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Abstract: This paper presents a robust control strategy for controlling the flight of an unmanned aerial
vehicle (UAV) with a passively (fixed) tilted hexarotor. The proposed controller is based on a robust
extended-state observer to estimate and reject internal dynamics and external disturbances at runtime.
Both the stability and convergence of the observer are proved using Lyapunov-based perturbation
theory and an ultimate bound approach. Such a controller is implemented within a highly realistic
simulation environment that includes physics motors, showing an almost identical behavior to that
of a real UAV. The controller was tested for flying under normal conditions and in the presence of
different types of disturbances, showing successful results. Furthermore, the proposed control system
was compared with another robust control approach, and it presented a better performance regarding
the attenuation of the error signals.

Keywords: passively tilted hexarotor; robust UAV control; active disturbance rejection control;
sliding-mode extended-state observer

1. Introduction

The increasing use of multirotor unmanned aerial vehicles (UAV) in a broad set of
applications demands, in some cases, the use of six-degree-of-freedom (DOF) motions.
In other words, simultaneous translational and rotational motions are required. For the
case of quadrotors, six-DOF actuation is not possible, since they have only four actuators
placed in a flat (co-planar) configuration. Increasing the number of rotors in such a flat
configuration does not change the situation, even though they can cope with some actuation
faults. Adding a tilting angle to the rotors produces forces so that the drone becomes a fully
actuated device within the six-DOF Cartesian space. Such a tilting angle can be either fixed
(passive) or actuated by an auxiliary motor (active).

In addition to external disturbances, such as vortexes, wind gusts, or payloads that
might affect a UAV, another significant drawback often present when controlling real
devices is the uncertainty about the parameters of the system’s dynamic model. Thus,
a control problem for passively tilted hexarotors is that of flying to the target pose or
trajectory with respect to the world reference frame and remaining steadily within some
desired tolerances about them despite the external disturbances and inaccuracy of the
dynamic model. In this context, control researchers and engineers have developed robust
techniques in order to deal with dynamic systems’ disturbances and uncertainties, and the
UAVs’ case is not an exception.

Several robust controllers for both tilted and non-tilted hexarotors can be found in
the literature. In addition to PID-type controllers for non-tilted hexacopters [1,2], another
common control technique for flat hexarotors is the active disturbance rejection control
(ADRC)-type approach. The advantage of using these last controllers is that they can deal
with external disturbances and do not depend on an accurate dynamic model. There are
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plenty of recently reported and successful regulation and tracking simulations using this
control approach—or variations thereof—which is applied to both non-tilted and actively
tilted hexarotors [3–7]; nevertheless, the closed-loop stability was only proved in [3,4], and
the observer’s convergence proof was only present in [3]. It is worth remarking that in [3,4],
the ADRC stability proof relied on the a priori. assumption that the total disturbance was
bounded, which is not applicable to fully actuated multirotor UAVs, as is later explained in
the text.

On the other hand, an extensive literature with successful simulations is also available
for the robust control of passively tilted hexarotors. The robust integral of the sign of the
error (RISE) [8], integral sliding-mode control (SMC) [9], adaptive SMC [10], and super
twisting observer SMC [11] techniques have also been reported. It is worth mentioning that
these control schemes are enhanced versions of the SMC to reduce its intrinsic chattering
effect. Furthermore, an adaptive control scheme was also presented in a simulation [12].
Although this last technique is robust to parametric uncertainties, it is still susceptible to
external disturbances. To the best of the authors’ knowledge, the only robust controllers
reported in the literature that were implemented in actual passively tilted hexacopters are
port-Hamiltonian-based approaches [13,14]; these passivity-based techniques suffer from
time-varying parametric uncertainties and non-smooth disturbances.

In the context of the disturbance compensation of multirotor UAVs, the following
problems have been found so far. (i) The use of a tilting angle for the rotors helps to
produce six-DOF Cartesian motion; however, a significant drawback of actively tilting
the rotors, despite the hardware implications, is that the actuator dynamics delay the
instantaneous disturbance rejection [15]. (ii) ADRC-type techniques are robust estimation
and compensation tools for external disturbances. Their main drawback is that the theory
assumes that there exist bounds for the total disturbances, which are compounded by
external wrenches and internal terms of the plant that are different from a representation of
a cascade of integrators [16]. Such an assumption does not hold for the case of fully actuated
multirotors, since state-dependent disturbances present in the model cannot be assumed
to be bounded. In the literature, some other control approaches that rely neither on model
accuracy nor on disturbance boundaries can be found, such as the artificial delay-based
or adaptive sliding-mode approaches [17,18]. Even though such controllers are potentially
applicable to tilted hexarotors, since they have already been tested on flat quadrotors, it has
been found that ADRC has fewer tuning parameters than artificial delay-based control, and,
at least for this application, ADRC does not suffer from the chattering effect.

This work addresses the robust flight problem of a passively tilted hexarotor. In order to
deal with external disturbances and uncertainties, a robust control approach is implemented.
Such a proposal falls within the ADRC category, since it rejects the disturbances by estimat-
ing and compensating for them using the proposed sliding-mode extended-state observer
(SMESO). In addition, the observer’s stability and convergence are proved using Lyapunov-
based perturbation theory and an ultimate bound approach. The developed controller is
implemented on a custom hexarotor model (this model is available in the following reposi-
tory: https://github.com/jocacace/Firmware (accessed on 4 August 2022)), which has been
adequately adapted to have tilted rotors and to run within Gazebo (http://gazebosim.org
(accessed on 4 August 2022)), a 3D simulator with physics motors that is almost identical
to the real version of such a UAV. Both the controller and the robust ESO were executed as
nodes of the Robotics Operating System (ROS) middleware (http://www.ros.org (accessed
on 4 August 2022)), which allows the simultaneous execution of such algorithms. The exper-
iments for testing the developed controller consisted of (i) performing a given trajectory, (ii)
feeding target poses to the UAV such that it would fly under wind conditions and a payload
provided by the simulator, and (iii) carrying out a comparison against an SMC for pose
regulation. The contributions of this work are listed below.

• To the best of the authors’ knowledge, the application of the ADRC to a passively
tilted hexarotor has not been reported. The closest related works use actively tilted or
fixed hexarotors, which are disadvantaged in their actuation and disturbance rejection

https://github.com/jocacace/Firmware
http://gazebosim.org
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capabilities with respect to passively tilted hexarotors. Furthermore, our version of
the ADRC technique is enhanced with a sliding-mode observer, whose advantages are
mentioned later in the text.

• Both controller and observer stability analyses are presented. The implementation
of an SMESO-based ADRC algorithm in a passively tilted hexarotor is novel in the
literature to the best of the authors’ knowledge; furthermore, the stability proof of
the presented ADRC does not depend on a priori assumptions of the boundaries
of the total disturbance as the traditional ADRC scheme requests, but only on its
differentiation properties.

