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Abstract: Cotton constitutes 81% of the world’s natural fibers. Accurate and rapid cotton yield
estimation is important for cotton trade and agricultural policy development. Therefore, we devel-
oped a remote sensing index that can intuitively represent cotton boll characteristics and support
cotton yield estimation by extracting cotton boll pixels. In our study, the Density of open Cotton boll
Pixels (DCPs) was extracted by designing different cotton boll indices combined with the threshold
segmentation method. The relationship between DCP and field survey datasets, the Density of Total
Cotton bolls (DTC), and yield were compared and analyzed. Five common yield estimation models,
Linear Regression (LR), Support Vector Regression (SVR), Classification and Regression Trees (CART),
Random Forest (RF), and K-Nearest Neighbors (KNN), were implemented and evaluated. The results
showed that DCP had a strong correlation with yield, with a Pearson correlation coefficient of 0.84.
The RF method exhibited the best yield estimation performance, with average R2 and rRMSE values
of 0.77 and 7.5%, respectively (five-fold cross-validation). This study showed that RedGreenBlue
(RGB) and Near Infrared Red (NIR) normalized, a normalized form index consisting of the RGB and
NIR bands, performed best.

Keywords: cotton; UAV; cotton boll index; threshold segmentation; yield estimation

1. Introduction

Cotton is the main fiber crop worldwide. According to statistics released by the
Food and Agriculture Organization (FAO) of the United Nations, cotton accounted for
26 million tons of fiber production in the period from 2018 to 2019 (specifically, 1 Au-
gust 2018 to 31 July 2019) [1]. It represented 81 percent of natural fiber production and
24 percent of total fiber production. Accurate and rapid estimation of cotton yield is of great
significance to cotton trade and agricultural policy planning, particularly in the context of
population growth and climate change.

Traditional cotton yield estimation methods require manual sampling, which is very
labor intensive and time-consuming. These methods are increasingly unsuitable for prac-
tical applications. Since remote sensing technology can quickly obtain a wide range of
information from ground objects, it is widely used for cotton yield estimation. Common
remote sensing platforms include satellites and Unmanned Aerial Vehicles (UAVs).

Due to rich data sources and optimal data processing procedures, satellite remote
sensing was first applied to cotton yield estimation. Liu et al. [2] used the time series
Enhanced Vegetation Index (EVI) obtained from the HJ-1A/B satellite to rank cotton yields
in a county. Alganci et al. [3] used the time series satellite images obtained by Système
Pour l’Observation de la Terre 5 (SPOT5), Thematic Mapper (TM), and Enhanced Thematic
Mapper (ETM) to calculate the vegetation index and combined them with measured digital
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photos and meteorological data to estimate the cotton yield according to the empirical
formula. Leon et al. [4] used the measured yield data of cotton in sampling grids and
the vegetation index calculated by satellites to carry out regression modeling, and the
correlation coefficient in the middle and late stages of crop growth reached 0.87. Based on
the Normalized Difference Vegetation Index (NDVI), a quadratic regression model was
applied to remotely-sensed data and the estimated cotton yield [5]. Prasad et al. [6] used a
time-series 16-day composite of Moderate Resolution Imaging Spectroradiometer (MODIS)
NDVI data to extract seasonality parameters. A multiple regression model constructed with
seasonality parameters was applied to estimate cotton yield. Although satellite data have
a wide application, they suffer from low spatial resolution. This makes satellite remote
sensing unsuitable for accurate yield estimation on the farm scale. In addition, the less
frequent revisit of satellite remote sensing limits data acquisition on time phases important
for yield estimation.

UAV remote sensing has the advantages of flexibility, high spatial resolution, and
customizable data acquisition time [7]. These features overcome some of the limitations
of satellite remote sensing, leading to the rapidly increased use of UAV images in cotton
yield estimation.

Many factors associated with the physiological and biochemical state of cotton plants
have been used in yield estimation based on UAV images, mainly including vegetation
indices, canopy cover information, and Plant Height (PH). Huang et al. [8] implemented
modeling with the Ratio Vegetation Index (RVI) and cotton yield, and the R2 value reached
0.47. Yeom et al. used vegetation indices obtained from time series images in a cotton crop
growth model to estimate yield [9]. Feng et al. constructed eight indicators using two-
phase UAV images and then used a multiple regression model based on these indicators
to estimate cotton yield [10]. Feng et al. also evaluated the performance of a UAV-based
remote sensing system with a low-cost RGB camera to estimate cotton yield based on
PH [11]. Chu [12] used cotton PH and canopy cover information to calculate cotton yield
according to an empirical formula, which was retrieved from point cloud-based digital
surface models (DSMs) and orthomosaic images. Ma et al. [13] used vegetation indices and
texture features extracted from the ultra-high-resolution RGB images obtained by UAVs to
estimate cotton yield.

