body in the inertial coordinate system can be obtained by calculating the
installation position of the star sensor in the body.

For solving the problem of space non-cooperative target relative attitude determina-
tion, Wang proposed a relative attitude determination method of target spacecraft using
dual-feature structures [14]. Zhang Lei [15] introduced the deduction that the attitude
measurement accuracy is not only affected by the relative position between the navigation
stars described by the condition number, but also related to the different positions of the
navigation star group in the star map.

Nevertheless, the application environment attitude determination faced in multi-
unmanned platform CN swarm is different from traditional applications such as satellite
attitude determination, which is mainly perceived in the following three aspects:

The first is much larger measurement noise. In the application of satellite attitude de-
termination, signal-to-noise ratio (SNR) is about 2000 db which is an inaccessible precision
for a camera with ranging functions such as a depth camera or a binocular camera installed
on unmanned platforms.

The second is false-alarm picture in practice. We adopt a YOLO-deep-sort algorithm
based on YOLOv5 edition6 to detect targets. Although this algorithm is very friendly to
the low computational power platform because of its great performance on lightweight,
the occasional target misjudgment is fatal to the traditional algorithm.

The third is the higher demand of rapidity and stability. As mentioned above, ex-
tracting the image features of the target is a relatively complex process for most low-cost
unmanned platforms, and high-definition image of the target is necessary as well during
this process. If the default observation caused by target invisibility or overtime calcula-
tion occurs in the process of navigation and attitude determination for a long time, the
divergence of results will be irreversible.

As mentioned above, divergence of attitude always occurs when the extended Kalman
Filter (EKF) or other linear filtering methods are directly used. At the same time, the
uncertainty of detection is also not suitable for directly using the calculated relative angle
as the observation of the filter. More significantly, the biggest difference between CN and
single node positioning is that multiple UUVs can coordinate, cooperate and share their
own state with other nodes in a CN swarm [16], which means that every node needs to
continuously send or receive information from each platform in the swarm. All status
related to observational status of moment parameters must be changed when updating
observables, which will increase the calculations and make communication difficult. Thus
it will hinder the application of CN when using the Kalman filter to fuse multi-sensors’
data. As described in [17] and [18], it can be seen from simultaneous localization and robot
mapping that the information filter (IF) performs better than a Kalman filter. Therefore,
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augmented IF with Euler as status and relative angle as observation is presented to use in
CN to determine the attitude of nodes in the swarm.

The efficiency of cooperative navigation is mainly reflected in the fusion of the obser-
vation of all nodes in the swarm. In a decentralized swarm, each node needs to process its
own sensing information and fuse it with those from other nodes to calculate the position
and posture, which means that each node needs to process a large amount of information.
The difficulty caused by time synchronization makes data fusion more complex. Different
from the traditional Kalman Filter, the IF uses information parameters in its iterative opti-
mization so that it only needs to update the parameters related to the observation without
updating the status of all nodes in the swarm. The observation update of information
filtering is local, so the computational power and communication consumption will be less,
which makes it very suitable for cooperative navigation swarms that need to fuse a large
amount of nonsequential information [19].

Considering the practical problems mentioned above, we propose a new method
to determine the attitude of unmanned platforms by visual vectors. Based on CN IF,
this method obtains the relative-attitude Euler angle of nodes in the swarm quickly and
accurately as the observation to calculate the attitude of LANs. The key points of our work
are as follows:

• Fast and robust attitude determination algorithm by visual vectors
• Robust IF construction for IMU-based vehicle

The remainder of this paper is organized as follows. Section 2 describes the details
of the attitude determination of unmanned platforms in CN swarm algorithm. Then in
Section 3 we continue with the simulation of multi-vector attitude determination algorithm
and attitude determination based on CN to verify the performance of the proposed method.
In Section 4, the analysis and discussion of the experimental results are presented to evaluate
the performance of the algorithm. Section 5 discusses conclusions and future work.

