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Abstract: Accurate and continuous monitoring of crop growth is vital for the development of
precision agriculture. Unmanned aerial vehicle (UAV) and satellite platforms have considerable
complementarity in high spatial resolution (centimeter-scale) and fixed revisit cycle. It is meaningful
to optimize the cross-platform synergy for agricultural applications. Considering the characteristics of
UAV and satellite platforms, a spatio-temporal fusion (STF) framework of UAV and satellite imagery
is developed. It includes registration, radiometric normalization, preliminary fusion, and reflectance
reconstruction. The proposed STF framework significantly improves the fusion accuracy with both
better quantitative metrics and visualized results compared with four existing STF methods with
different fusion strategies. Especially for the prediction of object boundary and spatial texture, the
absolute values of Robert’s edge (EDGE) and local binary pattern (LBP) decreased by a maximum of
more than 0.25 and 0.10, respectively, compared with the spatial and temporal adaptive reflectance
fusion model (STARFM). Moreover, the STF framework enhances the temporal resolution to daily,
although the satellite imagery is discontinuous. Further, its application potential for winter wheat
growth monitoring is explored. The daily synthetic imagery with UAV spatial resolution describes
the seasonal dynamics of winter wheat well. The synthetic Normalized Difference Vegetation Index
(NDVI) and Enhanced Vegetation Index 2 (EVI2) are consistent with the observations. However, the
error in NDVI and EVI2 at boundary changes is relatively large, which needs further exploration.
This research provides an STF framework to generate very dense and high-spatial-resolution remote
sensing data at a low cost. It not only contributes to precision agriculture applications, but also is
valuable for land-surface dynamic monitoring.

Keywords: spatio-temporal fusion (STF); unmanned aerial vehicle (UAV); Sentinel-2 multispectral
imager (S2-MSI); growth monitoring

1. Introduction

Continuous monitoring of seasonal crop dynamics is critical to coping with climate
risk and ensuring food security. Remote sensing imagery provides vital data sources
for natural disaster monitoring, crop growth monitoring, yield estimation, and other
applications [1–4]. With the development of satellite sensor hardware technology, more
and more high-spatial-resolution satellites have been developed to provide more accurate
land-surface information. For example, the Sentinel-2 Multispectral Imager (S2-MSI) sensor
provides free imagery with a spatial resolution of 10–60 m and a temporal resolution of
5 days by combining Sentinel-2A and Sentinel-2B. Although satellite imagery is inevitably
affected by weather conditions, multiple S2-MSI images can be obtained in a crop growing
season, which plays an important role in field-scale agricultural applications [5,6]. However,
for precision agricultural development, the spatial resolution of S2-MSI imagery is still too
coarse to provide more detailed spatial information.
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Unmanned Aerial Vehicle (UAV) technology is developing rapidly and has been suc-
cessfully applied in many fields, including crop dynamic monitoring and yield estimation
due to its centimeter-scale spatial resolution and flexibility [7–10]. However, UAV platforms
are not fixed like satellites, and each flight test requires manual operation. The seasonal
dynamic monitoring of crop growth usually requires continuous imagery, which is costly
for UAV observations. Therefore, if the combined advantages of the fixed revisit cycle of
the satellite platform and the high spatial resolution and flexibility of the UAV platform
can be exploited, it will have great potential for high-precision and long-term continuous
monitoring of crop dynamics.

In recent years, researchers have gradually explored the collaborative application of
UAV and satellite platforms. Usually, UAV sensors, due to their high-spatial-resolution ob-
servations, are applied to obtain precise target information as “truth value”, while satellites
are used for large-scale and continuous spatial observations. UAV has successfully bridged
the scaling gap between ground and satellite data for qualitative or quantitative applica-
tions with improved accuracy. A qualitative application may use the land-cover classes
identified from UAV imagery to improve the satellite-based classification maps [11–13].
Quantitative applications include taking the information extracted from UAV imagery
(plant height, texture, etc.) to assist satellite observation for parameter inversion, or using
the quantitative estimations of UAV imagery to adjust those of satellite imagery, thus
providing better estimation accuracy [7,14]. In addition, there are also research efforts
focusing on the spatio-spectral fusion of UAV and satellite imagery to enrich the spectral
range of UAV imagery for land-cover classification [15], or just compare the qualitative
or quantitative results from different platforms to investigate their advantages and dis-
advantages for particular applications or purposes [16,17]. In these studies, the spatial
resolution of the final land-cover classification maps or parameter estimations still depends
on satellite imagery. In terms of temporal frequency, the remote sensing data of only one or
several key growth stages are considered, and the time-series continuous monitoring has
not been satisfied.