• Our controller is implemented in a highly realistic simulation environment, which is
completely different from a traditional numerical simulation. This is a step towards
successful implementation on a real device, since our simulation scheme is almost
identical with the real version of the platform. Additionally, our results are shown in
a video.

• The comparison with another robust control and observation strategy favors the
controller developed in this work. The proposed design is indeed a competitive
alternative for the control of UAVs with passively tilted hexarotors, and it is not
limited to the specific problem that is presented. The proposed controller applies
to other passively tilted multirotors by selecting the appropriate allocation matrix,
tuning both the controller and observer gains, and adjusting the integration steps.

The rest of this paper is organized as follows. Section 2 addresses the theory of
ADRC, sliding-mode observers, and finding bounds for state-dependent disturbances; the
dynamics of the hexarotor UAV are also presented in that section. Section 3 details the
controller design and stability. Section 4 describes how the controller is implemented. Case
studies are presented in Section 5, and finally, Section 6 concludes the paper.

2. Theoretical Background

ADRC is a control technique in which success relies on estimating and rejecting an
unknown total disturbance using an ESO. In this case, a nonlinear control problem is reduced
to a problem of a cascade of integrators. Therefore, this control technique can deal with a vast
range of uncertainties and disturbances [16]. Below, an overview of the mentioned control
approach and a robust observation scheme can be found. As stated before, the theory of
ADRC relies on a priori assumptions of the existence of boundaries for the disturbances
affecting the controlled system. For the case of external disturbances, such assumptions
are reasonable; however, state-dependent disturbances cannot be assumed to be bounded.
Hence, some useful theorems that were retrieved from the literature and are beneficial for
the derivation of the stability proofs are also addressed in this section.

2.1. Active Disturbance Rejection Control

Consider the following multiple-input–multiple-output (MIMO) uncertain nonlinear
system subjected to external disturbances [19], which is expressed in the canonical form
of a chain of integrators (if the system is not represented in the canonical form of a chain of
integrators, the corresponding transformations must be performed to lead the system to
such a form). 

ẋi,1(t) = xi,2(t)
ẋi,2(t) = xi,3(t)

...
ẋi,ni (t) = ςi(x(t)) + ξi(x(t))u(t) + ζi(t)
yi(t) = hi(x(t))

(1)

with i = 1, . . . , m, and where xi,j(t) ∈ R is a component of the vector state x(t) =

[x1,1(t) · · · x1,n1(t) · · · xm,1(t) · · · xm,nm(t)]
T ∈ R(n1+···+nm), with j = 1, . . . , ni

and ni > 0; yi(t) ∈ R is the i−th output component; u(t) =
[
u1(t) · · · um(t)

]
∈ Rm

is the control input vector; ς(x(t)) =
[
ς1(x(t)) · · · ςm(x(t))

]T ∈ Rm is the dynamic
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function with uncertain parameters; ξi(x(t)) ∈ R1×m is the row of a non-singular uncertain
matrix Ξ ∈ Rm×m depending on the system’s state; hi(x(t)) ∈ R is a function of the states;
and ζ(t) =

[
ζ1(t) · · · ζm(t)

]T ∈ Rm is the external disturbance vector, which is usually
unknown but bounded. In order to reduce (1) to a regulation problem of a chain of integra-
tors, the all of the uncertain dynamics and the external disturbances can be embedded into
the following total disturbance [16]:

ς(x(t)) + ∆Ξ(x(t))u(t) + ζ(t) , x(t)n+1, (2)

where ∆Ξ(x(t)) = Ξ(x(t)) − Ξ̃(x(t)) and Ξ̃(x(t)) ∈ Rm×m is an approximation (in the
context of this paper, the UAV’s approximated total mass and geometry can be use-
ful in determining the numerical values of Ξ̃(x(t))) of Ξ(x(t)). The vector x(t)n+1 =[
x1,n1+1 · · · xm,nm+1

]
∈ Rm is a virtual augmented state whose estimate x̂(t)n+1 ∈ Rm

contains all of the total disturbances, and it can be retrieved through the following ESO [19]:

˙̂xi,1 = x̂i,2 + εni−1φi,1

(
xi,1 − x̂i,1

εni

)
˙̂xi,2 = x̂i,3 + εni−2φi,2

(
xi,1 − x̂i,1

εni

)
...

˙̂xi,ni = x̂i,ni+1 + φi,ni

(
xi,1 − x̂i,1

εni

)
+ Ξ̃(x(t))u(t)

˙̂xi,ni+1 =
1
ε

Φi,ni+1

(
xi,1 − x̂i,1

εni

)
(3)

where x̂i,j(t) ∈ R is a component of the vector state estimate

x̂(t) =
[
x̂1,1(t) · · · x̂1,n1(t) · · · x̂m,1(t) · · · x̂m,nm+1(t)

]T ∈ R(n1+···+(nm+1)),

with j = 1, . . . , ni and i = 1, . . . , m; ε > 0 is a tuning constant, and φi,j(·) ∈ R, with
j = 1, . . . , ni + 1, is a function that guarantees xi,1 − x̂i,1 → 0 as t→ t0, where 0 < t0 < ∞
is a determined finite time. Notice that the dynamics of (3) must be significantly quicker
than those of (1). Once the total disturbance is estimated, it can be used as feedback in the
following controller for the system (1):

u(t) = Ξ̃(x(t))−1u0(x(t))− x̂(t)n+1, (4)

where u0(x(t)) ∈ Rm can be any linear control technique that regulates ẋ(t). Since (4)
cancels out both internal uncertainties and external disturbances, it leads to the following
control problem:

ẋ(t) ' u0(x(t)). (5)

2.2. Sliding-Mode Observers

As mentioned before, the success of the controller (4) relies on the accurate estimation
of the total disturbance (2) via the ESO. Hence, the key functionality of the ADRC is the
observer. A common technique for developing an ESO is the use of a Luenberger observer.
However, to enhance the ESO’s performance, some robust techniques, such as a generalized
proportional integral (GPI) observer and high-gain observers, were implemented in the
literature [20,21]. Variable-structure systems, including sliding-mode approaches, are well
known as very robust techniques. Sliding-mode observers (SMOs) have the same advantages
of robustness to uncertainty and disturbances as those of the SMC, but with the advantage
that the so-called chattering effect is not physically present in the observed system [22]. The
central idea of the SMO is that, given an uncertain nonlinear system of the form [23]
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ẋ1(t) = x2(t)

ẋ2(t) = x3(t)
...