2. Materials and Methods

As shown in Figure 1, attitude determination of unmanned platforms in the CN swarm
mainly needs to solve three problems:

• Target detection and calculation for coordinates in the navigation frame (Frame-N).
• Determination of the relative angle between nodes in the swarm.
• Attitude error compensation based on decentralized CN IF.
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Among the three points mentioned, designing an improved algorithm for calculating
the attitude-transfer matrix using visual vectors and compensating for the error of attitude
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angle of LANs based on IF constitute the main emphasis and innovation point of this paper.
In Section 2.1, the approach of constructing vectors from detected targets is described in
detail. Then the fast and robust multi-vector attitude determination algorithm is derived in
Section 2.2 and IF is constructed in Section 2.3.

2.1. Frames Involved and Method to Build Visual Vectors

In this paper, the installed cameras are fixed on the platforms, therefore, Frame-C can
convert to body frame (Frame-B) through a known and invariant attitude conversion matrix.
Consequently, we can calculate the attitude conversion matrix Cb2

b1 between platforms as
long as we calculate the relative attitude relation between the cameras.

Related formula are proposed as Equation (1) ψb1
θb1
γb1

 = Cb1
c1

 ψc1
θc1
γc1

,

 ψb2
θb2
γb2

 = Cb2
c2

 ψc2
θc2
γc2

, Cb2
b1 = Cc1

b1 · C
c2
c1 · Cb2

c2 (1)

where Cc1
b1 and Cc2

b2 are the attitude conversion matrix which reflects the installation relation-
ship of the camera. They should be invariant in practice so the key to calculate the relative
angle is to calculate Cc2

c1 .
According to the requirements of multivector attitude determination algorithm, the

projection of at least two different vectors in two frames is required to obtain the attitude
transformation matrix between these two frames. As shown in Figure 1, the first step
to construct the vector in Frame-C is to detect targets and get their coordinates. Next,
connect center points of the box of the target in the proper order. If more than two sets
of coordinates are correctly obtained in the first step, we can get enough visual vectors to
determine the relative attitude between two platforms.

Besides the targets we need to detect and recognize, the cooperative nodes in the
overlap horizon can also help to construct vectors. In general, it should not be hard to find
three or more targets in the overlap to construct more than three sets of visual vectors.

As shown in Figure 2, we do not discuss exceptional cases in this paper because how
to conduct target recognition is not the focus of our research. In our experiment, we apply
pruning YOLOv5, which could work at 20 Hz on our experimental platform to detect
targets efficiently.
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Figure 3 shows how to construct visual vectors in detail. The mathematical descrip-
tion is given as follows: Define the sets of detected targets for platform i and platform
j as Ωi = {oi

1, oi
2, oi

3 . . .} and Ωj = {oj
1, oj

2, oj
3 . . .}. Take the union of these two sets as

Ωij = Ωi ∩Ωj, which represents the targets in overlap. Only when card(Ωij) ≥ 3 can the
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attitude determination algorithm work. card(·) represents the operation of calculating the
number of elements in a set.
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When it comes to the situation that more than one intra-class target are detected,
the problem becomes much more complex. YOLO cannot identify intra-class targets, so
different platforms might have different identifications of the same target or misjudge two
different targets as the same one [20]. If the cooperative nodes are detected in overlap,
we might identify it by communication but this method cannot work when facing other
targets. Employing JPDA (Joint Probabilistic Data Association) or Dead-Reckoning to
identify unclassified targets by their different trajectory could solve this problem but it
requires greater computation at the same time. We are not investigating this complex case
in this paper. In the simulation in Section 4 and the experience in Section 5, we also place
different kinds of objects in the experimental site.

2.2. Improved QUEST for Multi-Vector Attitude Determination

Because of its optimum balance of stability, rapidity and accuracy, QUEST has become
the most prevalent attitude determination algorithm. Considering that the vector accuracy
obtained by the unmanned platform attitude measurement is much lower, we need to make
some improvements to enhance its robustness in the case of insufficient vector accuracy.

QUEST is also a algorithm based on Wahba’s problem. Wahba’s problem is to convert
the direction measurement into attitude measurement. Its specific expression is as follows:
if there are n unit vectors in the Frame− B which are recorded as vi, i = 1, . . . n. The value
obtained by measuring these unit vectors in another Frame− B′ is v̂i, i = 1, . . . n. The
problem is to find a rotation matrix C to minimize the loss function.