The above methods mainly focused on the state of the cotton plant, but the cotton
yield is primarily produced by cotton bolls, which are organs of cotton and not the whole
plant. Yield estimation methods based on cotton boll extraction are more straightforward
than focusing on the whole cotton plant. Since the degree of mechanization of cotton
production is increasing and defoliation and ripening have become necessary conditions
for cotton production [14], cotton bolls are obvious enough in UAV images to be extracted.
Based on this, many studies have focused on the extraction of cotton bolls. Laplace image
transformation was used to establish the boll coverage of plots to estimate yield, and the
R2 reached 0.83 after removing outliers [15]. Threshold segmentation and morphological
filtering have also been used to extract the cotton boll area in UAV images [16]. Yeom used
this method to build a linear regression model for cotton boll area and yield in different
irrigation plots, and the R2 was between 0.63 and 0.65. Fue et al. [17] used the RGB color
threshold to separate each RGB component of the image. The white components of the
image can be masked as cotton bolls. Wei et al. [18] used threshold segmentation in HSV
color space to obtain cotton bolls. Classification algorithms were also used to identify
cotton bolls [19,20]. Sun et al. [21] used a robot platform equipped with a digital camera
to detect and count the number of bolls based on an operation that splits a single boll
into two or more disjointed regions. Zhang collected near-infrared UAV images of cotton
fields. An object-oriented method was used to segment cotton bolls and backgrounds.
Xu et al. [22] established a cotton yield estimation model based on time series UAV remote
sensing indices combined with boll opening pixel percentages extracted by U-Net. The time
series data of various vegetation indices and the proportion of open cotton bolls were input
into the Back Propagation (BP) neural network as training data, and the R2 reached 0.853.
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Previous studies mainly adopted spectral reflectance and common indices that are
sensible of vegetation rather than cotton bolls, seldom considering the distinctive features
of bolls in yield estimation. That resulted in many uncertainties when cotton bolls’ spectral
features were not as strong as leaves. Meanwhile, there are too many spectral bands and
indices involved, which leads to compute-intensive tasks.

In this study, a more reasonable method was proposed to achieve definitive yield
estimation, which aims to develop a novel spectral index, emphasizing the spectral charac-
teristics of cotton bolls, to improve yield modeling accuracies. The index considered the
spectral differences between bolls and other field targets deeply and could support cotton
yield estimation using a naive model or as an input contributing deep learning models
together with raw bands as input.

The main tasks of the study mainly involved three parts. The first one was the
development of the index that can intuitively represent the cotton boll characteristics.
Another one was cotton boll information extraction using the threshold segmentation
method referring to ground survey data. Additionally, the last one was an experiment on
cotton yield estimation considering the cotton boll information from the index. The study
area and data are described in Section 2. The method used in this paper is introduced in
Section 3. The results and performance assessment are provided in Section 4. Section 5 is
the discussion, and Section 6 is the conclusion.

2. Study Area and Data

This section presents the study area and data.

2.1. Study Area

The study area is located in Cangzhou, Hebei Province, which is one of the main
cotton-producing areas in China (Figure 1).
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Figure 1. (a) Location of Hebei Province in China; (b) location of Cangzhou city and the experimental
area in Hebei Province; (c) overview of the 125 experimental plots in the cotton field. Each plot has
an independent code.

A total of 125 experimental plots of three different sizes were set up in the experimental
field. The theoretical planting areas were 68.00 m2 (Filed A), 54.72 m2 (Filed B), and
18.24 m2 (Filed C). Three fields with different areas are shown in Figure 1. Guoxin 26, a
representative cotton variety, was planted in the study area, provided by the Hebei Cotton
Seed Engineering Research Center.

Cangzhou’s climate conditions are suitable for cotton cultivation. Cangzhou has four
different seasons and a continental semiarid monsoon climate, with an average annual
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temperature of 12.2 ◦C, a minimum temperature of −25 ◦C, and a maximum temperature
of 43 ◦C. The average annual rainfall is 549.5 mm. The rainfall is unevenly distributed
throughout the year, and 80% falls in the summer [23].

2.2. Data

The data used in this study are divided into UAV data and field survey data.

2.2.1. UAV Data

A DJI M300 with an integrated ALTUM sensor made by Micasense was used to
collect the UAV data. The DJI M300 RTK integrates an RTK module that has a strong anti-
magnetic interference capability and precise positioning capability. The camera collected
1280 × 960 pixels per image band. The specific spectral bands were blue at approximately
475 nm, green at 560 nm, red at 668 nm, Red-Edge (RE) at 717 nm, Near Infrared Red (NIR)
at 840 nm, and thermal at 8–14 µm.

Data were acquired between 11:00 and 13:00 local time on 22 October 2021. A flight
altitude of 50 m was chosen, and a Ground Sampling Distance (GSD) of 2.16 cm was
achieved. The heading overlap rate was 80%, and the side overlap rate was 75%. Ra-
diometric correction and alignment of the data were performed in Agisoft Metashape
1.7.0 (https://www.agisoft.com). The sun sensor and the reflectance panel were used for
radiometric correction. We obtained blue/green/red/RE/NIR reflectance images and
thermal-infrared emissivity images of the experimental area. The sensor parameters are
shown in Table 1.

Table 1. Sensor parameters.

Parameter Multispectral Bands Thermal Infrared Band

Resolution 2064 × 1544 160 × 120
Field of View (FOV) 48◦ × 36.8◦ 57◦ × 44.3◦

Flight altitude 50 m 50 m
Ground sampling (GSD) 2.16 cm/px 13.56 cm/px

Imaging band B (475 nm), G (560 nm), R (668 nm),
RE(717 nm), NIR (840 nm) 8–14 µm

The data acquired by the UAV were displayed as an RGB image, as shown below
(Figure 2).

Drones 2022, 6, x FOR PEER REVIEW 5 of 25 
 

 
Figure 2. Original image of the study area. 

