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Abstract: Trajectory planning and obstacle avoidance play essential roles in the cooperative flight of
multiple unmanned aerial vehicles (UAVs). In this paper, a unified framework for onboard distributed
trajectory planning is proposed, which takes full advantage of intelligent discrete and continuous
search algorithms. Firstly, the Monte Carlo tree search (MCTS) is used as the task allocation algorithm
to solve the cooperative obstacle avoidance problem. Taking the task allocation decisions as the
constraint, knowledge-based particle swarm optimization (Know-PSO) is used as the optimization
algorithm to solve the onboard distributed cooperative trajectory planning problem. Simulation
results demonstrate that the proposed intelligent MCTS-PSO search framework is effective and
flexible for multiple UAVs to conduct the cooperative trajectory planning and obstacle avoidance.
Further, it has been applied in practical experiments and achieved promising results.

Keywords: multiple UAVs; trajectory planning; task allocation; obstacle avoidance; intelligent search;
Monte Carlo tree search; knowledge-based particle swarm optimization

1. Introduction

Unmanned aerial vehicles (UAVs) have been extensively used in many areas, such
as surveying [1–4], military surveillance [5–8], disaster rescue [9,10], etc. Although a
single UAV can conduct the above-mentioned tasks, some disadvantages, including energy
and others, have placed severe limitations on its applications. That is the reason why
cooperative multiple UAVs have been further developed and utilized, which can overcome
the disadvantages of single UAVs and accomplish tasks more robustly and intelligently
with less time consumption [11].

Trajectory planning plays an essential role in the cooperative flight of multiple UAVs,
which can be seen as continuous search algorithms mathematically. Commonly with some
environmental constraints and UAVs’ own constraints, the trajectories that minimize the
cost function are seen as the best ones. Trajectory planning has been widely researched
for many years, and two classes of trajectory planning methods have been developed.
The first one is those traditional algorithms, including dynamic planning, the Voronoi
diagram [12,13], the Dijkstra algorithm [14,15], and the A* algorithm [16]. The other class is
swarm intelligence algorithms, such as the artificial bee colony (ABC) algorithm [17], the ant
colony optimization (ACO) algorithm [18], and especially, the particle swarm optimization
(PSO) algorithm [19–21]. In the literature [22], the trajectories of multiple UAVs were firstly
given out by an offline simulation software program and saved in a text file. Then, the
trajectories of all UAVs were transferred into the ground station software and displayed on
a map. Finally, the trajectories were downloaded to the UAVs through the ground stations,
and the UAVs completed the flight. The offline operation as in the literature [22] is now the
mainstream execution style for cooperative trajectory planning.

Obstacle avoidance plays another essential role in the cooperative flight of multiple
UAVs, for which the artificial potential field (APF) method is widely used [23,24]. To some
extent, cooperative obstacle avoidance of multiple UAVs can be seen as a task allocation
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problem [25], in which multiple UAVs have to choose one side or the other to pass through
the threat area. The Hungarian algorithm [22] and the auction algorithm [26,27] are two
mainstream algorithms for the task allocation of multiple UAVs. In the literature [28], a
two-step auction mechanism was first proposed to select the optimal action. Then, an
obstacle avoidance mechanism was designed by defining several heuristic rules. Finally,
a reverse auction mechanism was developed to balance the workload between multiple
UAVs.

Although a large amount of effort has been devoted to addressing the trajectory
planning and task allocation problems for multiple UAVs, there is still some room for
further improvement. For instance, traditional task allocation algorithms often require
that the input dimension must be equal to the output dimension, namely, the allocation
matrix has identical row and column numbers, which severely restricts the application
for more general task allocation problems. In addition, the efficiency and effectiveness of
trajectory planning algorithms for multiple UAVs are not satisfactory in some circumstances.
Meanwhile, the trajectory planning and task allocation for multiple UAVs are conducted
offline in some literature, which cannot meet the requirements in complex and intense
environments, where multiple UAVs must respond to commands rationally and quickly.