The current research has confirmed the contribution of the integration of UAV and
satellite data to improving application accuracy. Still, their advantages in spatial and
temporal resolution have not been fully exploited. Spatio-temporal fusion (STF) takes
into account the spatial resolution and temporal resolution of multi-sensors. Hundreds of
STF methods have been developed for harmonizing satellite imagery with high temporal
resolution but low spatial resolution (coarse imagery) and satellite imagery with high
spatial resolution but low temporal resolution (fine imagery). The existing STF methods
can be categorized as weighting-based, unmixing-based, learning-based, and hybrid [18].
The spatial and temporal adaptive reflectance fusion model (STARFM) and its enhanced
version (ESTARFM) are typical weighting-based methods [19,20]. Fit-FC (regression model
Fitting, spatial Filtering and residual Compensation) is a recently proposed weighting-
based method that is good at predicting strong temporal changes [21]. Unmixing-based
methods, such as the multi-sensor multiresolution technique (MMT) and Unmixing-Based
Data Fusion (UBDF), unmix coarse pixels into high spatial resolution based on the linear
spectral mixing theory [22,23]. Learning-based methods use machine learning algorithms to
learn the relationships between coarse and fine imagery pairs and then predict unobserved
fine imagery [24]. Hybrid methods such as Flexible Spatiotemporal DAta Fusion (FSDAF)
integrate procedures from the above two or three categories [25]. In addition, optimization
frameworks are presented to improve the fusion effect of existing methods [26,27].

Each developed STF approach shows applicability and limitations for a particular
situation, and many studies have compared the typical methods [28–30]. However, how
the existing STF methods perform in UAV and satellite imagery fusion remains unknown.
Furthermore, how to combine the spatial and temporal advantages of UAV and satellite
platforms for agricultural applications remains unexplored.

This research aims to fill this gap by establishing an STF framework of UAV and
satellite imagery for continuous winter wheat growth monitoring. Our overarching goal is
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to exploit the combined advantages of the fixed revisit cycle of the satellite platform and
the high spatial resolution and flexibility of the UAV platform, so as to generate continuous
imagery with high spatial and temporal resolution for precision agricultural monitoring.

The paper is organized around three components. Firstly, the adaptability of four
state-of-the-art STF methods (STARFM, Fit-FC, UBDF, and FSDAF) to the fusion of UAV
and satellite imagery is investigated. Further, an STF framework of UAV and satellite
imagery is constructed according to the characteristics of UAV and satellite platforms, and
daily synthetic datasets with the spatial resolution of UAV imagery are generated. Finally,
the application potential of synthetic imagery for continuous crop growth monitoring
is explored.

2. Materials and Preprocessing
2.1. Study Site

The study site is located in Shijiazhuang Academy of Agriculture and Forestry Sciences
(38◦6′ N, 114◦31′ E) in Hebei province, China (Figure 1). Its annual average temperature
and rainfall are 14.3 ◦C and 500 mm, respectively. The total area of the experimental field
is approximately 120 m × 120 m. The winter wheat was sown on 8 October 2021 and
harvested on 15 June 2022, with a growth period of about 240 days. In particular, the
green-up stage occurred from about late February to early March, the jointing stage lasted
from about mid-March to mid-April, the heading-filling stage ran from about late April to
early May, and the milk stage began from about mid-May to late May.
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Figure 1. Location of the study site (The color map is a Red-Green-Blue band composite of UAV
imagery on 12 April 2022). Reference system is WGS 1984-UTM 50 N. Representation scales are
1:3,350,000 (left) and 1:700 (right).

2.2. Data Sources and Preprocessing

This experiment was conducted from March to June 2022, which covered the main
growth stages of winter wheat. The data sources used in this research contain S2-MSI
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imagery and UAV multispectral imagery. The S2-MSI Level-1C products were freely
downloaded from https://scihub.copernicus.eu/ accessed on 30 June 2022. There was
nine cloud-free S2-MSI images covering this study area on DOY 67, DOY 87, DOY 92, DOY
102, DOY 122, DOY 137, DOY 147, and DOY 152 (Figure 2). The atmospheric correction
was implemented using the Sen2Cor processor (version 2.8). Manual geometric correction
was completed with ground control points (GCPs) in ENVI software. To correspond to the
spectral bands of the UAV data, only the blue, green, red, red-edge (Red-E), and narrow
near-infrared (NIR) bands were considered in STF. To enhance the spatial resolution of
S2-MSI imagery, the Red-E and NIR bands of 20 m were reconstructed using the 10 m bands
to produce 10 m S2-MSI imagery using the SupReME algorithm [31].
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Figure 2. DOYs of UAV and S2-MSI imagery available during the monitoring period.