ẋn(t) = f (x(t), u(t)),

with x(t) =
[
x1(t) · · · xn(t)

]T ∈ Rn, u(t) ∈ R, and f (·, ·) ∈ R, it is possible to estimate
its states using the single measurement available x1(t) by means of the following set of
discontinuous functions:

˙̂x1(t) = λ1e1(t) + x̂2(t) + k1sign(e1(t))
˙̂x2(t) = λ2e1(t) + x̂3(t) + k2sign(e1(t))

...
˙̂xn(t) = λne1(t) + f̂ (x(t)) + u(t) + knsign(e1(t))

(6)

where x̂(t) =
[
x̂1(t) · · · x̂n(t)

]T ∈ Rn is the estimation state vector, e1(t) = x1(t) −
x̂1(t) ∈ R is the observation error, k1, k2, . . . , kn ∈ R are tunable gains, and f̂ (·) ∈ R
is an average estimation of f (·, ·) produced by the high-frequency sliding mode [23]. The
constants λi ∈ R, with i = 1, . . . , n, determine the performance of the observer before the
sliding mode occurs at e1 = 0 [24]. The estimation f̂ could be recovered and used within
an ADRC scheme through an appropriate low-pass filtering stage. Nevertheless, such a
stage would introduce phase lag, and the number of tuning parameters for the overall
control–observer system would increase. Thus, the use of a sliding-mode extended-state
observer (SMESO) is proposed in this work to robustly estimate the total disturbance (2) [22],
thus exploiting the advantages of the SMO and the ESO, but avoiding the drawbacks of
low-pass filtering and linear observation.

2.3. Stability and Ultimate Boundness Conditions for Perturbed Systems

This subsection addresses the problem of determining the stability and ultimate
bounds for exponentially stable nonlinear systems affected by vanishing and/or non
vanishing perturbations. This is useful when a part of the system dynamics is uncertain or is
treated as a disturbance—for instance, when additive terms arise from a linearization [25,26].
Consider a nonlinear system with disturbances

ẋ = f(t, x) + d(t, x) (7)

where x ∈ D is the state vector, D = {x ∈ Rn, ‖x‖ < ρ}, ρ > 0, f(t, x) : [0, ∞)×D → Rn

is the system dynamics, and d(t, x) : [0, ∞)× D → Rn contains the disturbances; both
are locally Lipschitz in x and piecewise continuous in t. Such a representation is always
possible for uncertainties that do not change the system’s order [26]. Assuming that (7)
has an asymptotically stable equilibrium in x = 0n, with 0n ∈ Rn, the zero vector of
proper dimension, when d(t, x) = 0n, the goal is to study whether the stability of (7) is
affected when d(t, x) 6= 0n. In this context, two cases may arise: d(t, x) is vanishing or
non-vanishing. In the former case, d(t, 0n) = 0n, the equilibrium is still the origin; however,
in the latter case, d(t, 0n) 6= 0n, the equilibrium is not the origin anymore, but an ultimate
bounded solution can be found [26]. The following result from the literature is useful for
studying the aforementioned stability problems.

Lemma 1 ([26], (Chap. 5)). Let the origin be an exponentially stable equilibrium of the system (7)
with d(t, x) = 0n. Let V(t, x) be a Lyapunov function satisfying

c1‖x‖2 ≤ V(t, x) ≤ c2‖x‖2, (8)

∂V
∂t

+
∂V
∂x

f(t, x) ≤ −c3‖x‖2, (9)
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∣∣∣∣∣∣∣∣∂V
∂x

∣∣∣∣∣∣∣∣ ≤ c4‖x‖. (10)

Suppose now that d(t, x) 6= 0n and that there exist scalar constants c6 > 0 and 0 < c7 < 1
such that

‖d(t, x)‖ ≤ c6 <
c3

c4

√
c1

c2
c7ρ, ∀ t ≥ 0, ∀ x ∈ D. (11)

Then, the solution x(t) of (7) satisfies

‖x(t)‖ ≤
√

c2

c1
exp

[
− (1− c7)c3

2c2
(t− t0)

]
‖x(0)‖, ∀ t0 ≤ t < t1 (12)

and

‖x(t)‖ ≤ c4c6

c3c7

√
c2

c1
, ∀ t ≥ t1. (13)

In other words, the solution x(t) is uniformly ultimately bounded.

Proof of Lemma 1. See Lemma 5.2 in [26].

2.4. Dynamics of Omnidirectional Multirotor UAVs

Consider a fixed world frame FW = OW , {xW , yW , zW} and the body frame of the
hexarotor Fb = Ob, {xb, yb, zb}, which is attached to its center of mass (CoM), as well as
six coordinate frames FSi = OSi ,

{
xSi , ySi , zSi

}
, i = 1, . . . , 6, which are attached to each

propeller of the hexarotor [27]. All of these frames are illustrated in Figure 1. The pose of
the airframe with respect to FW is represented by

pb =
[
x y z

]T ∈ R3, (14)

ηb =
[
φ θ ψ

]T ∈ R3, (15)

where x, y, z ∈ R are the Cartesian coordinates of translational motion representing the
position of Fb in FW , and φ, θ, ψ ∈ R are the Euler orientation angles about xb, yb, and
zb, respectively. The orientation of Fb with respect to FW is given by the rotation matrix
Rb ∈ SO(3), whose expression is given below:

Rb(ηb) =

cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ

sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ

−sθ cθsφ cθcφ

, (16)

where c(·) , cos(·) and s(·) , sin(·). Let ṗb ∈ R3 denote the absolute translational velocity
of the UAV expressed in FW , while η̇b ∈ R3 is the time derivative of ηb. Then, the dynamics
of an omnidirectional multirotor UAV can be written as [28]:

mp̈b = mge3 + Rb(ηb)u f + fu(·), (17)

M(ηb)η̈b = −C(ηb, η̇b)η̇b + Ω(ηb)
Tuτ + τu(·), (18)

where m > 0 is a scalar denoting the total mass of the UAV, g is a scalar representing the
gravity acceleration, e3 = [0 0 1]T , u f , uτ ∈ R3 are the control forces and torque vectors,
respectively, fu(·), τu(·) ∈ R3 represent the external forces and torques, respectively,

Ω(ηb) =

1 0 −sθ

0 cφ cθsφ

0 −sφ cθcφ

,
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M(ηb) ∈ R3×3 = Ω(ηb)
T IbΩ(ηb) with Ib ∈ R3×3 representing the inertia tensor of the UAV,

and
C(ηb, η̇b) ∈ R3×3 = Ω(ηb)

T [Ω(ηb)η̇b]× IbΩ(ηb) + Ω(ηb)
T IbΩ̇(ηb),

with [·]× denoting the skew symmetric matrix. Considering the state x̄ = [pT
b ηT

b︸ ︷︷ ︸
x1

ṗT
b η̇T

b︸ ︷︷ ︸
x2

]T ,

the dynamics (17)–(18) can be rewritten as:

˙̄x = Ax̄ + B(ηb)u +

[
06

δ1(ηb, η̇b, g) + δ2(·)

]
, (19)

where

A ∈ R12×12 ,
[

O6×6 I6×6
O6×6 O6×6

]
,

B(ηb) ∈ R12×6 ,


O6×6︸ ︷︷ ︸

B1[
mI3×3 O3×3
O3×3 M(ηb)

]−1[Rb(ηb) O3×3
O3×3 Ω(ηb)

]
︸ ︷︷ ︸

B2

.