2.2.2. Field Survey Data 
Through random sampling and manual counting, the Number of Total open Cotton 

bolls (NTC) from 10 (18.24 m2, 54.72 m2) or 15 (63.00 m2) cotton plants were obtained. 
Because the total number of cotton plants in the experimental plot was known, the NTC 
was calculated. 

Cotton in all plots was harvested by hand, and the production corresponding to each 
experimental plot was obtained through actual measurement. The field survey data are 
shown in Appendix A, which is divided into three tables corresponding to three different 
size plots (Tables A1–A3). 

All the ground observations and UAV data were acquired on 22 October 2021 (Figure 
3). 

  
(a) (b) 

Figure 2. Original image of the study area.

https://www.agisoft.com


Drones 2022, 6, 254 5 of 23

2.2.2. Field Survey Data

Through random sampling and manual counting, the Number of Total open Cotton
bolls (NTC) from 10 (18.24 m2, 54.72 m2) or 15 (63.00 m2) cotton plants were obtained.
Because the total number of cotton plants in the experimental plot was known, the NTC
was calculated.

Cotton in all plots was harvested by hand, and the production corresponding to each
experimental plot was obtained through actual measurement. The field survey data are
shown in Appendix A, which is divided into three tables corresponding to three different
size plots (Tables A1–A3).

All the ground observations and UAV data were acquired on 22 October 2021
(Figure 3).
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3. Methods

The reflectivity bands (blue, green, red, red-edge, and near-infrared) from the or-
thomosaic image were used to calculate cotton boll indices that highlighted the spectral
characteristics of the cotton boll. Adaptive threshold segmentation was applied to extract
cotton boll pixels. The extracted results and field survey data were assessed using correla-
tion analysis, and the model was built according to the results of the correlation analysis.
The method was divided into three parts: (1) cotton boll index calculation, (2) extraction
of cotton bolls and correlation analysis, and (3) modeling and performance assessment
(Figure 4).
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3.1. Cotton Boll Index Calculation

Spectral analysis using UAV data from the cotton pre-harvest period was performed.
The spectral differences between bolls and other ground objects at the time of harvest were
analyzed. Then, we designed the boll index based on the results of the spectral analysis.

3.1.1. Spectral Analysis

The visual characteristics of the cotton bolls were analyzed. Cotton bolls are visually
white, indicating that they have high reflectance in the visible light band (blue, green, and
red). If an index is designed to highlight the high reflectivity feature in the visible light
band, it will have a better performance for extracting bolls. This was confirmed by the
results of the quantitative analysis of the boxplot (Figure 5). Boxplots are widely used for
visualizing the distribution of continuous unimodal data [24,25].

The reflectivity of cotton bolls in the five bands was different from that of non-
cotton-boll objects. From short to long wavelengths, there was a consistent downward
trend in cotton boll pixels, and the reflectivity in the near-infrared band was slightly
higher. However, non-cotton-boll objects exhibited an upward trend from shortwave to
longwave radiation.

Different reflectivity characteristics can be used to design a cotton boll index that
distinguishes open cotton bolls from the background. Cotton bolls have high reflectivity
in visible light and low reflectivity in the infrared band. On the contrary, non-cotton boll
targets have high reflectivity in the infrared band and low reflectivity in the visible light
band. The reflectance data obtained by the boxplot analysis are shown in Table 2:
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Table 2. The reflectance data obtained by the boxplot analysis. C for cotton and O for others.

Blue Green Red Red-Edge NIR

C O C O C O C O C O

Mean 0.27 0.08 0.23 0.09 0.19 0.10 0.16 0.10 0.17 0.11
STD 0.08 0.05 0.08 0.05 0.07 0.05 0.06 0.05 0.05 0.05
25% 0.21 0.05 0.17 0.05 0.14 0.06 0.12 0.07 0.13 0.08
50% 0.26 0.07 0.22 0.08 0.19 0.09 0.16 0.10 0.17 0.11
75% 0.33 0.11 0.28 0.13 0.24 0.13 0.20 0.14 0.21 0.14

3.1.2. Index Design

Remote sensing indices are algebraic combinations of several spectral bands designed
to highlight objects [26]. The most widespread type of index used is the mathemati-
cal combination of reflectance bands. Many scientists have proposed different forms of
indices [27–29], including normalized, ratio, difference, and summation. This study also
adopts these methods for constructing a remote sensing index.

It can be seen from the spectral analysis that the reflectance of the cotton bolls and other
targets is significantly different. Cotton bolls have high reflectivity in the visible bands (red,
green, and blue) and low reflectivity in the infrared bands (red-edge and near-infrared). On
the contrary, other targets have high reflectivity in the infrared band and low reflectivity
in the visible light band. To highlight this feature, three arithmetic methods for visible
and infrared bands were difference (d), ratio (r), and normalization (n). Through the index
calculation, the pixels of cotton bolls have high values, and the pixels of other objects have
low values.

In order to explore whether the red-edge band has an effect on the index performance,
the red-edge band did not participate in the construction of all indices.

In order to explore whether it is possible to highlight cotton bolls in the visible light
band only, an attempt was made to construct some indices with the red band instead of the
infrared information. This is because the reflectance performance of the red band in the
spectral analysis is relatively closer to the infrared information than the blue/green band.