The UAV imagery was collected from a four-rotor consumer UAV equipped with an
integrated multispectral imaging system (DJI Phantom 4 multispectral). It incorporates
an RGB camera and five multispectral cameras (receiving blue, green, red, Red-E, and
NIR bands) for visible and multispectral imaging, respectively (Table 1). The platform is
equipped with real-time kinematic (RTK) GNSS and flies autonomously using pre-planned
flight missions created with DJI ground station Pro software. A total of four UAV flights
were carried out in the early jointing stage (DOY 87), late jointing stage (DOY 102), heading-
filling stage (DOY 122), and milk stage (DOY 137), respectively. All missions held a planned
flying altitude of 100 m and a constant speed of 5 m/s, resulting in a ground sampling
distance (GSD) of approximately 5 cm/pixel. Successive imagery along the flight lines
was acquired with a forward and side overlap of 80% between 11:00 a.m. and 2:00 p.m. in
clear-sky conditions. The UAV specification and parameters are detailed in Table 2. Prior
to the UAV flights, 12 GCPs were evenly placed in the field using black and white tiles
with a length and width of 1 m, and the location information was obtained with a GPS
system (S-GNSS, China). Also, two standard reflective cloths were laid out for radiometric
correction. The UAV system and ground targets are shown in Figure 3.

Table 1. Band information of UAV and S2-MSI imagery used for STF.

S2-MSI UAV

Band Name ID Central
Wavelength (nm)

Spatial
Resolution (m) ID Central

Wavelength (nm) Spatial Resolution

Blue 2 490 10 1 450 H/18.9
Green 3 560 10 2 560 H/18.9
Red 4 665 10 3 650 H/18.9

Red-E 6 740 20 4 730 H/18.9
NIR 8a 865 20 5 840 H/18.9

https://scihub.copernicus.eu/
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Table 2. UAV specification and parameters.

Parameter Name Parameter Specification

focal length 5.74 mm
camera angle −90◦

altitude 100 m
speed 5 m/s
GSD 5 cm/pixel

forward overlap 80%
side overlap 80%
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UAV imagery preprocessing mainly included image stitching, radiometric correction,
and geometric correction. The imagery collected using UAV was first processed using
the Agisoft Photoscan Professional software. A photogrammetric workflow with default
settings was applied, in turn, for photo addition and alignment, dense point cloud building,
mesh and texture generation, and digital surface model (DSM) and orthomosaic production.
Thus, the orthophoto map with 0.05 m spatial resolution and WGS-84 coordinate system
for each band was obtained.
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In ENVI software, the orthophoto maps of multiple bands were relatively registered
and synthesized to a single image with multiple spectral bands. The radiometric calibration
was performed to convert the image digital numbers (DNs) into surface reflectance using
two standard reflective cloths, with reflectivity of 30% and 70%, respectively. The widely
used linear empirical correction method was used. It calculates a model based on the
relationship between the DNs of the standard reflective cloths and the surface reflectance
within an orthomosaic. Then, the UAV data was reprojected to match the S2A-MSI imagery.
Although the UAV is equipped with RTK, the UAV imagery was further geo-registered
using the 12 GCPs to improve geometric accuracy. The registration error of each band was
less than one UAV pixel (0.05 m) and the average RMS error of the 12 GCPs in each band of
UAV imagery on DOY 102 is presented in Table 3. To eliminate the random error caused
by the reflectance of a single point and to blend with S2-MSI imagery, the UAV data were
resampled to 0.5 m using the average values within a 10 × 10 pixels window.

Table 3. The RMS error in geo-registration of UAV imagery on DOY 102.

Band Name RMS Error (Pixel)

Blue 0.4625
Green 0.5186
Red 0.6547

Red-E 0.5286
NIR 0.4293

3. Methods

The STF framework of UAV and satellite imagery developed in this research involves
four steps (Figure 4). After the UAV and S2-MSI data were resampled to the required
spatial resolution, the UAV data were shifted to register with the S2-MSI imagery to
reduce the influence of registration errors. Then, the relative radiometric normalization
was performed to mitigate their radiometric differences. After this, the UAV and S2-MSI
imagery were blended using existing STF methods for multi-source satellite imagery to
generate the preliminary reflectance predictions. Finally, to further improve the fusion
results, the Consistent Adjustment of the Climatology to Actual Observations (CACAO)
approach was introduced. A phenology model established using the preliminary reflectance
predictions was fitted to the UAV observations, so the daily synthetic UAV-LIKE reflectance
was generated.

3.1. Registration of UAV and Satellite Imagery

The spatial resolution of the S2-MSI imagery is relatively rough compared with the
UAV data. Although the S2-MSI imagery has been manually registered with GCPs, there
are still registration errors among UAV and S2-MSI imagery, which will greatly affect the
fusion accuracy. Especially when the spatial scale of UAV and satellite imagery is large,
the influence of registration error is great [32]. To mitigate the registration error, the UAV
and S2-MSI imagery were co-registered. First, since the pixel of S2-MSI imagery is rough,
and the one-pixel shift will produce a large distance, we shifted the UAV imagery in both
east–west and north–south directions by 0.5 m. Considering that the S2-MSI imagery has
been manually registered, the maximum shift in each direction was set to 2 m (4 UAV
pixels), with a total of 46 shift positions. Then, the UAV data were downsampled to the
same spatial resolution as the S2-MSI imagery using the pixel aggregation method. The
resulting root mean square error (RMSE) values between the corresponding spectral bands
of the downsampled UAV and S2-MSI imagery were then computed. The co-registration
was optimized by minimizing the RMSE between all spectral bands of each image pair.
Finally, the co-registered UAV and satellite images were cropped to cover the same area.
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3.2. Relative Radiometric Normalization