L(C) =
1
2

n

∑
i=1

wi‖vi − Cv̂i‖2 (2)

where wi represents the weight factors for each obviation vector. wi, i = 1, . . . n, are a set of
positive weights satisfying ∑n

i=1 wi = 1, usually chosen as wi = 1/σ2
i , with σ2

i the variance
parameters of the measurement vectors.

To meet the requirements of the application, the use of attitude rotation quaternions
can effectively reduce the amount of computation required in the solution process by
reducing the number of unknowns. The loss function is expressed in the form of quaternion
as Equation (3):

tr(BCT) = qTKq (3)
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where

K =

[
S− I3X3tr(B) z

zT tr(B)

]
z =

n

∑
i=1

aibi × ri S = B + BT (4)

Utilizing Lagrange operator to calculate the maximum value of Equation (4), we get:

Kqopt = λ
⇀
q opt (5)

If and only if λ is equal to the maximum eigenvalue of matrix K, the eigenvector of
λmax is the optimal quaternion qopt. Therefore, we can rearrange Equation (5) as

[(λmax + tr(B))I − S]
→
q = q4z (6)

(λmax − tr(B))q4 =
→
q

T
z (7)

From Equations (6) and (7), the inverse of the matrix is expressed by the adjoint matrix,
then we get

→
q = q4[(λmax + tr(B))I − S]−1z

= {q4/det[(λmax + tr(B))I − S]}adj[(λmax + tr(B))I − S]z
(8)

Therefore, we describe
→
q in terms of Gibbs vector and normalize it then we get:

→
q =

1√
12 + |Y|2

[
Y
1

]
(9)

where
Y = [(λ + σ)I− S]−1Z (10)

λ = σ + ZT ·Y (11)

Inserting Equation (11) into Equation (9) would mean that the λ meets the qopt we
need as:

λ = σ + ZT [(λ + σ)I− S]−1Z (12)

Equation (12) is equivalent to the characteristic equation for the eigenvalues of K. To
avoid the problems posed by this singularity with the consideration on the problem that
the Gibbs vector becomes infinite when the angle of rotation is π, we derive an expression
that permits the computation of

→
q opt without the intermediary of the Gibbs vector. For an

eigenvalue ξ of any square matrix S satisfies the characteristic equation:

det|S− ξI| = 0 (13)

− ξ3 + 2σξ2 − κξ + ∆ = 0 (14)

According to the Cayley-Hamilton theorem [21], S should satisfy the same equation.
Then we get a convenient expression for the characteristic equation:

λ4 − (a + b)λ2 − cλ + (ab + cσ− d) = 0 (15)

where 
σ = tr(B)

κ = tr(adj(S))
∆ = det(S)


a = σ2 − κ

b = σ2 + zTz
c = ∆ + zTSz
d = zTS2z

(16)
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Since tr(BCT) is a small quantity causing λ is very close to 1, its initial value can be set
to λ0 = 1 [22]. Then, the Newton iteration can be conducted using:

λ(n + 1) = λ(n)− f [λ(n)]
f ′[λ(n)]

(17)

Usually, λ can be very accurate after several iterations in traditional QUEST algorithms.
When the eigenvalue is obtained, the eigenvector can then be calculated using elementary
row operations. However, as the accuracy is not linear with iteration times, fixed iteration
times will not always achieve good results. Different from the method proposed by Markley,
a novel symbolic approach is investigated for increasing the speed of calculating. For this
purpose, Equation (15) can then be calculated as follows:

λ1 = 1
2
√

6

(
Γ2 −

√
−Γ2

2 + 12(a + b) + 12
√

6·c
Γ2

)
λ2 = 1

2
√

6

(
Γ2 +

√
−Γ2

2 + 12(a + b) + 12
√

6·c
Γ2

)
λ3 = − 1

2
√

6

(
Γ2 −

√
−Γ2

2 + 12(a + b) + 12
√

6·c
Γ2

)
λ4 = − 1

2
√

6

(
Γ2 +

√
−Γ2

2 + 12(a + b) + 12
√

6·c
Γ2

)
(18)