B(ηb) is hereafter denoted as B for brevity; besides, On×m ∈ Rn×m is the zero matrix of
proper dimensions, In×m ∈ Rn×m is the identity matrix of proper dimensions, u = [uT

f uT
τ ]

T

is a six-dimensional control vector,

δ1(ηb, η̇b, g) ∈ R6 , B−1
2
[
−geT

3 (−C(ηb, η̇b)η̇b)
T]T (20)

is the vector containing the gravity and Coriolis effects (which are considered as disturbance
terms), and δ2(·) ∈ R6 ,

[
fu(·)T τu(·)T]T is the lumped vector of disturbances, including

both external effects and the net term caused by parametric uncertainty. The term δ2(·) is
typically unknown but bounded, ‖δ2(·)‖ ≤ γδ2 < +∞, and it is differentiable or at least
has a removable discontinuity such that its time derivative is also bounded, ‖δ̇2(·)‖ ≤
γδ̇2

< +∞. The following assumptions can also be made about (19):

A1. The aerial vehicle does not pass through singularities [28]. In addition, it moves using
the thrust incoming from the tilted propellers rather than changing its orientation
to generate a thrust to move horizontally. In addition, it takes off with zero roll and
pitch, and it is desired to maintain such values. Thus, the matrix B2 can be considered
invertible.

A2. Since B2 is invertible within some range and its norm is bounded (such a matrix is
composed of the mass matrix, which is bounded for mechanical systems, a rotation
matrix, and Ω(·), whose norms are bounded because they are composed of sine and
cosine terms), C(η, η̇) is Lipschitz continuous, and it does not grow faster than its
arguments [29]. Hence, the following bounds hold:

‖δ1(ηb, η̇b, g)‖ ≤ γδ1 (21)

‖δ̇1(ηb, η̇b, g)‖ ≤ γδ̇1
, (22)

with γδ1 , γδ̇1
> 0.
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Figure 1. Hexarotor with tilted propellers and reference frames. OW is the world reference frame and
OB is the airframe coordinate frame. OSi is the coordinate frame of the i-th propeller.

3. Controller Design
3.1. Control Problem

Consider the passively tilted hexarotor dynamics (19). The control problem is to
lead [xT

1 xT
2 ]

T ∈ R12 to the desired set point or trajectory [xd
1

T
xd

2
T
]T ∈ R12 despite the

disturbances affecting it. An appropriate solution is

u = B−1
2 [v− δ1(ηb, η̇b, g)− δ2(·)], (23)

where v ∈ R6 is a virtual linear control input that can be shaped through any pole placement
technique—for instance,

v = K
[

x̃1
x̃2

]
, (24)

where [
x̃1
x̃2

]
∈ R12 =

[
xd

1
xd

2

]
−
[

x1
x2

]
is the error signal and K ∈ R6×12 is a constant gain matrix. For the ideal case when the
dynamics of the UAV are completely known, all of the states are measurable, and the
external disturbances are absent (i.e., δ̇2(·) = 06), the controller (23) is enough to solve the
control problem, since δ1(ηb, η̇b, g) is also known. On the other hand, external disturbances
δ2(·) are usually unknown but bounded. Hence, when the UAV is affected by them, a
control action to compensate for their effect is required. Below, the rejection of disturbances
affecting (19) is explained—the technique consists of estimating and compensating online
the total disturbance using a robust extended-state observer. The following two cases are
presented: The former considers the external disturbance rejection via an extended-state
observer and perfect cancellation of δ1(·); in the latter, such a vector is estimated as well.

3.2. External Disturbance Rejection via the Extended-State Observer and Perfect Cancellation of
System Nonlinearities

Usually, the ADRC theory requests the knowledge of some boundaries for the total
disturbance lumped within an additional state from the original system. In such a case,
several types of extended-state observers have been implemented, including, recently,
sliding-mode approaches. For the case of passively tilted hexarotors, this theory has not
been applied. The closest works are about the application of ADRC to coplanar (non-tilted)
hexarotors [3,4], but the convergence of the observers is missing. Below, the convergence
of the sliding-mode extended-state observer and the ADRC based on such an observation
technique is presented. For the control design, the fully actuated multirotor UAV subjected
to the external disturbances in (19) can be rewritten in the following extended-state form:
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ẋ1 = x2,
ẋ2 = B2u + δ1(ηb, η̇b, g) + x3,
ẋ3 = δ̇2(·).

(25)

Assuming an accurate knowledge of the parameters of the UAV dynamics (25) and an
accurate measure of x1 and x2 (the vector x2 could be, in principle, estimated), a controller
that satisfies set-point regulation and tracking is the following ADRC:

u = B−1
2

[
v− δ1(ηb, η̇b, g)− x̂3 + ẋd

2

]
, (26)

from which x̂3 can be retrieved through the following robust SMESO:
˙̂x1 = x̂2 + ε−1(x1 − x̂1) + k1sign(x1 − x̂1)
˙̂x2 = x̂3 + ε−2(x1 − x̂1) + k2sign(x1 − x̂1) + B2u + δ1(ηb, η̇b, g)
˙̂x3 = ε−3(x1 − x̂1) + k3sign(x1 − x̂1),

(27)

where x̂i ∈ R6 contains the estimation of xi, 0 < ε� 1 is a scalar such that the polynomial
s3 + ε−1s2 + ε−2s + ε−3 is Hurwitz, and k1, k2, k3 are positive scalars satisfying ε−1 > k3 >
k2 > k1 > γδ̇2

.
The boundedness of the estimation and the tracking errors are now shown in the

following theorems.

Theorem 1. The external disturbances δ2(·) are accurately reconstructed by the extended robust
SMESO (27), i.e., the observation error ˆ̃x = x− x̂ ∈ R18 is uniformly ultimately bounded.

Proof of Theorem 1. Considering (25), the dynamics of the SMESO (27) are

˙̃̂x ,

 ˙̃̂x1
˙̃̂x2
˙̃̂x3

 =

−ε−1I6×6 I6×6 06×6
−ε−2I6×6 O6×6 I6×6
−ε−3I6×6 O6×6 O6×6


︸ ︷︷ ︸

Ã

 ˆ̃x1
ˆ̃x2
ˆ̃x3


︸ ︷︷ ︸

ˆ̃x

−

k1I6×6 O6×6 O6×6
O6×6 k2I6×6 O6×6
O6×6 O6×6 k3I6×6


︸ ︷︷ ︸

KO

sign( ˆ̃x1)

+

O6×6
O6×6
I6×6


︸ ︷︷ ︸

D1

δ̇2(·).