Taking the abovementioned issues into consideration, a unified framework for onboard
distributed trajectory planning is proposed in this paper, which takes full advantage of
intelligent discrete and continuous search algorithms. The main contributions of this paper
are as follows:

(1) The Monte Carlo tree search (MCTS) is used as a task allocation algorithm to conduct
obstacle avoidance, which does not require the equality of the row and column
numbers of the allocation matrix. Further, the obstacle avoidance for multiple UAVs
takes the energy constraint into account.

(2) Knowledge-based particle swarm optimization (Know-PSO) is used as the optimiza-
tion algorithm to solve the onboard distributed cooperative trajectory planning prob-
lem, in which the motion energies of a few good particles are used to improve the
velocities of those bad particles, and the information of the individual worst particles
and global worst particle are also used. Furthermore, the interaction among multiple
UAVs is utilized to avoid conflicts.

(3) The decisions of MCTS are taken as constraints for Know-PSO to form a unified
framework for onboard distributed trajectory planning.

(4) The method proposed in this paper has been verified by actual flights and achieved
good practical results.

The remainder of this paper is organized as follows: Section 2 formulates the trajectory
planning and obstacle avoidance problem. Section 3 presents the proposed intelligent
MCTS-PSO search framework. In Section 4, a series of simulations and actual experiments
were conducted to evaluate the performance of MCTS-PSO. Finally, Section 5 concludes the
paper and presents the future direction for the next work.

2. Mathematical Model

Cooperative trajectory planning driven by obstacle avoidance for multiple UAVs can
be presented in the following mathematical models:

(1) Task allocation to obstacle avoidance: As shown in Figure 1, m UAVs are configured
to go to the target area to conduct some important operations, in which the threat
area must be avoided. Regarding each UAV, there are two choices for it to avoid the
threat area, going through one side of the threat area or the other. Consequently, the
cooperative obstacle avoidance problem can be translated into the task allocation
problem, for which there are m decisions that have to be made. Generally, suppose
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there are n choices for each UAV, then the mathematical model for task allocation is as
below:

max
n
∑

j=1
wj[1−

m
∏
i=1

(1− eij)
xij ]

s.t.


n
∑

j=1
xij = 1, i = 1, 2, . . . , m

xij = 0 or 1, i = 1, 2, . . . , m, j = 1, 2, . . . n

(1)

where wj is the threat value of j choice, eij is the capacity evaluation of the i UAV to
pass through the j choice and can be seen as the energy constraints, xij is the final
decision, whether the i UAV passes through the j choice or not. The MCTS is used to
solve the model to obtain xij. All xij compose the task allocation matrix, which is a 0–1
matrix and has m rows and n columns. Each row has only one, which means that the
corresponding UAV can only make one choice.

(2) Cooperative trajectory planning driven by obstacle avoidance: The goal of cooperative
trajectory planning is to minimize the total distances of m UAVs from the start area to
the target area; in the meantime, m UAVs must avoid the threat area and not collide
with each other. The mathematical model is as below:

min
m
∑

i=1

n
∑

j=1
lijxij

s.t.
{

dmi,k > ds, i, k = 1, 2, . . . , m, i 6= k
xij = 0 or 1, i = 1, 2, . . . , m, j = 1, 2, . . . n

(2)

where lij is the length of a trajectory that the i UAV pass through the j choice, dmi,k
is the margin distance between trajectories of two different UAVs, and ds is the safe
distance between two adjacent UAVs. xij is the final decision, whether the i UAV
passes through the j choice or not as in formula (1), which is solved by the MCTS
method.
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3. MCTS-PSO Framework for Onboard Distributed Trajectory Planning

In this section, we elaborate on the cooperative trajectory planning driven by obstacle
avoidance, which can be conducted in an onboard distributed mode. Firstly, MCTS is used
as a task allocation algorithm to conduct obstacle avoidance, taking the energy constraint
into consideration; secondly, the decisions of MCTS are taken as constraints for Know-PSO
to conduct onboard distributed trajectory planning for multiple UAVs. The schematic
diagram of the MCTS-PSO framework is shown in Figure 2, and the Pseudo-code of the
MCTS-PSO Algorithm 1 is:

Algorithm 1: MCTS-PSO framework

Input: UAVs number m,
choices number n,
start position Ps and target position Pt,
Threat area center Pc and radius r,
the safe distance ds,

Output: best trajectories
1: for i← 1 to m do
2: for j← 1 to n do
3: Evaluate the threat values wj;
4: Evaluate the capacity values eij;
5: end for
6: end for
7: Use MCTS to solve formula (1) to get decisions xij;
8: Use Know-PSO to generate a trajectory for one UAV i;
9: for k← 1 to m do
10: if k == i
11: continue;
12: else
13: Use Know-PSO to generate a trajectory for UAV k with ds;
14: Check whether dmi,k is larger than ds or not;
15: end if
16: end for
17: Return m best trajectories;

The resulting m best trajectories obtained after the above steps is the optimal
solution for onboard distributed cooperative trajectory planning;

end
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3.1. MCTS Task Allocation for Multiple UAVs

Task allocation plays an essential role in the cooperative flight of multiple UAVs.
In this paper, MCTS, as an intelligent discrete search algorithm, is used to conduct task
allocation. MCTS does not require the equality of the row and column numbers of the
allocation matrix, beyond the traditional mainstream Hungarian algorithm and auction
algorithm. The flow chart of MCTS task allocation is shown in Figure 3, whose specific
steps are presented as follows:
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Step 1: Input UAV number, choices number, threat values, UAV capacities, and iteration
number. The UAV capacities can be seen as the energy constraints:

eij =
1

α ∗ dist(UAVi, choicej)
(3)

where α is the energy coefficient.
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Step 2: Construct a new search tree and initialize the root node.
Step 3: Iterate the search tree until the iteration number:

(1) Select the best child layer by layer to find a leaf node;
(2) Expand the tree from the leaf node;
(3) Conduct the default policy;
(4) Back up the score and update nodes’ attributes.
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Step 4: Update the allocation matrix.
Step 5: Repeat steps 2–4 for all UAVs.

The resulting 0–1 matrix obtained after the above steps is the optimal solution for
multiple UAV task allocation problems.

Pseudo-code of the MCTS task allocation Algorithm 2 is:

Algorithm 2: MCTS task allocation

Input: UAVs number m,
choices number n,
threat values w,
capacities e,
IterNum,

Output: Allocation matrix AlloMx
1: for i← 1 to m do
2: Create a new tree with root node and initialize root:
3: root.N ← 0 , root.Q← 0 ;
4: for j← 1 to IterNum do
5: node p← root ;
6: AlloMx_copy← AlloMx ;
7: i_temp← i ;
8: while(True)
9: if p is leaf
10: break;
11: end if
12: find the best child of p and its index ind;
13: p← best child o f p ;
14: AlloMx_copy[i_temp][ind]← 1 ;
15: i_temp← i_temp + 1 ;
16: end while
17: if i_temp ∼= m
18: Expand the node p;
19: end if
20: Conduct the default policy for AlloMx_copy and get the score;
21: Back up the score;
22: end for
23: find the best child of root and its index ind_best;
24: AlloMx[i][ind_best]← 1 ;
25: end for
26: Return AlloMx;

The resulting 0–1 matrix obtained after the above steps is the optimal solution for
task allocation;

end

3.2. Onboard Distributed Cooperative Trajectory Planning for Multiple UAVs

Trajectory planning plays another essential role in the cooperative flight of multiple
UAVs. PSO, as an intelligent continuous search algorithm, has been widely used to conduct
trajectory planning. Nevertheless, the standard PSO algorithm has some limitations such
as premature convergence. In this paper, knowledge-based particle swarm optimization
(Know-PSO) is proposed as the optimization algorithm to solve the onboard distributed
cooperative trajectory planning problem, in which the motion energies of a few good
particles are used to improve the velocities of those bad particles, and the information
of the individual worst particles and global worst particle is also used. Furthermore, the
interaction among multiple UAVs is utilized to avoid conflicts.
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The well-known standard PSO algorithm is{
Vk+1

i = ωVk
i + c1r1(pk

best,i − xk
i ) + c2r2(gk

best − xk
i )

xk+1
i = xk

i + Vk+1
i

(4)