Due to the different spectral response functions of multi-sensors, radiometric incon-
sistency is another major factor affecting the fusion accuracy, especially for UAVs and
satellites with very different sensors, platform heights, and imaging conditions [33]. There-
fore, it is necessary to minimize the radiation differences among multi-source imagery. We
downsampled the UAV imagery to 10 m, comparable to S2-MSI, and established linear
regression models for relative radiometric normalization.

The linear regression model between the downsampled UAV imagery (UAVdown
t0

) and
S2-MSI imagery (St0) at base time t0 was established. A moving window was used to fit
the regression model for each center S2-MSI pixel of each band.

UAVdown
t0

(x, y) =
1
r2 ∑r2

i=1 UAVt0(xi, yi) = a0 × St0(x, y) + b0 + ε0, (1)

where, a0 and b0 are the regression coefficients, r is the spatial scale of UAV and S2-MSI
imagery, and ε0 is the error. There are nw pixels within the local window w× w. The fitting
coefficients (âw

t0
, b̂w

t0
) in the window were obtained using the least square method:

(âw
t0

, b̂w
t0
) = argmin ∑nw

i=1 ||a
w
t0
× Si

t0
(x, y) + bw

t0
−UAVdowni

t0
(x, y)||, (2)

The S2-MSI imagery at t0 was then corrected by the coefficients in the corresponding
window as the normalized imagery (Ŝt0):

Ŝt0(x, y) = â0 × St0(x, y) + b̂0, (3)

The similar S2-MSI imagery (Ss
tp

) at predicted time tp was calculated from the incre-
ment of S2-MSI imagery and used to build the linear relationship with S2-MSI imagery
at tp (Stp ).

Ss
tp
(x, y) = UAVdown

t0
(x, y) + Stp(x, y)− St0(x, y)

= ap × Stp(x, y) + bp + εp,
(4)
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where, ap and bp are regression coefficients and εp is the error. The fitting coefficients
(âw

tp
, b̂w

tp
) in the window can be calculated using the least square method.

Then, the normalized imagery at tp (Ŝtp) was calculated as follows:

Ŝtp(x, y) = âp × Stp(x, y) + b̂p, (5)

A moving window with a radius of 2 S2-MSI pixels was set in this study. After
relative radiometric normalization, the reflectance of UAV and satellite imagery was more
comparable and consistent, which is beneficial to the posterior STF process.

3.3. Preliminary Predictions Using Existing STF Methods

Based on the registered and radiometrically normalized UAV and S2-MSI imagery,
four typical STF methods, including STARFM, Fit-FC, UBDF, and FSDAF, were applied to
generate the preliminary temporal reflectance predictions. The learning-based methods
were not considered, because the pixels of S2-MSI imagery corresponding to the coverage
area of UAV imagery were not enough for model training [34].

There were four UAV and S2-MSI imagery pairs sharing the same date, which were
used as the base imagery pair. The time-series synthetic imagery was predicted from the
adjacent base imagery in front of the predicted dates. In particular, DOY 92 and DOY
102 were predicted from DOY 87, DOY 122 was predicted from DOY 102, DOY 137 was
predicted from DOY 122, and DOY 147, DOY 152, and DOY 157 were predicted from DOY
137. Since no UAV data were available before DOY 67 and DOY 87, the synthetic imagery
for these two dates was backward-predicted from the base imagery on DOY 87 and DOY
102, respectively. Finally, a sequence of UAV-LIKE imagery with the same dates as S2-MSI
imagery was generated.

Referring to relevant studies and our tests, the parameters of the STF methods were
carefully selected [26,30]. For STARFM, the radius of the moving window was set to
15 UAV pixels, the number of categories was set to 5, and the k-means method was used for
classification. For Fit-FC, the window size was set to 5× 5 S2-MSI pixels in regression model
fitting (RF) and 31 × 31 UAV pixels in spatial filtering (SF) and residual compensation
(RC), and the number of similar pixels within each local window was 20. For UBDF, the
window size was set to 9 × 9 S2-MSI pixels, and the classification map of 5 categories was
used. For FSDAF, the window size of 31 × 31 UAV pixels, the similar pixels of 20, and the
classification map of 5 categories were used.