In visible bands, the difference between cotton bolls and other targets in the blue and
green bands is larger than that in the red band. Some indices were designed to explore
whether the goal can be achieved without using the red band.

Thirty-four indices were designed. Considering the band acquisition capabilities of
different sensors, three combinations were divided. Four methods for combining forms
across bands were established. The three combinations were as follows: only visible light
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bands (Combination 1, C1), the combination of visible light bands and near-infrared bands
(Combination 2, C2), and the combination including visible light bands, near-infrared
bands, and red-edge bands (Combination 3, C3). The four methods for combining bands
were the difference (d), ratio (r), normalization (n), and summation (sum).

In Table 3, the calculation formulas and abbreviations for all indices are listed.

Table 3. All indices, including the three combinations (C1, C1, and C3.) The four methods for
combining bands were the difference (d), ratio (r), normalization (n), and summation (sum).

C1 C2 C3
Blue − Red b-r_d Blue − NIR b-nir_d Blue − (RE + NIR) b-renir_d

Blue
Red b-r_r Blue

NIR b-nir_r Blue
RE+NIR b-renir_r

Blue−Red
Blue+Red b-r_n Blue−NIR

Blue+NIR b-nir_n Blue−(RE+NIR)
Blue+RE+NIR

b-renir_n
Green − Red g-r_d Green − NIR g-nir_d Green − (RE + NIR) g-renir_d

Green
Red g-r_r Green

NIR g-nir_r Green
RE+NIR g-renir_r

Green−Red
Green+Red g-r_n Green−NIR

Green+NIR g-nir_n Green−(RE+NIR)
Green+RE+NIR

g-renir_n
Blue + Green − Red bg-r_d Blue + Green − NIR bg-nir_d Blue + Green − (RE + NIR) bg-renir_d

Blue+Green
Red bg-r_r Blue+Green

NIR bg-nir_r Blue+Green
RE+NIR bg-renir_r

Blue+Green−Red
Blue+Green+Red bg-r_n Blue+Green−NIR

Blue+Green+NIR bg-nir_n Blue+Green−(RE+NIR)
Blue+Green+RE+NIR

bg-renir_n
Blue + Green + Red − NIR bgr-nir_d Blue + Green + Red − (RE + NIR) bgr-renir_d

Blue+Green+Red
NIR bgr-nir_r Blue+Green+Red

RE+NIR bgr-renir_rBlue + Green + Red bgr_sum
Blue+Green+Red−NIR
Blue+Green+Red+NIR bgr-nir_n Blue+Green+Red−(RE+NIR)

Blue+Green+Red+RE+NIR
bgr-renir_n

3.2. Extraction of Cotton Boll and Correlation Analysis

Band math was applied to UAV orthomosaic images to obtain the cotton boll index
introduced in Section 3.1, and the spectral reflection characteristics of the open cotton boll
were highlighted on the index map. A gaussian filter was used on the cotton boll index
to remove speckle noise. Gaussian filters are linear smoothing filters often used to reduce
noise during image processing. This process uses a pixel-level weighted average approach.
The value of each pixel is calculated as a weighted average of the pixel and the adjacent
pixels, which can effectively suppress normal noise. A Gaussian filter was applied to the
index image to produce a smooth image to combat the distributed noise present in the
cotton boll index grayscale map. The equation for the 2D Gaussian filter is [30]:

G(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (1)

where x and y represent the distance between the central pixel and its neighbors, and σ
represents the standard deviation. In the experiment, we chose the convolution kernel of
(3,3) with a standard deviation of 0.8.

The Otsu method was then applied for global threshold segmentation. The Otsu
algorithm was proposed by the Japanese scholar Otsu in 1979 and is known as the Otsu
method, as well as the maximum interclass variance method [31]. The basic principle is to
divide the image into two parts, foreground and background, according to the grayscale
characteristics of the image. For the best threshold, the difference between the two parts
should be the largest. We used the maximum inter-class variance as the criterion in the
Otsu algorithm to assess the difference. The result of the segmentation was binarized to
obtain an open cotton boll mask.

We used correlation analysis to quantitatively evaluate cotton boll masks generated
from 34 boll indices. Correlation is often used to determine if there is an association
between two observed variables and to estimate the strength of this relationship. The
Pearson correlation is a measure of the linear association between two normally distributed
random variables and is commonly denoted as r [32]. It is defined as follows:

r = ∑ (X − X)(Y − Y)√
∑ (X − X)2

∑ (Y − Y)2
, (2)

where X and Y are two random variables, and X and Y are their mean values.
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The density metric was constructed before the correlation analysis was implemented.
Because the area of the experimental plots was different, the Number of open Cotton boll
Pixels (NCP) in each plot was converted into a metric that represents NCP per square
meter, which aims to evaluate the average cotton boll density in different plots. The NCP
in different plots was divided by the area of the experimental plots to obtain the DCP.

DCP =
NCP

the area of the plot

(
1/m2

)
. (3)

DCP is involved in correlation analysis with field survey data, DTC, and yield. The
better the correlation between the DCP and the field survey data, the better the index
used to produce the boll mask is at highlighting the characteristics of the cotton boll. The
statistical process of DCP is shown in Figure 6.
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Figure 6. The yellow frame is the boundary of the experimental plot, the red mask is generated by
the open cotton boll index, and the green pixels are the pixels that DCP needs to count. The boundary
of the experimental plots was applied to the zonal statistics of the cotton boll mask to obtain DCP in
each plot.