Practically, it has been found that the information of individual worst particles and global
worst particle are also beneficial, which are introduced as

Vk+1
i = ωVk

i + c1r1(pk
best,i − xk

i ) + c2r2(gk
best − xk

i )

−c3r3(pk
worst,i − xk

i )− c4r4(gk
worst − xk

i )

xk+1
i = xk

i + Vk+1
i

(5)

Further, the motion energies of a few good particles are used to improve the velocities of
those bad particles, which is defined as

Ek,m1 =
m1

∑
i=1

(Vk
i )

T
(Vk

i ) (6)

The energy loss is
∆Ek,m1 = Ek,m1 − Ek−1,m1 (7)

Consequently, the updated equation for bad particles is
Vk+1

i = ωVk
i + c1r1(pk

best,i − xk
i ) + c2r2(gk

best − xk
i )

−c3r3(pk
worst,i − xk

i )− c4r4(gk
worst − xk

i ) + ∆Ek,m1 /m1

xk+1
i = xk

i + Vk+1
i

(8)

The decisions of MCTS are taken as constraints for Know-PSO to form a unified
framework for onboard distributed trajectory planning. Specifically,

cost(xij) =

{
0, xij = 1
1000, xij 6= 0

(9)

The flow chart of Know-PSO for onboard distributed cooperative trajectory planning
is shown in Figure 4, whose specific steps are presented as follows:

Step 1: Input particle number, point number, start position and target position, threat area
center and radius, task allocation matrix, iteration number, UAV number, the safe
distance, and the max velocity.

Step 2: Initialize the particles and best values.
Step 3: Iterate the particles until the iteration number:

(1) Compute the cost of particles;
(2) Update the best values;
(3) Update the velocities;
(4) Update the particles.

Step 4: Generate one best trajectory.
Step 5: Repeat steps 2–4 for all UAVs considering the safe distance between them.

The resulting best trajectories obtained after the above steps is the optimal solution for
onboard distributed cooperative trajectory planning.
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Algorithm 3: Onboard distributed cooperative trajectory planning

Input: particle number mp,
point number n,
start position PS and target position Pt,
Threat area center Pc and radius r,
AlloMx,
IterNum,
UAVs number m,
the safe distance ds,
Vmax,

Output: best trajectories
1: particles← rand(mp, n) ;
2: particlesBest← zeros(mp, n) ;
3: globalBest← zeros(1, n) ;
4: particlesV ← rand(mp, n) ∗ 2Vmax −Vmax
5: for iter ← 1 to IterNum do
6: for i← 1 to mp do
7: Compute the cost of particles[i, :] with decision AlloMx and Pc, r;
8: if cost is descending
9: particlesBest[i, :]← particles[i, :] ;
10: globalBest← particles[i, :] ;
11: end if
12: for j← 1 to n do
13: Update particlesV[i, j] according Formulas (5) and (8);
14: Adjust particlesV[i, j] into [−Vmax, Vmax];
15: particles[i, j]← particles[i, j] + particlesV[i, j] ;
16: end for
17: end for
18: end for
19: Here, we got the best trajectory for one UAV.
20: for i← 2 to m do
21: Repeat 1~21 considering the safe distance ds;
22: end for
23: Return m best trajectories;

The resulting m best trajectories obtained after the above steps is the optimal
solution for onboard distributed cooperative trajectory planning;

end

4. Experiments and Analysis

This section demonstrates the performance of the MCTS-PSO framework by conduct-
ing a series of experiments.

A cooperative processor was deployed for each UAV. The processor had a four-
core CPU, whose main frequency was 1.5G Hz and AI computational power was 20
TOPS(int8).

The experiments were all conducted in open environments, including plains and
mountainous areas. The environmental temperature was generally higher than −20 ◦C.

Wind has a very important influence on flight in open environments. According to all
experiments, UAVs could be controlled stably if the wind velocity was smaller than 15 m/s;
otherwise, there would be some accidents.