With the parameters

Γ0 = −2(a + b)3 + 27c2
2 + 72(a + b)(ab + cσ− d)

Γ1 =

(
Γ0 +

√
−4
(
(a + b)2 + 12(ab + cσ− d)

)3
+ Γ2

0

) 1
3

Γ2 =

√
4(a + b) +

2
3
4 ((a+b)2+12(ab+cσ−d))

Γ1
+ 2

2
3 Γ1

(19)

Then, λ is chosen by the value that is nearest to one. In this way, the solving process
of λ is significantly shortened. The use of a general solution makes traditional QUEST a
faster attitude solution algorithm with less floating-point operation. Inserting the λmax
calculated by Equation (18) into Equation (9), we obtain the optimal attitude quaternion
→
q opt as follow:

→
q opt =

1√
γ2+|x|2

[
x
γ

]

=

 αI + (λmax + tr(B)) + S2

α(λmax + tr(B))− det(S)


√
[α(λmax+tr(B))−det(S)]2+|(αI+(λmax+tr(B))+S2)|2

(20)

2.3. Attitude Angle Determination Based on IF

Cooperative navigation technology is widely used in unmanned platforms. The
common method is data fusion with improved Kalman filters based on specific navigation
sensors. As shown in [15], when platforms are defined as a processing node, the Kalman
filter can fuse navigation information of each node to the master node in a centralized
Kalman filter algorithm.
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Assume that the unmanned swarm consists of n nodes, the motion model and ob-
servation model for an IMU-based platform of attitude compensation in cooperative
navigation are:

Xk+1 =


f 1(x1

k , u1
k)

f 2(x2
k , u2

k)
...

f N(xN
k , uN

k )

+ Wk , Φ(Xk, Uk) + Wk (21)

where, Xk+1 and Xk represent the status of the whole CN swarm at the time k+ 1 and k. Further-
more, xi

k represents the status of platform-i at the time k and we have Xk =
[
x1

k x2
k . . . xN

k
]
.

f i is status transition matrix of platform-i, which is determined by the dynamics
of this platform. uk

i is the parameter required for state estimation, wk
i is the system

noise of platform-i at the time k, and the variance is Qk
i, meets wk

i ∼ N
(
0, Qi

k
)

and
Wk =

[
w1

k w2
k . . . wN

k
]
. The single-platform observation update equation at time k and

the inter-platform observation equation of platform-i to platform-j can be expressed as:

zi
k = hi(xi

k
)
+ vi

k

zij
k = hij

(
xi

k, xj
k

)
+ vij

k

(22)

where zi
k and zij

k represents the single platform observation from platform-i to itself and
platform-j. hi and hij is the observation equation, which should suit the observation in the
filter and the sensors used. vi and vij is the observation noise and follows vk

i ∼ N
(
0, Ri

k
)

and vk
ij ∼ N

(
0, Rij

k

)
respectively.

1. Traditional decentralized CN Kalman filtering

For an unmanned swarm, the observation update of the single platform at the time
k is

X̂k+ =


x̂1

k−
x̂2

k−
...

x̂N
k−

+


∑1i

X̂k+

∑2i
X̂k+
...

∑Ni
X̂k+

(∇hi)T(si)
−1

vi (23)

∑X̂k+
= ∑X̂k−

−


∑1i

X̂k−

∑2i
X̂k−
...

∑Ni
X̂k−

(∇hi)T(si)
−1∇hi


∑i1

X̂k−

∑i2
X̂k−
...

∑iN
X̂k−



T

(24)

At the initial time, the state parameters of nodes are not correlated. After their
collaborative observation, the state parameters of nodes in the swarm are correlated. It
can be seen from Equations (23) and (24) that even if the single platform only updates
the observation involved with itself, all status of overall nodes in the unmanned swarm
still needs to be updated according to the traditional Kalman filtering step. At the time k,
platform-i updates its observation to platform-j as:

X̂k+ =


x̂1

k−
x̂2

k−
...

x̂N
k−

+


∑1i

X̂k−
∑

1j
X̂k−

∑2i
X̂k−

∑
2j
X̂k−

...
...