3.3. Modeling and Accuracy Evaluation

Since the goal of this paper was to use only the cotton boll index to estimate cotton
yield, yield data from a field survey were used as the output data for the model. DCP
represents the average flocculation condition of the experimental plot. DCP indicates
how many boll pixels there are in a plot. The larger the value is, the better the plot is for
harvesting. DCP was used as the input data of the model, which is an indicator generated
by the index.

Cross-validation (CV) was used to evaluate the model and for hyperparameter se-
lection. It can generate a reliable assessment of model performance and reduce contin-
gency [33]. The idea of k-fold cross-validation is to leave out a certain number of samples at
a time, perform the validation, and repeat the process k times. Our data were all manually
sampled, so the amount of data was small (125 sets). The value of k was set to 5 so that
25 sets of data were left out at a time for training.

We implemented five algorithms commonly used in yield estimation: Linear Regres-
sion (LR), Support Vector Regression (SVR), Classification and Regression Trees (CART),
Random Forest (RF), and K-Nearest Neighbors (KNN). All model hyperparameters were
determined through the grid search via cross-validation.

The optimal hyperparameters of the models are shown in Table 4.

Table 4. Optimal hyperparameters after the grid search.

Model Optimal Hyperparameters after Research Grid

Support Vector Machines Kernel: linear, C: 22

Random Forest max_depth: 3, max_features: auto,
min_samples_leaf: 4, n_estimators: 60

CART max_depth: 4, min_samples_leaf: 4, splitter: best
KNN n_neighbors: 14
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3.3.1. Linear Regression

Many scholars use LR to establish the yield estimation model, and the model exhibits
good estimation performance [34–36].

The equation for simple linear regression is of the form:

Y = a0+a1X + ε, (4)

where Y is the response variable, X is the predictor variable, a0 and a1 are the regression
coefficients or regression parameters, and ε is an error term to account for the discrepancy
between the predicted data from Equation (4) and the observed data.

For a dataset (xi, yi) in which i = 1, 2, . . . , n, the optimal parameters a0 and a1 are
usually estimated by the least squares method, and its goal is to minimize the sum of the
squares of ε:

n

∑
i=1
ε2

i =
n

∑
z=1

(yi − α0 − a1xi)
2. (5)

3.3.2. Support Vector Regression

SVR is an extension of Support Vector Classification (SVC) proposed by Boser [37].
SVR is an algorithm for estimating the relationship between the system input and output
based on the available samples or training data. Input data and output data are jointly
represented by an n-dimensional space. The objective of the support vector machine
algorithm is to identify a hyperplane in the space that distinctly represents the relationship
between input data and output data.

The vital step in SVR is the selection of the kernel function, which is often used to
translate the dataset from a low- to high-dimensional space to better express the relationship
between input data and output data. Various kernel functions were previously proposed
and used in a wide variety of applications, such as the linear, polynomial, radius basis, and
sigmoid functions.

The linear kernel was used in our regression experiments to construct a linear regres-
sion model. SVR and the simple linear regression described in Section 3.3.1 represent the
predictive performance of the linear model.

3.3.3. Classification and Regression Trees

CART are machine-learning methods for constructing estimation models from data [38].
CART use a nonparametric regression technique that develops a decision tree based on a
binary partitioning algorithm, which divides the current sample data into a left subtree and
a right subtree until every leaf node is homogeneous or the function used to measure the
quality of a split is minimized.

The CART method is widely used in the field of parametric regression [39,40]. There-
fore, it has been integrated into many machine learning libraries. We used the Decision-
TreeRegressor in the sklearn library 0.24 (https://scikit-learn.org/stable/, accessed on
1 September 2022).

3.3.4. Random Forest

RF is another popular ensemble learning method for both regression and classification
problems [41]. Ensemble learning is an approach to machine learning. Multiple models are
trained for the same problem, and the average of the multiple models is used to improve
the predictive accuracy and control overfitting.

RF is a bagging ensemble learning method. It uses bootstrap technology to randomly
sample from the original training sample data, generate a new training sample combination,
and combine the decision trees generated by each sample set into a decision forest. The
decision result is determined by the number of votes of all decision trees. The key parameter
of the model is n, which is the number of trees in the forest, and n was set as 60 to distinguish
it from CART.

https://scikit-learn.org/stable/
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3.3.5. K-Nearest Neighbors

KNN predicts the value of a target variable based on the similarity between the target
value and its spatial neighbors [42]. It is a nonparametric model whose most critical
hyperparameters are the number of neighbors (n) and the number of adjacent data points.

The n value was set to 14, and Euclidean distance was the criterion for distance
judgment. The mean of the 14 nearest sample points was assigned to the regressor as a
predicted value.

3.3.6. Accuracy Evaluation

In this paper, the performance of the models was assessed using two different metrics:
the relative root mean square error (rRMSE) and determination coefficient (R2).

rRMSE =

√
1
n ∑n

i=1(ŷi − yi)
2

yi
× 100, (6)

R2 = 1 − ∑(ŷi − yi)
2

∑(yi − yi)
2 (7)

where ŷi is the predicted value, yi is the actual value, and yi is the mean of actual value.
Smaller values of rRMSE indicate that the forecasting models have better performance.