3.4. Reflectance Reconstruction with CACAO

Due to its successful application in STF [35,36], CACAO, a gap-filling and temporal
smoothing method [37], was introduced here for high spatiotemporal reflectance recon-
struction. CACAO minimizes the bias between seasonal phenology models and UAV
observations with temporal constraints. It consists of two steps:

First, the preliminary temporal reflectance predicted with the existing STF methods
was smoothed using the Savitzky–Golay (SG) filtering method [38] to construct the seasonal
phenology models for each pixel of each band. SG smoothed the reflectance sequence
by fitting a low-degree polynomial within a temporal window. Referring to our tests,
a 2-degree polynomial and a temporal window with a width of 17 days were set.

Then, the seasonal phenology model of each pixel was fitted to actual UAV observa-
tions one by one. It was scaled and shifted to minimize the RMSE with the UAV data:

arg min
scale,shi f t

√
1
n ∑n

i=1

(
RUAV(ti)− scale× Rpm(ti + shi f t)

)2, (6)

where RUAV and Rpm denote reflectance data of the UAV imagery and phenology model,
respectively. n is the available number of UAV images (here, n = 4), and ti denotes the
time in DOYs. scale and shi f t are the parameters used for phenological model adjustment.
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The synthetic UAV-LIKE imagery at arbitrary dates can be calculated from the phenology
model to generate the continuous daily dataset.

In this study, the four existing STF methods were compared for UAV and satellite
imagery fusion. The most suitable method was identified and coupled with CACAO,
producing a CA-STF method. Thus, the preliminary reflectance predictions were con-
sistently adjusted to reconstruct more accurate time-series reflectance data with UAV
spatial resolution.

3.5. Accuracy Assessment of the STF Framework

The assessment of the STF framework contains two aspects: the accuracy assessment
of the reflectance predictions and the application potential of the STF framework for
time-series growth monitoring. To assess the all-around performances of the STF methods,
a novel assessment framework proposed by Zhu et al. was introduced [39]. It quantitatively
assesses both spectral and spatial fusion accuracy with less information redundancy. There
are four accuracy metrics, including RMSE, average difference (AD), Robert’s edge (EDGE),
and local binary pattern (LBP), in the assessment framework. The metrics range from
−1 to 1 except RMSE, which ranges from 0 to 1. Negative values mean underestimation,
positive values indicate overestimation, and values closer to 0 indicate smaller spectral
and spatial errors. In addition, we observed the false color composition of the synthetic
UAV-LIKE imagery to check the spatial details and displayed the density scatterplots of
reflectance for each band with linear fit equations. According to the available dates of UAV
and satellite imagery, DOY 102, DOY 122, and DOY 137 were selected as the validation
dates. A leave-one-date-out cross validation was conducted, and the verification date was
not involved in STF.

Further, to evaluate the application potential of the STF framework for time-series
growth monitoring, the vegetation indices (VIs) computed from synthetic UAV-LIKE and
actual UAV imagery were compared. The widely used Normalized Difference Vegetation
Index (NDVI) [40] and Enhanced Vegetation Index 2 (EVI2) [41] were selected. The VI
values within a 2 × 2 pixels window were averaged to alleviate the potential for sampling
errors. We analyzed the consistency of seasonal VIs of three plots randomly selected from
the study site. Further, the absolute errors of VIs on DOY 102 were visualized to observe
the spatial error distribution. The code and software settings in the spatio-temporal fusion
framework are presented in Table A1 (Appendix A).

4. Results
4.1. Fusion Accuracy Evaluation of Different STF Methods
4.1.1. Quantitative Evaluation

The spectral and spatial metrics (AD, RMSE, EDGE, LBP) between the actual UAV
observations and the synthetic UAV-LIKE imagery generated using various STF methods
on the three validation dates are shown in Figure 5. Except for UBDF, the other three
existing STF methods do not show a significant difference in spectral metrics. However, the
spatial predictions of all four existing STF methods are generally poor, especially for the
edge features, which are underestimated (EDGE values are negative). Specifically, UBDF
produces significantly larger spectral and spatial errors than other methods. Especially for
spatial metrics, all LBP values are negative, and the largest error is −0.3861 (NIR band on
DOY 137), which is nearly 17 times higher than FSDAF (−0.0228). It indicates that UBDF
is not competent in predicting textural features. Although Fit-FC provides better spectral
predictions than UBDF, its spatial predictions are also poor, and the EDGE metrics are even
worse than UBDF, reaching a maximum of −0.5528 (Red-E band on DOY 122). Compared
with UBDF and Fit-FC, STARFM and FSDAF improve the spectral and spatial predictions;
the spatial features especially are obviously improved. The quantitative prediction accuracy
of the two methods is similar; STARFM performs slightly better in spectral prediction,
while FSDAF performs marginally better in spatial prediction. Considering the running
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time of the methods, STARFM was regarded as a relatively competent method to fuse UAV
and S2-MSI imagery among the four tested existing STF methods in this research.
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Combining STARFM with CACAO to generate the CA-STARFM method, the predic-
tion ability of CA-STARFM was investigated. The quantitative metrics are also shown in
Figure 5. It is obvious that CA-STARFM presents excellent predictions for both spectral
and spatial features. Especially for edge features, CA-STARFM shows significant improve-
ment. Compared with STARFM, the absolute values of AD and RMSE of CA-STARFM
decrease by 0.0206 (Red-E band on DOY 137) and 0.0365 (red band on DOY 137) at the
maximum, respectively. The absolute values of EDGE and LBP decrease by a maximum of
0.2513 (Red-E band on DOY122) and 0.1065 (red band on DOY 137), respectively. The
fusion accuracy for Red-E and NIR bands is slightly worse than that of the blue, green,
and red bands, which may be related to the difference in band settings between UAV and
S2-MSI sensors (Table 1).