Considering the linear system ˙̃̂x = Ã ˆ̃x, since Ã is Hurwitz, there exists a symmetric
positive definite matrix P̃1 ∈ R18×18 such that ÃTP̃1 + P̃1Ã = −2I18×18, and hence, a
candidate Lyapunov function V1( ˆ̃x) = ˆ̃xTP̃1 ˆ̃x can be proposed. Notice that such a function
satisfies (8):

λmin(P̃1)‖x‖2 ≤ V1( ˆ̃x) ≤ λmax(P̃1)‖x‖2.

In addition, the conditions (9) and (10) are satisfied with c3 = 2 and c4 = 2λmax(P̃1),
respectively.

Now, considering the full system ˙̃̂x = Ã ˆ̃x − Kosign( ˆ̃x1) + D1δ̇2(·), Lemma 1 must
be followed with the position ρ = +∞. Therefore, the following ultimate bound can be
proved:

−‖Kosign( ˆ̃x1)‖+ ‖D1δ̇2(·)‖ ≤ −
√

6k3 + γδ̇2
< +∞.

Hence, the solution of the SMESO system satisfies the following bounds:

‖ ˆ̃x(t)‖ ≤


√

λmax(P̃1)

λmin(P̃1)
exp

[
− (1− ϑ1)

λmax(P̃1)
(t− t0)

]
‖ ˆ̃x(0)‖, ∀ t0 ≤ t < t1

b1, ∀ t ≥ t1,
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with 0 < ϑ1 < 1 and where

b1 =
λmax(P̃1)

[
γδ̇2
−
√

6k3

]
ϑ1

√
λmax(P̃1)

λmin(P̃1)
.

Notice that the gain k3 is helpful for reducing the ultimate bound for the solutions of
ˆ̃x.

Theorem 2. The error vector [x̃T
1 x̃T

2 ]
T ∈ R12 , [xd

1
T

xd
2

T
]T − [xT

1 xT
2 ]

T , with ẋd
1 = xd

2, is
uniformly ultimately bounded by means of the controller (26).

Proof of Theorem 2. Considering (25), the tracking error dynamics are{ ˙̃x1 = x̃2,
˙̃x2 = ẋd

2 − B2u− δ1(ηb, η̇b, g)− x3.

Substituting the controller (26) into the error dynamics yields{ ˙̃x1 = x̃2,
˙̃x2 = −v + x̂3 − x3.

Considering x̂3 − x3 = − ˆ̃x3, then[ ˙̃x1
˙̃x2

]
=

[
O6×6 I6×6
O6×6 O6×6

][
x̃1
x̃2

]
−
[

O6×6
I6×6

]
v−

[
O6×6
I6×6

]
ˆ̃x3.

Folding (23) into the last expression yields[ ˙̃x1
˙̃x2

]
= A1

[
x̃1
x̃2

]
−
[

O6×6
I6×6

]
ˆ̃x3,

with

A1 =

[
O6×6 I6×6
O6×6 O6×6

]
−
[

O6×6
I6×6

]
K,

such that K makes A1 Hurwitz.
Considering the nominal linear system with ˆ̃x3 = 06, a candidate Lyapunov function

V2(x̃1, x̃2) = [x̃T
1 x̃T

2 ]
TP1[x̃T

1 x̃T
2 ] can be proposed, where P1 ∈ R12×12 is a symmetric positive

definite matrix that is solution of

AT
1 P1 + P1A1 = −2I12×12.

Notice that such a function satisfies (8):

λmin(P1)‖x‖2 ≤ V2( ˆ̃x) ≤ λmax(P1)‖x‖2.

Moreover, the conditions (9) and (10) are satisfied with c3 = 2 and c4 = 2λmax(P1),
respectively. Now, considering the full system with the generic condition ˆ̃x3 6= 06, Lemma 1
must be followed with the position ρ = +∞. The ultimate bound for ˆ̃x3 can be retrieved
from Theorem 1. Thus, the solutions of the tracking error dynamics are uniformly ultimately
bounded by

∣∣∣∣∣∣∣∣[x̃1(t)
x̃2(t)

]∣∣∣∣∣∣∣∣ ≤

√

λmax(P1)

λmin(P1)
exp

[
− (1− ϑ2)

λmax(P1)
(t− t0)

]∣∣∣∣∣∣∣∣[x̃1(0)
x̃2(0)

]∣∣∣∣∣∣∣∣, ∀ t0 ≤ t < t2

b2, ∀ t ≥ t2,
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where

b2 =
b1λmax(P1)

ϑ2

√
λmax(P1)

λmin(P1)
,

and t2 > t1. Notice that the ultimate bound b2 depends directly on b1.

3.3. Robust External Disturbance Rejection via the Extended-State Observer

In case the disturbances δ1(ηb, η̇b, g), δ2(·) are differentiable in their arguments and
locally Lipschitz or at least have a removable discontinuity (for the case of external distur-
bances), an augmented-state representation for (19) can be used as follows:

ẋ ,


ẋ1 = x2
ẋ2 = B2u + x3
ẋ3 = δ̇1(ηb, η̇b, g) + δ̇2(·).

(28)

A controller that satisfies set-point regulation and tracking is the following ADRC:

u = B−1
2

[
v− x̂3 + ẋd

2

]
, (29)

where v is the same as in (24). The difference with respect to (26) is the missing com-
pensation for the term δ1(·). The estimate of x̂3 can be retrieved through the following
robust SMESO: 

˙̂x1 = x̂2 + ε−1(x1 − x̂1) + k1sign(x1 − x̂1),
˙̂x2 = x̂3 + ε−2(x1 − x̂1) + k2sign(x1 − x̂1) + B2u,
˙̂x3 = ε−3(x1 − x̂1) + k3sign(x1 − x̂1).

(30)

The boundedness of the estimation and the tracking errors are now shown in the
following theorems.

Theorem 3. The disturbances of (25) are accurately reconstructed by the extended robust SMESO
(30) despite the missing compensation for δ1(ηb, η̇b, g), i.e., the observation error ˆ̃x = x− x̂ ∈
R18×18 is uniformly ultimately bounded.