The R2 value ranges between 0 and 1. The closer the value of R2 is to 1, the better the
performance of the model [43].

4. Results and Analysis

The boll extraction results for all indices are presented in Section 4.1, and visual
analysis was performed. The extraction effect of the index is quantitatively evaluated
in Section 4.2. The correlation analysis of the extracted DCP with DTC and yield was
performed, respectively, and the results show that our index is more correlated with yield,
with a Pearson correlation coefficient of 0.84. The best index extraction results and the
modeling effect of actual yield are shown in Section 4.3.

4.1. Extraction of Cotton Bolls

The cotton boll index combined with the Gaussian filter and Otsu method can be used
to extract cotton bolls from the cotton field background. Thirty-four open cotton boll masks
in the center area of the experimental field are shown in Figure 7.

By visual analysis, the extraction of the indices in C1 had the worst performance. There
were many false negatives in b-r_d, b-r_r, and bg-r_r. The open cotton bolls in the original
image were not masked. Many false positives appeared in g-r_r. Portions of the original
image that were not open cotton bolls were also masked. The performance of bgr_sum was
better than others, and the white cotton bolls in the original image were covered by the
red mask.

The extraction based on the indices in C2 was significantly improved. The index extrac-
tion of all C2 combinations was relatively stable. The white boll pixels in the original image
were covered by the red mask. As the number of bands participating in the construction of
the index increased, the extraction performance improved.

The extraction performance of the indices in C3 was similar to that of the indices in
C2. However, the performance of the difference method was poorer, and the false positives
were obvious. The performance of other combinations was consistent with that of the
extraction of indices in C2.

Compared with the difference and ratio methods, the index extraction performance
of the normalized method was better. For example, in the combination of bgr-renir, there
were many false negatives in the results of the difference method, the results of the ratio
method were slightly better, and the results of the normalized method almost completely
masked the boll pixels.
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Indices with multiple bands, such as bgr-nir_n, bgr-nir_r, and bgr-renir_n, performed
better than indices with fewer bands, such as bg-nir_n, bg-nir_r, and bg-renir_n.

4.2. Correlation Analysis

The correlations between the results extracted by different indices and the field survey
data were analyzed at the plot scale. Sections 4.2.1 and 4.2.2 show the correlation results
for different indices with DTC and yield, respectively.

4.2.1. Correlation between DCP and DTC

The correlation analysis introduced in Section 3.2 was used to evaluate the performance
of the indices in highlighting cotton bolls. The results are shown in Figure 8.

The b-r was not worth recommending. It exhibited the worst performance for all three
calculation methods: difference, ratio, and normalization. The results showed that this
band combination could not be used to highlight cotton bolls. However, several indices
exhibited good performance, with correlation coefficients greater than 0.7, such as g-nir_n,
bg-nir_n, bgr-nir_n, and bgr-renir_n.

All indices had some prominent effects on boll characteristics. The indices in C1
exhibited the worst performance, and the correlation coefficient was less than 0.4. The
indices in C2 performed the best, with a correlation coefficient of 0.75. After the introduction
of the red-edge band, the indices in C3 achieved performance similar to that of the indices
in C2.

The four calculation methods exhibited a pattern in the indices constructed with
the participation of infrared bands: the normalized calculation method had the highest
correlation coefficient, the ratio method had the second-highest value, and the difference
method had the lowest value.
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Figure 8. The correlation between DTC and DCP was extracted from each index. Three combinations
and four calculation methods are included in the figure.

Bgr-nir_n achieved the best performance, and the correlation coefficient reached 0.75.
It normalized the NIR band by the sum of blue, green, and red bands to highlight the
characteristics of the high reflectivity of cotton bolls in the visible light band. Bgr-renir_n
also achieved good performance, and the correlation coefficient reached 0.71. Vegetation
exhibited wide variation in the red-edge band, so the inclusion of the red-edge band
introduced uncertainty, which may explain why bgr-renir_n was inferior to bgr-nir_n.

4.2.2. Correlation between DCP and Yield

In this section, we analyze the relevance of the DCP extracted by each index and the
yield based on the ground survey (Figure 9).
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All indices had a greater correlation with yield than DTC. Among them, the indices in
C1 were the worst, and the correlation coefficients were all less than 0.53. However, once
the infrared information was added, the correlation coefficient increased significantly. The
correlation coefficient of the indices in C2 and C3 was as high as 0.84. The results for the
indices in C2 and the indices in C3 were similar.
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Among the three combinations, the index involving the red, green, and blue bands
simultaneously obtained the best performance. In the C1 combination, bgr_sum had the
best performance with a correlation coefficient of 0.53. In the C2 combination, bgr-nir_n
had the highest correlation coefficient of 0.84. In the C3 combination, bgr-renir_n had the
best performance, and the correlation coefficient was 0.84.

In this analysis, a pattern similar to that of the analysis of the correlation with DTC
was observed; the correlation coefficient of the normalized calculation method was the
highest, the ratio form resulted in the second-highest value, and the difference method had
the lowest value.

4.3. The Results of Model Establishment and Accuracy Evaluation

Bgr-nir_n contributed to the construction and selection of the yield estimation model.
Based on the results in Section 4.2, the correlation coefficient between bgr-nir_n and DTC
was 0.75, which was the highest among all indices, and the correlation coefficient between
bgr-nir_n and yield reached 0.84, which was also the highest. At the same time, considering
the band acquisition capability of the sensor, the index using the near-infrared band and
the visible light bands may have wider applications. Therefore, we recommend bgr-nir_n.