Firstly, a flight of two drones was conducted, whose trajectories were shown in Figure 5,
of which the red circle was a threat area. It can be seen that the two drones avoided the
threat area successfully and passed it by one side, respectively. The task allocation matrix
of them was shown in Table 1.
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Table 1. Task allocation matrix for two drones in Figure 5.

Top Channel Bottom Channel

UAV1 1 0
UAV2 0 1

Secondly, a flight of three drones was conducted, whose trajectories were shown in
Figure 6, of which the red circle was a threat area. It can be seen that the three drones
avoided the threat area successfully. The task allocation matrix of them was shown in
Table 2.

Thirdly, a flight of four drones was conducted in another environment, whose trajecto-
ries were shown in Figure 7, of which the red circle was a threat area. It can be seen that the
four drones avoided the threat area successfully. The task allocation matrix of them was
shown in Table 3.
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Table 2. Task allocation matrix for three drones in Figure 6.

Top Channel Bottom Channel

UAV1 1 0
UAV2 0 1
UAV3 0 1

Drones 2023, 7, x FOR PEER REVIEW 12 of 15 
 

 

Figure 6. MCTS-PSO framework for three drones. 

Table 2. Task allocation matrix for three drones in Figure 6. 

 Top Channel Bottom Channel 
UAV1 1 0 
UAV2 0 1  
UAV3 0 1 

 
Figure 7. MCTS-PSO framework for four drones. 

Table 3. Task allocation matrix for four drones in Figure 7. 

 Top Channel Bottom Channel 
UAV1 1 0 
UAV2 1 0  

Figure 7. MCTS-PSO framework for four drones.

Table 3. Task allocation matrix for four drones in Figure 7.

Top Channel Bottom Channel

UAV1 1 0
UAV2 1 0
UAV3 0 1
UAV4 0 1

It was shown in these experiments, when the number of UAVs changed, the trajectories
were slightly adjusted automatically. For example, comparing Figures 5 and 6, when the
green UAV joined in, the trajectory of the yellow UAV was automatically adjusted to leave
some space for the green one. This reflected the intelligent onboard adjustment ability of
the algorithm.

Cooperative flight in an open environment was shown in Figure 8, in which five
quadcopters were used. It must be noted that the MCTS-PSO framework can also be
applied to other kinds of UAVs, such as fixed-wing UAVs.
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The further computational time of the proposed distributed framework and common
centralized framework were shown in Table 4.

Table 4. Computational time.

Distributed Framework Centralized Framework

2 UAVs 0.72s 2.2s
3 UAVs 0.73s 3.1s
4 UAVs 0.73s 4.2s

It is quite clear that the proposed distributed framework was more efficient than a
common centralized framework, especially when there were more UAVs, because each
UAV planned its trajectory using its own processor.

The distance between the start area and the target area was about 1.4 Km. Note that the
start area was where the proposed distributed framework conducted cooperative trajectory
planning, not the location where the UAVs were launched. The total distances were shown
in Table 5.

Table 5. Total distances.

Total Distances

2 UAVs 3.2 Km
3 UAVs 4.9 Km
4 UAVs 6.6 Km

In open environments, other factors could also influence the real flight trajectories,
such as maneuverability, wind, etc. Moreover, PSO variants could not always generate the
best trajectories. These were the reasons why the trajectories in Figures 5–7 were not very
close to the threat area.

Generally, the effectiveness, scalability, and adaptability of our framework were ver-
ified through the quantitative experiments with different UAV numbers. Moreover, it
realized the avoidance of conflicts between multiple UAVs. All experiments demonstrated
that the MCTS-PSO framework could be applied in dynamic and complex environments.

5. Conclusions

In this paper, the unified MCTS-PSO framework for onboard distributed trajectory
planning is proposed, which takes full advantage of intelligent discrete and continuous
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search algorithms. The effectiveness, scalability, and adaptability of our framework have
been verified through a series of experiments with different UAV numbers. Moreover, the
proposed framework can also be applied in other similar swarm systems.

In future work, large-scale UAVs will be tested with the MCTS-PSO framework.
Further, other intelligent algorithms such as multi-agent reinforcement learning will be
introduced into the framework. In addition, we would like to evaluate our framework in
intense confrontation applications.
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