Proof of Theorem 3. Taking into account (28), the dynamics of the SMESO (30) are

˙̃̂x ,

 ˙̃̂x1
˙̃̂x2
˙̃̂x3

 =

−ε−1I6×6 I6×6 O6×6
−ε−2I6×6 O6×6 I6×6
−ε−3I6×6 O6×6 O6×6


︸ ︷︷ ︸

Ã

 ˆ̃x1
ˆ̃x2
ˆ̃x3


︸ ︷︷ ︸

ˆ̃x

−

k1I6×6 O6×6 O6×6
O6×6 k2I6×6 O6×6
O6×6 O6×6 k3I6×6


︸ ︷︷ ︸

KO

sign( ˆ̃x1)

+

O6×6
O6×6
I6×6


︸ ︷︷ ︸

D1

(δ̇1(g, ηb, η̇b) + δ̇2(·)).

Considering the linear system ˙̃̂x = Ã ˆ̃x, since Ã is Hurwitz, there exists a symmetric
positive definite matrix P̃2 ∈ R18×18 such that ÃTP̃2 + P̃2Ã = −2I18×18, and hence, a
candidate Lyapunov function V3( ˆ̃x) = ˆ̃xTP̃2 ˆ̃x can be proposed. Notice that such a function
satisfies (8)

λmin(P̃2)‖x‖2 ≤ V3( ˆ̃x) ≤ λmax(P̃2)‖x‖2.

In addition, the conditions (9) and (10) are satisfied with c3 = 2 and c4 = 2λmax(P̃2),
respectively. Now, with the full system

˙̃̂x = Ã ˆ̃x−Kosign( ˆ̃x1) + D1(δ̇1(ηb, η̇b) + δ̇2(·)),
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Lemma 1 must be followed with the position ρ = +∞. Therefore, taking into account (20)
and A2, the following ultimate bound can be proved:

−‖Kosign( ˆ̃x1)‖+ ‖D1(δ̇1(ηb, η̇b) + δ̇2(·))‖ ≤ −
√

6k3 + γδ̇1
+ γδ̇2

< +∞.

Hence, the solution of the SMESO system satisfies the following bounds:

‖ ˆ̃x(t)‖ ≤


√

λmax(P̃2)

λmin(P̃2)
exp

[
− (1− ϑ3)

λmax(P̃2)
(t− t0)

]
‖ ˆ̃x(0)‖, ∀ t0 ≤ t < t1

b3, ∀ t ≥ t1,

with 0 < ϑ3 < 1 and

b3 =
λmax(P̃2)

[
γδ̇1

+ γδ̇2
−
√

6k3

]
ϑ3

√
λmax(P̃2)

λmin(P̃2)
.

Theorem 4. The error vector [x̃T
1 x̃T

2 ]
T is uniformly ultimately bounded by means of the controller (29).

Proof of the Theorem 4. Considering (28), the tracking error dynamics are{ ˙̃x1 = x̃2,
˙̃x2 = ẋd

2 − B2u− x3.

Substituting the controller (29) yields{ ˙̃x1 = x̃2,
˙̃x2 = −v− ˆ̃x3.

The procedure follows the proof within Theorem 2, and for brevity, it is not reported

here. However, it is worth noting that the ultimate bound for
∣∣∣∣∣∣∣∣[x̃1(t)

x̃2(t)

]∣∣∣∣∣∣∣∣ now depends on

b3 from Theorem 3.

4. Controller Implementation
4.1. Control Allocation

Consider Figure 2, where the top and frontal views of the tilted multirotor with six
actuators are presented. The position of the i-th propeller in FB can be mathematically
expressed as follows [30]:

pb
Si
= LRz(ζi)

[
1 0 0

]T , (31)

where i = 1, . . . , n depends on the multirotor, L > 0 is the distance between OSi and OB,

and Rz ∈ SO(3) is the canonical rotation matrix around the axis
[
0 0 1

]T [31]. The
orientation of FSi with respect to FB is given by [27]:

Rb
Si
(α) = Rz(ζi)Rx

(
(−1)i−1αi(t)

)
∈ SO(3), (32)

where i = 1, . . . , n, αi(t) ∈ [−π/2, π/2] is the tilt angle of the propellers about xSi , and

Rx ∈ SO(3) is the canonical rotation matrix around the axis
[
1 0 0

]T [31]. For the case
of passively tilting multirotors, α(t)i = αi is considered, and it has the same magnitude
for each propeller, while (−1)i−1 denotes the orientation tilt of each propeller. Figure 2
illustrates the geometric concepts of the length from the propeller to the UAV’s CoM and
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the separation angle between each rotor. Furthermore, the spin direction of each propeller
is displayed, and a front view of the hexarotor is also presented, where the tilting angle αi
about the xSi can be appreciated. Each propeller supplies a thrust force applied in OSi that,
expressed in FB, appears as follows [27]:

f = fi Rb
Si
(α)
[
0 0 1

]T ∈ R3, (33)

where i = 1, . . . , 6, fi = k f ω2
i is the intensity of the force provided by the i-th angular

velocity ωi ∈ R, and k f > 0 is a constant parameter depending on the geometry of the
propeller [32]. Simultaneously, the following drag torque is supplied by the propellers [27]:

τbi
= (−1)i−1σfbi

Rb
Si
(α)
[
0 0 1

]T ∈ R3, (34)

where i = 1, . . . , 6 and σ = kτ/k f , with kτ > 0, is a constant parameter depending on the
geometry of the propeller, and (−1)i−1 models its spin direction. The total thrust forces
applied to the airframe expressed in FW are represented by [30]:

fT = Rb

6

∑
i=1

fbi
= RbF1(α)f, (35)

where α ∈ Rn contains the tilting angle of each rotor, f =
[

f1 · · · fn
]T ∈ Rn is the stacking

vector of the propeller forces, and F1 ∈ R3×n is a mapping matrix from the propeller forces
to the airframe forces. Likewise, the total torques applied to the airframe expressed in FB
are [32]:

τT =
6

∑
i=n

((
pb

Si
× fbi

)
+ τbi

)
= F2(α)f, (36)

where × is the cross-product operator and F2 ∈ R3×n is the mapping matrix from the
propeller forces to the torques applied to the airframe. Hence, the full allocation matrix is
given by

F(α) = k f

[
F1(α)
F2(α)

]
. (37)

For the case of passively tilted hexarotors, it follows that

F1(α) =



sα

2
−sα

sα

2
− sα

2
−sα − sα

2
√

3sα

2
0 −

√
3sα

2

√
3sα

2
0 −

√
3sα

2

cα cα cα cα cα cα


,
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F2(α) =



Lσα − σsα

2

√
3(Lcα − σsα)

2
−Lsα − σcα

Lcα − σsα 0 Lsα + σcα

Lcα − σsα

2
−
√

3(Lcα − σsα)

2
−Lsα − σcα

− Lcα − σsα

2
−
√

3(Lcα − σsα)

2
Lsα + σcα

−Lcα + σsα 0 −Lsα − σcα

− Lcα − σsα

2

√
3(Lcα − σsα)

2
Lsα + σcα



T

.