4.1.2. Visual Assessments

To investigate the spatial details of the synthetic UAV-LIKE imagery, the NIR-Red-
Green band composite on DOY 102 is shown in Figure 6. In general, UBDF and Fit-FC lead
to severe blurring effects, while other methods generate synthetic imagery closer to actual
observations. Specifically, the UBDF predictions result in large errors in spectral color,
spatial boundary, and texture. The Fit-FC predictions are similar to actual observations in
spectral color, but the spatial boundary is significantly smoothed, which is also reflected
by the negative EDGE metrics (Figure 5). The imagery predicted with STARFM and
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FSDAF are barely distinguishable, and the quantitative metrics are close. Comparing
CA-STARFM with STARFM and FSDAF, in the top right square box, it is observed that
CA-STARFM performs significantly better than STARFM and FSDAF in predicting ground
object boundaries. A close inspection of the rectangle in the bottom left corner reveals that
CA-STARFM captures the detail features of the object boundaries better. The bottom right
ellipse also shows that CA-STARFM is competent in predicting spatial textures. Therefore,
CA-STARFM is more capable of capturing the spatial boundary and texture of non-planting
areas. For planting areas, the spectral color of CA-STARFM predictions is more accurate,
but it is difficult to observe the spatial differences between CA-STARFM, STARFM, and
FSDAF visually.
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4.1.3. Scatter Plots of Reflectance

To further observe the dispersion of the reflectance predictions, taking DOY 102 as
an example, the density scatterplots between actual the UAV observations and the predic-
tions provided by STARFM and CA-STARFM are shown in Figure 7. The linear fit equation
and correlation coefficient (r) for each band are displayed. It is observed that CA-STRAFM
predicts high-density points distributed along the 1:1 line. Better fitting coefficients and
higher r values are obtained for each band, especially for the blue, green, and red bands,
with r higher than 0.95. A large number of outliers predicted by STARFM are adjusted by
CA-STARFM, and the most apparent improvement is observed in the Red-E band, where
the slope and r increase by nearly 0.36 and 0.43, respectively. Therefore, CA-STARFM
achieves a better match with actual UAV observations than STARFM, which is also reflected
in the quantitative metrics (Figure 5). However, the relatively poor performance of the NIR
band deserves further exploration.
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4.2. Accuracy Analysis of VIs Generated from CA-STARFM Blended Imagery
4.2.1. Seasonal Variation in VIs

The introduction of the CACAO method makes it possible to generate imagery at
arbitrary dates during the monitoring period, and the dense temporal data are particularly
suitable for continuous vegetation monitoring. Three plots were randomly selected to
explore the seasonal variation in NDVI and EVI2 generated from the STARFM and CA-
STARFM blended imagery, and their differences from the actual UAV observations are
shown in Figure 8. CACAO shifted the sequence preliminary predictions to adjust and
optimize the predictions. In this study, the shift was set to a maximum of 10 days, so the
time-series data generated with CA-STARFM were from DOY 77 to DOY 147. It is observed
that both NDVI and EVI2 describe crop growth trends well. From the early jointing stage
on DOY 77, leaves, stems, roots, ears, and other organs of winter wheat grow rapidly at
the same time, and NDVI and EVI2 show a rapid increasing trend. Around the end of the
jointing stage on DOY 114, which is the most vigorous stage, NDVI and EVI2 reach a peak.
Then entering the heading-filling stage, winter wheat begins to age gradually, and NDVI
and EVI2 show a declining trend. After about DOY 140, wheat ears and leaves turn yellow,
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and NDVI and EVI decrease rapidly. In general, the synthetic time-series VIs of SATRFM
and CA-STARFM are consistent with the UAV observations, except on DOY 87when they
were subject to a slightly larger overestimation. Moreover, the synthetic VIs of CA-STARFM
are closer to UAV observations with smaller deviation and continuous temporal resolution.
This indicates that CA-STARFM is competent to monitor winter wheat seasonal dynamics
more accurately and intensively than the tested existing STF methods.