Five-fold cross-validation was used to determine the R2 and rRMSE on the training
set and testing set (Figure 10).

Our method provided an unbiased estimate of cotton yield. The predicted and actual
values of the five models were distributed on both sides of the 1:1 line, and the distribution
was relatively tight.

The results of the model assessment are summarized in Table 5.

Table 5. Assessment of the model fitting performance based on R2 and rRMSE. For each column of
data, the red–yellow–green level is used to indicate the quality of the evaluation metrics. Green is
good, red is bad, and yellow is the middle.

Model

Average Best

rRMSE
Training

rRMSE
Testing

R2

Training
R2

Testing
rRMSE

Training
rRMSE
Testing

R2

Training
R2

Testing
CART 7.213 8.719 0.784 0.678 6.997 8.215 0.796 0.724
KNN 8.411 8.898 0.706 0.664 8.167 8.297 0.722 0.707

RF 7.478 8.367 0.767 0.704 7.250 7.560 0.781 0.755
LR 8.322 8.428 0.712 0.699 8.235 7.831 0.718 0.759

SVR 8.365 8.410 0.709 0.700 8.251 7.907 0.717 0.754

The best yield estimation was achieved by the random forest model. In five-fold cross-
validation, the average R2 reached 0.767 in the training set, and the average R2 reached
0.704 in the testing set. The highest value of R2 was 0.781 in the training set, and the highest
value of R2 was 0.755 in the test set. The average rRMSE was 7.478% and 8.367% in the
training and testing sets, respectively.

The linear regression model and support vector regression model achieved similar
performance. The average rRMSE reached 8.3% in the training set, and the average rRMSE
reached 8.4% in the testing set. The average R2 was approximately 0.71 in the training set,
and the average R2 exceeded 0.70 in the testing set.

There was obvious overfitting in the CART model. While the average R2 reached 0.784
in the training set, it reached only 0.678 in the testing set. The average rRMSE reached
7.213% in the training set but reached only 8.719% in the testing set, which may demonstrate
the high risk of overfitting by a single decision tree [44]. Random forest methodology solves
the overfitting problem by increasing the number of trees.

The KNN model exhibited the worst performance. In five-fold cross-validation, the
average R2 only reached 0.706 in the training set, and the average R2 reached 0.664 in
the testing set. The average rRMSE was 8.411% and 8.898% in the training and testing
sets, respectively.
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The difference in performance in the training and testing sets was less apparent for
the linear models. The average R2 for both the linear regression and the SVR model was
approximately 0.7 in both the training and testing sets. However, there was some difference
in the average R2 of the nonlinear model on the training set and the testing set, and the
difference was less than 0.11.
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The random forest method was applied to generate the yield map (Figure 11). The
high-yield areas were concentrated in the northern part of the cotton field, and the southern
part had lower yields. One possible reason is that better farmland management measures
were implemented in the northern part of the cotton field.
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5. Discussion

The question of whether the remote sensing of cotton fields by UAVs will be blocked
by the canopy was raised before the experiment. A conjecture was put forward that
when cotton is close to harvest, cotton plants naturally senesce, the canopy shielding
effect is weakened, and UAVs can monitor the entire plant, especially in cotton fields with
defoliation and ripening treatments.

Our experiments in this paper confirmed this conjecture. In the later stage of cotton
boll opening, our method extracted the cotton bolls off the whole plant, which contributed
to the estimation of yield.

An additional experiment was designed to demonstrate the ability of UAVs to detect
cotton bolls throughout the cotton plant rather than just the canopy. First, open upper
cotton bolls were defined as the bolls harvested from the upper six branches of the cotton
plant. The Number of Upper Cotton bolls (NUC) in all plots was obtained from the ground
survey. The NUC was divided by the area of the experimental plot to obtain the Density of
the Upper Cotton bolls (DUC). DUC represents the canopy information of cotton plants.
DTC represents information for the entire cotton plant. The correlation between DCP and
DUC was also analyzed (Figure 12). All index-extracted DCP were not relevant to DUC,
and the correlation coefficients were less than 0.3. However, the experimental results in
Section 4.2.1 show that the correlation coefficient between DCP and DTC reached 0.74.
DCP was more relevant to DTC than DUC. This also proved that the entire plant is being
monitored by the UAV and not just the canopy.
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There was additional evidence (Figure 13) that UAV detection had some penetration
capability in the preharvest period.
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The relationship between DUC and yield was weak. This is because the yield was
harvested from all bolls and not just the upper bolls. The relationship between DTC and
yield was slightly stronger. Our method is significantly closer to fitting yields with DTC
than with DUC. This also showed that UAV remote sensing could provide information for
the whole plant.

Since UAV remote sensing has a good ability to detect cotton bolls in cotton fields
with defoliation and ripening treatment, there are many applications for UAVs to guide
cotton production in the future, such as inversion of boll opening rate, evaluation of the
defoliation effect, and yield prediction and estimation.

In the correlation analysis, we found that our method was more appropriate for yield
than DTC. We considered boll size as a possible reason for this phenomenon.

In Figure 14, four pixels (black squares) are occupied by open cotton bolls of different
sizes (red circles). All four of these pixels were identified as open cotton boll pixels, resulting
in the same DCP corresponding to different DTC. However, the yield of the red circles
shown in Figure 14a,b should be similar.
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bolls. They have similar yields, but very different boll counts.