Notice that (37) is static and invertible; therefore, the mapping from the six-dimensional
control u (29) to the actuators’ forces is

fb = F(α)−1u. (38)

Finally, the rotor velocities can be computed through

ωi =

√
fi
k f

. (39)

Figure 2. Left: Top view of the tilted hexarotor indicating each rotor’s spin direction, ωi, and the
length L from the CoM of the airframe to the center of rotation of a rotor; in this case, ζi = π/3. All of
the rotors are equidistant with respect to the CoM, and the location angle of each rotor with respect
to the last one is the same. Right: Front view of the hexarotor with two examples of the tilting angles
α. All six of the rotors are tilted with the same magnitude, but in different senses.

4.2. Setup of the 3D Simulation

The Gazebo dynamic simulator was used to demonstrate the effectiveness of the pro-
posed approach. In this context, control algorithms were developed in the C++ programming
language using the Robotics Operating System (ROS) as middleware [33]. At the same
time, the simulation of the flying platform was based on the RotorS library [34]; this library
implements dynamic flying robot models and sensor plugins that are suitable for Gazebo
in the ROS and are usable for developing custom controllers designed to be analogous to
their real-world counterparts, so each simulation is almost identical to a real experiment. By
default, only flat UAVs are available when using the RotorS software. Therefore, a custom
tilted hexacopter was designed and modeled, taking the well-known AscTec firefly platform
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as an inspiration. A significant benefit of the RotorS library when used with different control
and state estimation algorithms is the possibility to simulate UAV rotors with desired motor
dynamics and characteristics. In this way, a new multi-copter model can be designed by
grouping different rotor models together. Each rotor imported into the simulation scene can
be controlled with a desired rotation velocity command, which is consistent with the pro-
posed control approach and allocation. The robot’s local position and attitude are available
through the ROS network to implement the closed control loop.

The system architecture is depicted in Figure 3, and it is discussed in the following.
Two main modules were deployed in the form of ROS nodes: the controller (29) and
the observer (30). The latter took the desired control signal generated by the controller
and the multirotor’s full pose as inputs. At the same time, its output was represented
by the estimation of the total disturbances acting on the platform. As for the controller,
this module received the platform’s pose from the Gazebo simulator and the disturbance
estimation provided by the observer to generate the six desired motor control signals,
which were expressed in rpm (revolutions per minute). In this context, Table 1 reports
a list of the controller’s parameters and the characteristics of the UAV platform and its
motors that were used test both the SMC and the ADRC. In particular, ωimax represents the
maximum rotational velocity of the motors, k f and kτ represent their drag force and rolling
moment constants, respectively, L is the length of the UAV arm, and α is the tilt angle of
each rotor. However, K1,...,6 and K7,...,12 are the main diagonal components of the feedback
gain matrices. It is worth mentioning that the same proportional and derivative gains were
used to test both controllers; the difference was in how they rejected disturbances, namely,
SMC used the sliding term while ADRC used the observed signal of the augmented state
as feedback. The system was tested on a standard computer running Ubuntu 20.04 as it
operating system, while ROS Noetic was chosen as the distribution.

Figure 3. Block diagram of the proposed controller and observer. Everything within the dashed line
is component-wise for i = 1, 2, . . . , 6.
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Table 1. List of parameters used for the implementation of the controller and the aerial platform.

Parameter Value

m 2.1 kg
Ib diag(0.0347563, 0.0458929, 0.0977) kg m2

ωimax 1500 rpm
k f 8.54858× 10−6

kτ 1× 10−2

L 0.215 m
α 20 deg

K1,...,6 {2, 2, 20, 800, 800, 2500}
K7,...,12 {4, 4, 25, 1200, 1200, 5000}

5. Case Studies

This section addresses the tests that were conducted to assess the effectiveness of the
proposed control–observer scheme. First, a complex trajectory was commanded to evaluate
the tracking performance; the following experiments consisted of a regulation task at a
given pose in the presence of external disturbances, which were implemented using an
external wrench plugin for Gazebo (https://github.com/Viviana-Morl/ft_gazebo_plugin
(accessed on 4 August 2022)). Finally, a comparison of the proposed controller with a
sliding-mode controller was carried out. All of the tests are shown in a video (https:
//www.youtube.com/watch?v=TyOvDe81VHc (accessed on 4 August 2022)).

5.1. Tracking

This test consisted of commanding to take a complex trajectory in Cartesian coordi-
nates with respect to the world frame FW . The Cartesian position’s trajectory is given by
the following parametric equations of a Lemniscate:

xd
b =

a cos(2π ftt)
1 + sin2(2π ftt)

yd
b =

a sin(2π ftt) cos(2π ftt)
1 + sin2(2π ftt)

zd
b = bt

, (40)

where a = 1.4, b = 0.2 are scalar parameters, t is the time, and ft = 0.5 is the frequency
in Hz. The time derivatives of (40) were computing numerically. Firstly, the UAV was
commanded to take off; thereafter, it was commanded to reach (xd

b , yd
b , zd

b) = (0, 1.4, 1) m
with zero orientation so that it could start and then perform the lemniscate trajectory; finally,
it was commanded to end by hovering steadily.

Figure 4 shows the norm of the state error ‖x̃‖ during the whole experiment. It can be
seen that this norm was always below 3 cm when the UAV was flying and decreased to
zero when it hovered. Furthermore, Figure 5 displays that the UAV trajectory tracked the
desired trajectory in the Cartesian space.

https://github.com/Viviana-Morl/ft_gazebo_plugin
https://www.youtube.com/watch?v=TyOvDe81VHc
https://www.youtube.com/watch?v=TyOvDe81VHc
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Figure 4. Time evolution of the norm of the state error while the UAV performed the commanded
Cartesian trajectory.
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Figure 5. Cartesian motion of the UAV. − − Desired trajectory. – – UAV’s trajectory.