∑Ni
X̂k−

∑1i
X̂k−


(∇hij

i )
T

(∇hij
j )

T

(sij)
−1

vij (25)
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∑X̂k+
= ∑X̂k−

−∑Ni
X̂k−

 (∇hij
i )

T

(∇hij
j )

T

(sij)
−1

 (∇hij
i )

T

(∇hij
j )

T

∑ij

∑ij =

 ∑i1
X̂k−

∑i2
X̂k−

· · · ∑iN
X̂k−

∑
1j
X̂k−

∑
2j
X̂k−

· · · ∑
Nj
X̂k−




(26)

Similarly, we can see from Equations (25) and (26) that although only two platforms
have been involved with the observation, the observation update needs to update all the
platforms’ statuses because the state parameters used in the CN Kalman filter are relevant.

Traditional decentralized CN Kalman filtering requires all platforms in the swarm to
maintain time synchronization and continuously send or receive information from each
other, which leads to a huge real-time communication burden. In addition, the observation
update can only be carried out in sequence. For the observation at the same time, the
swarm can only start the update of another observation after completing the update of the
previous observation. As the number of the nodes in the swarm increases, the number of
observations at the same time rises. This is why the traditional decentralized CN Kalman
filtering is difficult to achieve in practice.

2. Decentralized CN Information Filter

IF uses information parameters to augment states and update observations, then
recovers the status and covariance. This method preserves the historical states in the filter,
thus the joint distribution of the information matrix is sparse and computational complexity
of filter is less.

The Gaussian filter is widely used in estimated algorithms. It can be described by
moment parameters (mean and variance

{
X̂, P

}
) and information parameters (information

vector and information matrix {ŷ, Y}). The relation between them is described as [23]:

ŷ = P−1X̂

Y = P−1
(27)

The Kalman filter is a Gaussian filter based on moment parameters and IF is a Gaussian
filter based on information parameters; thus they are equal in style. Their calculation
features are as different as their different parameters. But their filtering steps are the same.
Transforming the Kalman filtering of single-platform observation update at time k to the IF
form, we get:

Y−1
k+ = Y−1

k− −Y−1
k− HT

k−(Hk−Y−1
k− HT

k− + (Pi
k)
−1

)
−1

Hk−Y−1
k− (28)

where, Yk− and Yk+ represents the prediction information matrix and observation update
information matrix of nodes at time k. Hi

k− denotes the observable linear matrix of platform-
i. Pi

k is the weight of observation value of platform-i. Inverse the left and right sides of the
Equation (28) and the observation update in IF form shows as Equation (29):

Yk+ = Yk− + HT
k−(Pk)Hk− = Yk− +



0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · Ik(i, i) · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0

 (29)

From Equation (29), it is obvious that IF only needs to update the information matrix
of platform-i instead of updating the whole platforms’ status in the traditional way when
updating the single platform observation. Similarly, as Equation (30) shows, it is only
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necessary to update the information matrix related to platform-i and platform-i when
updating the observation between this two platforms.

YK+ = YK− +
(

Hij
K−

)T
PK Hij

K−

= YK− +



0 . . . 0 . . . 0 . . . 0

:
. . . : :

. . . :
0 . . . Ik(i, i) . . . Ik(i, j) . . . 0

: :
. . . : :

0 . . . Ik(j, i) . . . Ik(j, j) . . . 0

:
. . . : :

. . . :
0 . . . 0 . . . 0 . . . 0


Ik(i, i) = (∇hij

i )
T

Pij
k ∇hij

i

Ik(i, j) = (∇hij
i )

T
Pij

k ∇hij
i

Ik(j, i) = (∇hij
j )

T
Pij

k ∇hij
j

Ik(j, j) = (∇hij
j )

T
Pij

k ∇hij
j



(30)

3. Design of state and observation in IF

This paper selects the following parameters as state variables: attitude angle error δϕ,
horizontal velocity error δV, zero offset of accelerometer εb, gyroscope drift ∇b.