Drones 2023, 6, x FOR PEER REVIEW 14 of 19 
 

peak. Then entering the heading-filling stage, winter wheat begins to age gradually, and 
NDVI and EVI2 show a declining trend. After about DOY 140, wheat ears and leaves turn 
yellow, and NDVI and EVI decrease rapidly. In general, the synthetic time-series VIs of 
SATRFM and CA-STARFM are consistent with the UAV observations, except on DOY 
87when they were subject to a slightly larger overestimation. Moreover, the synthetic VIs 
of CA-STARFM are closer to UAV observations with smaller deviation and continuous 
temporal resolution. This indicates that CA-STARFM is competent to monitor winter 
wheat seasonal dynamics more accurately and intensively than the tested existing STF 
methods. 

 
Figure 8. Seasonal dynamic monitoring of observed and synthetic VIs for three random plots. (a) 
NDVI, (b) EVI2. 

4.2.2. Spatial Distribution of Absolute Error of VIs 
To further observe the spatial error distribution of the synthetic VIs, Figure 9 visual-

izes the absolute error of NDVI and EVI2 on DOY 102 and their probability density dis-
tribution. In Figure 9, the first row displays the VI error analysis of STARFM, and the 
second row shows the VI error analysis of CA-STARFM. It is obvious that the VI error of 
CA-STARFM is significantly reduced. Overall, the VI residual distributions of STARFM 
and CA-STARFM show peak shapes centered at 0 without significant bias, but those of 
CA-STARFM are more evenly distributed with a small range of variation. The pixels with 
large errors are generally the boundaries between winter wheat and bare soil, and most 
of the pixels are overestimated. The winter wheat pixels show much better predictions. 
Moreover, EVI2 produces fewer outliers with lower values than NDVI. Therefore, the er-
ror analysis confirms that the synthetic VIs of CA-STARFM are in good agreement with 
the observed values, and EVI2 is more robust than NDVI. 

Figure 8. Seasonal dynamic monitoring of observed and synthetic VIs for three random plots.
(a) NDVI, (b) EVI2.

4.2.2. Spatial Distribution of Absolute Error of VIs

To further observe the spatial error distribution of the synthetic VIs, Figure 9 visualizes
the absolute error of NDVI and EVI2 on DOY 102 and their probability density distribution.
In Figure 9, the first row displays the VI error analysis of STARFM, and the second row
shows the VI error analysis of CA-STARFM. It is obvious that the VI error of CA-STARFM
is significantly reduced. Overall, the VI residual distributions of STARFM and CA-STARFM
show peak shapes centered at 0 without significant bias, but those of CA-STARFM are
more evenly distributed with a small range of variation. The pixels with large errors
are generally the boundaries between winter wheat and bare soil, and most of the pixels
are overestimated. The winter wheat pixels show much better predictions. Moreover,
EVI2 produces fewer outliers with lower values than NDVI. Therefore, the error analysis
confirms that the synthetic VIs of CA-STARFM are in good agreement with the observed
values, and EVI2 is more robust than NDVI.
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5. Discussion
5.1. Analysis of the STF of UAV and Satellite Imagery

The STF of multi-source satellite imagery has been focused on for a long time, and the
fusion methods are basically mature. However, the quantitative agricultural application
of UAV technology has rapidly expanded only in recent years, and the integration of
UAV and satellite is just developing. Rare studies have explored the STF of UAV and
satellite imagery. There are considerable differences in spatial resolution, sensor design,
and imaging conditions between UAV and satellite platforms, so the satellite-to-satellite
STF methods cannot be directly applied to the STF of UAV and satellite imagery. In this
study, the S2-MSI imagery was reconstructed at a spatial resolution of 10 m with SupReME
to reduce the spatial ratio between UAV and satellite imagery. Since SupReME has been
verified to well maintain the spectral and spatial consistency of S2-MSI imagery [31,42], we
did not display the verification again. Then a relative radiometric normalization method
was applied to mitigate the influence of sensor design. However, the relationship was
simply assumed to be linear, and a better radiometric correction method will help improve
imagery consistency. We tested four widely used existing STF methods for UAV–satellite
fusion, but all of them were found to produce large fusion errors. Therefore, the CACAO
method was further introduced to adjust the preliminary predictions, which significantly
improved the spectral accuracy and spatial texture features.

CACAO aims to reduce the temporal noise of phenological models to approximate
UAV observations. At least two imagery pairs on the base dates are required, and more fine
imagery contributes to capturing the temporal and spatial changes. Due to the flexibility of
UAV platforms, it is not difficult to obtain more than two UAV images in a crop growing
season. Therefore, the STF framework proposed in this research has great potential for
UAV and satellite imagery fusion. In addition, the phenological model constructed using



Drones 2023, 7, 23 15 of 18

preliminary predictions plays a critical role in the STF framework, and more competent
STF methods are worth exploring in subsequent research.