5.2. Regulation with Wind and Payload

The robustness of the observer–controller scheme was assessed by simulating wind
conditions while the UAV was hovering at a target set point. The first experiment involved
flying the UAV to the set point (xd

b , yd
b , zd

b) = (1, 1, 2) m with zero orientation and applying
an external disturbance a few seconds after it reached the set point. This disturbance
represented a sudden wind shear given by

fu =

0.5 ∗ sign(cos(t/2))
0.5 ∗ sign(sin(t/2))

0

 N, 31 ≤ t ≤ 45 s (41)

The top of Figure 6 shows the six controlled states of the UAV during the test. It can
be appreciated that the position of the UAV along the xb and yb axes was affected by the
wind shear (41) in a range of ±15 cm. However, once the wind ended, the states returned
to the desired values; furthermore, accurate tracking of all of the states employing the
robust observer was shown. In addition, the bottom of Figure 6 shows the reconstructed
total disturbances affecting the chain of integrators that represented the UAV dynamics; the
amplitude of the applied forces of 0.5 N can be appreciated on the xb and yb axes, as can the
21 N due to the UAV’s weight. Similarly, the external torques caused by the disturbances
can also be appreciated. It is worth remarking that all these signals were obtained using
the SMESO (30) and were used as feedback. Another test under soft wind conditions was
conducted; here, the external disturbances representing a wind blow are given by

fu =

0.5 cos(t/2)
0.5 sin(t/2)

0

 N, 22 ≤ t ≤ 32 s. (42)
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The six controlled and observed states of the UAV’s pose are shown at the top of
Figure 7. It can be appreciated that the position along the xb and yb axes was affected by
±5 cm, but there was a return to the desired target pose after the wind ended. As in Figure 6,
the bottom of Figure 7 shows the reconstructed total disturbances using the SMESO (30),
which were also used as a feedback signal by the controller. In addition, Figure 8 shows
the time evolution of the six velocities of the rotors (control signals) while performing the
aforementioned experiments. On the left side, the velocities of the regulation task under
wind shears are displayed, whereas the right side depicts the velocities of the regulation
task under wind-blow conditions. It can be appreciated that overcoming wind shears
demanded more energy than dealing with a soft wind. In addition, it can be appreciated
that the control signals were considerably far from the maximum velocity of 1500 rpm.

Another experiment was performed to assess the effectiveness of the reconstruction of
the disturbances by means of the proposed SMESO. First, the hexarotor was commanded
to take off to 2 m without the ROS node of the SMESO running. Ten seconds later, the
SMESO was turned on, and after some time, a −5 N force was applied in the zB direction
for 12 s to simulate a payload condition. Figure 9 shows the results of the aforementioned
experiment. The left side of the figure displays the norm of the state error. It can be noticed
that, during the take-off without SMESO feedback, the target set point was not achieved,
and some oscillations were present as well. Afterwards, the norm of the error became zero
when the SMESO feedback was available. Finally, two peaks of 20 cm could be observed,
which occurred when adding and removing the payload force, respectively; despite these
peaks, the norm of the error was also zero in the time in which the payload was applied.
The right side of Figure 9 shows the time evolution of the estimated disturbance along the
zB axis. It can be appreciated that the SMESO supplied a signal of −20.6 N, which was
consistent with the total weight of the hexarotor, since the controller (29) did not include
gravity compensation. In addition, it can be noticed that the SMESO provided a signal
of −25.6 N while the payload was being applied; thus, the external disturbances were
effectively reconstructed with the proposed SMESO. Finally, Figure 10 shows the control
signals for the payload experiment. Notice that several oscillations were present during the
first ten seconds due to the lack of a feedback signal from the SMESO. On the other hand, an
increment in the velocity in the six rotors could be observed under the payload conditions,
which was consistent with the higher demand for energy from the control algorithm to
compensate for such a disturbance.
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Figure 6. Top: Behaviors of the states of the UAV during a regulation task when subjected to sudden
gusts of wind. − − Set points. —- Measured states. − − Observed states. Bottom: Reconstructed
total disturbances about each axis. All of the horizontal axes display the time in seconds.
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Figure 7. Top: Behaviors of the states of the UAV during a regulation task when subjected to wind
blows. − − Set points. —- Measured states. − − Observed states. Bottom: Reconstructed total
disturbances about each axis. All of the horizontal axes display the time in seconds.
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Figure 8. Time evolution of the rotors’ velocities. Left: Experiment on regulation under wind shear.
Right: Experiment on regulation under smooth blowing of wind. – ω1, – ω2, – ω3, – ω4, – ω5, – ω6.
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Figure 9. Left: Time evolution of the norms of the state error. Right: Time evolution of the estimated
disturbance along the zB axis, which was retrieved from the SMESO.
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Figure 10. Time evolution of the rotors’ velocities for the experiment on regulation under payload
conditions. – ω1, – ω2, – ω3, – ω4, – ω5, – ω6.

5.3. Comparison with Sliding-Mode Control

During the final experiment, the proposed controller was compared with SMC, which
is a control technique that is well known for its robustness to external disturbances and
parametric uncertainty; in this context, it represents a challenging benchmark for our
control proposal. The SMC used is expressed as

u = B−1
2 K

[
sign(s)T − ẋT

]T
, (43)

where K has the same values as those in Table 1 in order to have a fair comparison, and
s = diag(2, 2, 10, 20, 20, 20)x̃− ẋ is the sliding surface. Notice that the difference between (29)
and (43) is that the first one compensates for the disturbances by means of their accurate es-
timation, whereas the latter uses the sliding-mode motion instead. The UAV is commanded
to move to the target set point (xd

b , yd
b , zd

b) = (0, 0, 2) m with 10 degrees of orientation about
zb for 20 s.

Figure 11 shows the norms of the error using both controllers. Even though both
controllers provided a stable behavior of the norm of the error, a steady-state error of 5 cm
could be appreciated with the SMC.



Drones 2022, 6, 258 22 of 24

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t [s]

0.0

0.5

1.0

1.5

2.0

2.5

|x
| [

m
]

Figure 11. Time evolution of the norms of the state error while the UAV performed a regulation task.
—- ADRC. −− SMC.

6. Conclusions

A robust control scheme for full-pose regulation and tracking of a UAV with a passively
tilted hexarotor was presented in this work. The main contribution is the implementation
of a theoretically sustained ADRC approach with a robust SMESO on a passively tilted
hexarotor by employing a highly realistic simulator. It is worth highlighting that such a
technique has not been reported in the literature for passively tilted hexarotors. Furthermore,
the analysis of the stability of both the designed controller and the observer was presented
by using a consistent theory that does not rely on a priori knowledge of the bound of the
total disturbance, as several ADRC schemes in the literature do. As mentioned above,
a simulator with physics motors was used during the presented work, the behavior of
which was almost identical to that of a real UAV. In order to prove the effectiveness of
the control system proposal, several case studies were carried out. Achieving the target
trajectory was successful, since all of the states reached the target value with errors close
to zero. Additionally, the proposed controller was effective under a payload and the
simulation of continuous time-varying and discontinuous wind disturbances thanks to
the perfect reconstruction of the external disturbances, which was consistent with the
theoretical hypothesis of the convergence of the observer regarding the non-differentiable
total disturbance. The proposed controller yielded a recovery time that was shorter than
five seconds, reached the set point with a significantly low overshoot for the worst case, and
remained within an acceptable range when under solid disturbances. The presented control
approach performed better than the SMC because it yielded significantly less steady-state
norm of the error for full-pose regulation. These successful results prove the effectiveness of
the proposed control technique and provide motivation for its application to other UAVs.
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