For attitude compensation, the system state vector X of IMU-based autonomous
integrated navigation system can be defined as

X =
[
δφ δθ δψ δvN δvE

]
(31)

This is because the ground (or sky) directional of the inertial navigation system
is divergent and generally cannot be solved without external reference information or
damping, so the ground velocity error state and height error state should be removed. The
position error is that the velocity error is related as well. When there is no separate position
reference information, the position error state should be removed.

Inertial Navigation System Error State as:

.
X = F·X + G·u (32)

where F is the system state matrix and G is the systematic error matrix.

u =
[
δwb

ib,x δwb
ib,y δwb

ib,z δ f b
x δ f b

y

]

F =



0 −Ω sin L− vE tan L
RE

vN
RN

0 1
RE

Ω sin L + vE tan L
RE

0 Ω cos L + vE
RE

−1
RN

0
−vN
RN

−Ω cos L− vE
RE

0 0 − tan L
RE

0 − fD fE
vD
RE

−2Ω sin L− 2vE tan L
RE

fD 0 − fN 2Ω sin L + vE tan L
RE

vN tan L
RE

+ vD
RE


(33)

The selection of the measurement vector of the integrated navigation system is directly
related to the measurement accuracy of the entire system. Based on the known matching
results, the attitude observation equations are established.

In the loose combination observation method, the observation is the relative angle
obtained by the sensor. Since the error state is selected to establish the state equation in
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the filter, the form of the observation equation will be very simple without considering the
lever arm effect.

Set the observation as Equation (34)

Z =
[

δφ δθ δψ
]

=
[

φob − φ θob − θ ψob − ψ
] (34)

We have H = I3×3. The error of attitude angle in three axes is selected as observation,
in this way, the observation matrix H will be linear. The observation is directly obtained
by subtracting the angle measured by the sensor from the attitude angle calculated by
the IMU inertial navigation solution. Although the accuracy of loose combination will
decrease compared with that of tight combination, the linear observation equation of loose
combination will not introduce high-order error.

3. Simulation
3.1. Simulation of Improved Algorithm for Multi-Vector Attitude Determination

This section evaluates the performance of the proposed algorithm via the Monte
Carlo simulation.

The mathematical equivalence of various attitude algorithms can be derived strictly.
Strict mathematical derivation is complex and difficult. This section verifies the above
algorithms from the perspective of simulation. The verification vector uses cases 1–6 set by
Markley [24].

Each test case is specified by a set of measurement vectors and measurement noise.
These cases model different application scenarios, such as three fine sensors with orthogonal
boresight, one fine and one coarse sensor and measurements in a sensor with a small field of
view. The robustness and accuracy of attitude determination algorithms could be evaluated
effectively and comprehensively.

We set C_truth = [0.352, 0.864, 0.360; −0.864, 0.152, 0.480; 0.360, −0.480, 0.800]. Then
calculate the loss function and misalignment angle error of QUEST, SVD, ESOQ, FLAE,
FOAM and Davenport algorithms respectively and count the time taken by running it
2000 times. The computer running simulation is equipped with Intel Core i5-8400 CPU.
The results are shown in Tables 1–3. In these three tables, the part filled with blue means
it performs better than the new algorithm we proposed. Similarly, green and red parts
represent equal and worse performance respectively.

Table 1. Estimation Error. The part filled with blue means it performs better than the new algorithm
we proposed. Similarly, green and red parts represent equal and worse performance respectively.

Case Davenport FLAE QUEST Improved QUEST
1 0.517 0.523 0.522 0.518
2 0.616 0.615 0.616 0.616
3 0.518 0.521 0.523 0.516
4 0.616 0.617 0.616 0.615
5 0.617 0.616 0.617 0.617
6 0.574 0.574 0.573 0.572

Table 2. Loss Function. The meanings of different colors are the same as Table 1.

Case Davenport FLAE QUEST Improved QUEST
1 0.09 0.147 0.154 0.09
2 0.102 0.104 0.103 0.101
3 0.09 0.136 0.154 0.09
4 0.101 0.102 0.102 0.103
5 0.104 0.103 0.101 0.102
6 0.900 0.959 0.958 0.91
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Table 3. Time used (for 2000 times)/s. The meanings of different colors are the same as Table 1.