5.2. Application Potential of Time-Series Growth Monitoring

Previous studies have exhibited the applicability and great potential of STF of multi-
source satellite imagery for continuous crop growth monitoring [43,44]. However, the
temporal frequency of synthetic imagery generated using the existing STF methods de-
pends on the available dates of coarse imagery. The demand for growth monitoring with
subweekly frequency, which is the international consensus [45], is still hard to meet due
to the influence of weather conditions. The particular advantage of the STF framework
proposed in this study is that the discontinuous raw data can be fused to generate daily
time-series data. As long as the adjustment coefficients are calculated, synthetic imagery
at an arbitrary date with high spatial resolution (here, 0.5 m) can be generated quickly.
Therefore, the new STF framework is especially suitable for the application of time-series
continuous data with high spatial resolution, such as the seasonal dynamic monitoring of
crop growth. We verified the application potential of the STF framework for vegetation
growth monitoring by considering the temporal variation in VIs and the spatial distribution
of their errors. Although the synthetic VIs conform to the observations, there are still
underestimates or overestimates. The predictions on a specific date are usually similar to
the base imagery. DOY 102, DOY 122, and DOY 137 were forward-predicted using the
base imagery pair in front of them. Thus, DOY 102 and DOY 122 were underestimated
with wheat growing, while DOY 137 was overestimated with wheat aging. DOY 87 was
backward-predicted using the base imagery pair on DOY 102, so it was overestimated.
Perhaps because of the different prediction direction of DOY 87, the variation was slightly
larger than that of other dates.

The four existing STF methods tested here performed poorly for the boundary predic-
tions. The new STF framework greatly improved boundary predictions, but there was still
a significant gap between heterogeneous regions and homogeneous regions. Delineating
boundary changes is extremely difficult, because the boundaries are not characterizable in
any of the coarse pixels, and the information on boundary changes is usually not captured
by the available fine pixels. However, it is observed that EVI2 presents less variation than
NDVI and is more stable. The calculation of EVI2 introduces the parameters for back-
ground adjustment and atmospheric correction on the basis of NDVI, which can reduce
the influence of atmospheric and soil noise and make it more robust. Our results suggest
that the STF framework developed in this research has potential for blending UAV and
satellite imagery, and is beneficial for monitoring phenological change during crop growth
intensively and at low cost. However, it is still challenging to predict the shape or boundary
changes of objects. In addition, this study only verified the variation in VIs of the synthetic
imagery during one growth cycle. The exploration of harmonizing UAV and satellite
imagery for quantitative inversion will be focused on in the future, and the verification of
more growth cycles is needed.

6. Conclusions

This research presents an attempt at STF of UAV and satellite imagery. Considering the
difference between UAV and satellite platforms, an STF framework for UAV and satellite
imagery is proposed based on the existing STF methods, and its application potential for
growth monitoring is further explored. The qualitative and quantitative results show that
four tested methods covering spatial unmixing, spatial weighting, and hybrid methods
fail to provide accurate predictions. STARFM and FSDAF perform better than UBDF and
Fit-FC, but the spatial details are still poorly predicted. Considering the runtime and
accuracy, STARFM was identified as more suitable than the other three methods to combine
with CACAO, producing CA-STARFM. CA-STARFM significantly improves the spectral
and spatial fusion effect at daily temporal resolution, especially for object boundary and
spatial texture, with the absolute values of EDGE and LBP decreasing by a maximum of
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more than 0.25 and 0.10, respectively. Further, the STF framework is competent to describe
the seasonal dynamics of winter wheat, the synthesized VIs are consistent with the UAV
observations, and the outliers are mainly distributed at the boundary of objects. Therefore,
the delineating of boundary changes should be focused on further. This study suggests
that the STF of UAV and satellite imagery is promising. The proposed STF framework has
excellent potential for harmonizing UAV and satellite imagery to monitor crop growth
intensively and in greater detail.
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Appendix A

Table A1. Code and software settings.

Procedure Content Parameter Software

imagery consistency
processing

geo-registration shift by 0.5 m, maximum 2 m. Matlab
radiometric normalization 2 × 2 S2-MSI pixels moving window Matlab

preliminary predictions
using existing

STF
methods

Method Number of
Classes

Moving Window
Size

Number of
Similar Pixels software

STARFM 5 31 × 31 UAV pixels N/A IDL
UBDF 5 9 × 9 S2-MSI pixels N/A IDL

Fit-FC N/A

2 × 2 S2-MSI pixels
in RM

31 × 31 UAV pixels
in SF and RC

20 Matlab

FSDAF 5 31 × 31 UAV pixels 20 IDL

reconstruction with
CACAO CACAO

2-degree polynomial and 17-day temporal window in
S-G filtering;

3 UAV imagery and a maximum shift of 10 days in
model fitting.

Matlab

accuracy assessment framework proposed by
Zhu [39]. N/A IDL
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