Case Davenport FLAE QUEST Improved QUEST
1 0.501 0.285 0.329 0.366
2 0.326 0.22 0.232 0.295
3 0.399 0.22 0.286 0.296
4 0.309 0.20 0.254 0.263
5 0.299 0.24 0.251 0.252
6 0.330 0.22 0.286 0.280

During observation, we set the SNR of vector observation to 20 dB. From the above
table we see that the algorithms with poor robustness such as FOAM and ESOQ find it
difficult to solve the stable attitude when the vector observation is not accurate enough.
Due to the improvement of CPU performance, there is little difference in computing speed
between the algorithms in the case of fewer observation vectors. Compared with QUEST
and FLAE, our improved algorithm does not perform well enough, especially when it
comes to the cost of time, but its estimation error reflects the robustness dealing with
imprecise observation is much lower than other algorithms.

3.2. Simulation of IF for Attitude Error Compensation

In Section 3.1, we established a new observation model and filter for the INS-Camera
CN attitude determination system, and proposed a concrete method of implementation.
In this section, we applied trajectory and IMU data generated by simulation to verify the
effectiveness of the designed an IF for attitude compensation. In this simulation, the error
can be considered to be composed of constant deviation and white noise.

The simulation data simulated the trajectory of the unmanned vehicle in the Frame-N
and the time lasted 290 s. The trajectory is shown in Figure 4 and yaw of LAN is shown
in Figure 5a.
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The yaw calculated after the filtering process is shown in Figure 5b. Compared with
Figure 5a, it is obvious that the attitude divergence caused by the cumulative error of IMU
has been solved. Figure 6 shows that the root mean square error (RMSE) of attitude angle
in three axis is less than two degrees.
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4. Experimental Results and Discussion
4.1. Introduction of Platforms and Site Setting

In this paper, we select two wheeled robots and one UAV as experimental platforms.
For convenience, we names them Node 1, Node 2, and Node 3. They are shown in Figure 7.

Among them, Node 1 act as a HAN that installs high-precision INS and Node 2 is a
LAN that installs low-precision INS. Due to the lack of attitude reference, our UAV is not
suitable to observe others. So we employ it just as a cooperative node for being observed by
others in the swarm. The output of high precision INS are used as references of the attitude
of Node 1.

To improve the success rate of target recognition, targets for detection should be highly
visible and easily distinguishable. According to the above requirements, we set the position
of targets and nodes as in Figure 8.
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4.2. Experiment Plan

However, the output of IMU on the UAV is not open source so we lost the atti-
tude reference of this platform. For this reason, we just set it stay still to perform as an
observed target.

One key point of the method we proposed is to obtain the relative attitude angle be-
tween different nodes. To ensure the covisibility graph could cover the entire experimental
site, we let Node 1 with high-precision INS rotate in place, ensuring that the five targets
can be observed. At the same time, Node 2 and Node 3 in the Figure 8 would stay still in
their initial position. The whole movement lasts for 18 s.

In this process, we can calculate the coordinates of targets as shown in Figure 9
and obtain the visual vectors in Frame-C of different nodes. Using the different sets of
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visual vectors, we can calculate the relative attitude between each nodes based on the
improved QUEST.
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4.3. Result and Analysis

We use the relative attitude angle measured in the experiment as the observation of
IF. As mentioned in Section 2.3, the relative attitude angle from the other two nodes could
compensate for the error of attitude caused by low-precision INS installed on LAN Node 2.

As for the true angle as the reference, the attitude calculated by INS installed on LAN
can represent the true relative angle between Node 2 and HAN Node 1 because the LAN is
not moving. Similarly, the true angle between Node 2 and Node 3 should be a fixed value
due to no relative motion between the two platforms.

Figure 10a shows the three-axis attitude angle determined by visual vectors. Because
we just have the HAN rotated in place on level ground, so the roll and pitch should
theoretically be zero. The reference of yaw is shown in (b), which is offered by INS installed,
as shown in Figure 7d.
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Figure 10. The observation result of HAN: (a) Roll, pitch and yaw obtained by visual vectors; (b) Yaw
of the HAN observed by IMU output and by visual vectors during the movement.

The error of angle determined by visual vectors in three-axis is shown in Figure 11.
Statistically, the RMS is less than four degrees in the whole moving phase of HAN. When
the HAN is stationary, the error is less than one degree but would increase to nearly four
degrees when the node starts moving.
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The main reason for the huge error could be explained as follows:

• Delay caused by calculation
• Inaccurate target recognition

After obtaining the relative angle, we used it as observation in the IF to compensate for
the noncommutativity error caused by INS installed on the LAN. The result of IF shows in
Figure 12. The errors of angle in three-axis are all less than two degrees after compensation.
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5. Conclusions

In this paper, we design a new method to determine the attitude angle of LANs in un-
manned CN swarm based on IF using a relative attitude transformation matrix calculated by
high-precision visual vectors. Considering the various limitations of unmanned platforms,
we apply easy and cheap sensors to realize the method in practice. Based on verifying the
improved QUEST and IF as designed, real-site experiments show that the system has good
relative orientation accuracy, comprehensive performance, and application potential.

We carried out experiments using three unmanned platforms in the air and on the
ground, each of which installs navigation sensors with different accuracy. In a swarm
consisting of three platforms, the LAN among them can compensate for the attitude error
according to the attitude angle of the high precision node and the observed relative angle
through IF. The three-axis attitude angle error is within three degrees.

However, the research involved in this paper can be improved both in theory and
practice. In Section 5.1, we simply summarize and explain the problems reflected in the
experimental results. In Section 5.2, we envisage several types of measures that can be
improved according to the defects mentioned previously, and give a simple implementation
plan and feasibility verification.

5.1. Shortage
5.1.1. Ranging Is not Accurate Using Camera

From the experimental results, it can be seen that the precision of LANs’ attitude
determination depends on the precision of relative attitude transformation matrix, that is,
the precision of visual vector measurement. According to the Equation (35):

Zc
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 =
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0 fy v0 0
0 0 1 0

[R T
→
0 1

]
Xw
Yw
Zw
1

 (35)

The accuracy of the target’s 3D coordinates in Frame-C is tightly related to the ranging
accuracy, so the ranging error will have a significant impact on the calculation of the attitude
angle, especially when visual vectors are not multitudinous. In general, large-ranging
errors often occur in the following situations:

• Target occupies too small a proportion in the identification box.
• Target is hollowed out and the shape is irregular.
• Target is a long distance away.

For situation 1 and 2, the target contour can be precisely cut by improving the reduction
of target recognition methods, which ensures the points ranged are just within the target
object. To solve the problem in situation 3, we just need a camera with a long base line, but
it is impracticable in proportion to the size of the platform.

5.1.2. Problems in Identification for Inter Class Targets

In our experiment, the targets we set are all different from each other for YOLO. For
most target recognition algorithms, distinguishing inter class targets requires additional
samples and time for training.

5.2. Future Improvements
5.2.1. Target Recognition Based on Semantic Segmentation

Image Semantic Segmentation obtains the content-based annotation of an image by
analyzing the content of the training image, and at the same time, it obtains the semantic
categories of all the segmentation areas and even each pixel of the image. Image semantic
segmentation requires not only accurate identification of the boundary of the image seg-
mentation area, but also accurate identification of the target categories of the segmentation
area [25].
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Compared to other object detection methods such as YOLO or R-CNN, employ-
ing Image Semantic Segmentation could ensure that the pixel points ranged are exactly
on the targets detected, which makes the ranging result free of the interference from
the background.

5.2.2. Joint Probabilistic Data Association for Identification of Unclassified Targets

Joint probabilistic data association (JPDA) is one of the data association algorithms [26].
The purpose of JPDA is to calculate the correlation probability between observation data
and each target, and it is believed that all effective echoes may originate from each specific
target, but their probabilities from different targets are different. The advantage of the
JPDA algorithm is that it does not need any prior information about the target and clutter,
and so it is one of the better methods to track multiple targets in a cluttered environment.
Therefore, JPDA could identify the unclassified targets according to their unique trajectory.
However, when the number of targets and measurements increases, the computational
load of JPDA algorithms will explode, resulting in computational complexity.

6. Patents
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