This can also explain the phenomenon seen in Figure 14, where the relationship
between DCP and yield is better than the relationship between DTC and yield. DCP
represents the number of cotton boll pixels in the cotton field, and DTC represents the
number of cotton bolls. DCP, to some extent, attenuates the effect of boll size on yield
estimates. This suggests that our method may be more accurate than the traditional method
of using boll count.

Our method is more accurate than the existing method that only uses the extraction
of cotton bolls by threshold segmentation for yield estimation. OTSU and morphological
filtering can extract boll area per grid, and this indicator was used to estimate cotton yield
with R2 up to 0.65 [16]. Laplacian thresholding was used to calculate the ratio of Cotton
Unit Coverage (CUC), and this parameter was used for yield modeling. The R2 reached
0.34 without removing outliers. The above two methods apply thresholding segmentation
to the original reflectance [15]. In this paper, the DCP was obtained by calculating the index
before threshold segmentation. Instead of using the original band directly, the cotton boll
index highlighted the characteristics of the cotton bolls. Spectral information was fully
utilized so that the average R2 of five cross-validations obtained by our method was 0.77.

6. Conclusions

Previous studies on the extraction of cotton bolls directly used the reflectivity of the
original band. A more direct approach is to design an index based on spectral characteristics
to extract cotton bolls. In this paper, remote sensing indices were calculated by multispectral
UAV images to highlight the spectral characteristics of cotton bolls, and the open cotton
bolls were extracted by threshold segmentation. The performance of different indices was
compared using correlation analysis. The index with the best performance and the yield
from the field survey was modeled. The main conclusions of our study are as follows:

1. Bgr-nir_n, an index that normalizes the NIR band by the sum of blue, green, and red
bands, exhibited the best performance in highlighting information on open cotton
bolls. The correlation coefficient between DCP extracted from this index and the
measured yield was 0.84;

2. DCP extracted from bgr-nir_n combined with the random forest methodology achieved
an unbiased estimation of cotton yield on the plot scale; the average R2 based on
five-fold cross-validation was 0.77, and the average rRMSE was 7.5%.
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The results of this study support a new approach to extracting cotton bolls by cal-
culating the remote sensing index. Our method exhibited higher estimation accuracy
than the existing methods that only use the extraction of cotton bolls for yield estimation.
However, our method is only applied in the area where the experimental field is located. If
satisfactory accuracy can be obtained in other areas, it will show that our method is robust
to regional changes.
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Appendix A

Table A1. Field A survey data.

ID NTC Actual Production/g

A1 5663.87 22,140.00
A2 5493.60 20,500.00
A3 5057.60 23,550.00
A4 5819.67 25,170.00
A5 5140.80 25,570.00
A6 5031.00 21,360.00
A7 5627.53 21,680.00
A8 5925.33 23,750.00
A9 5704.67 26,530.00
A10 5510.27 25,060.00
A11 5804.93 22,480.00
A12 5279.60 24,160.00
A13 4728.00 22,330.00
A14 5738.53 26,160.00
A15 5720.40 26,110.00
A16 5691.73 20,180.00
A17 5516.00 23,050.00
A18 5211.60 25,210.00
A19 5514.13 26,690.00
A20 5831.20 28,030.00
A21 5456.07 22,080.00
A22 5566.25 23,570.00
A23 5842.60 23,920.00
A24 5740.00 27,900.00
A25 6072.00 27,750.00
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Table A2. Field B survey data.

ID NTC Actual Production/g

B1 1645.00 10,381.76
B2 2094.20 9973.11
B3 1953.00 9536.92
B4 1911.60 11,298.52
B5 2739.10 12,377.12
B6 1938.00 13,010.75
B7 1968.00 12,341.12
B8 2212.50 10,028.61
B9 1887.60 10,331.08

B10 2352.00 9645.34
B11 2042.40 9332.29
B12 2074.60 11,015.15
B13 1829.00 11,137.88
B14 1903.50 12,335.85
B15 1834.00 12,233.03
B16 2002.00 12,635.14
B17 1864.20 11,373.58
B18 2065.00 11,612.64
B19 2989.60 10,365.61
B20 2038.20 12,290.72
B21 2673.20 12,416.68
B22 1753.80 11,543.43
B23 1512.80 10,899.73
B24 2204.60 10,413.39
B25 2201.90 9340.95
B26 2256.00 10,398.35
B27 2401.60 11,656.75
B28 2390.10 12,038.14
B29 2394.40 12,011.73
B30 2081.20 12,116.70
B31 1686.40 11,516.07
B32 2186.80 11,802.84
B33 1800.00 10,589.28
B34 1152.40 11,754.78
B35 1292.00 12,231.23
B36 2232.10 11,724.94
B37 1898.00 11,873.73
B38 1928.00 12,451.56
B39 2016.90 13,596.48
B40 2175.40 11,160.55
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Table A3. Field C survey data.

ID NTC Actual Production/g

C1 928.20 5110.38
C2 967.60 4517.57
C3 854.90 4372.02
C4 809.10 4613.21
C5 658.00 4892.43
C6 834.20 5264.71
C7 674.50 4704.62
C8 782.00 5184.57
C9 868.00 5201.47

C10 529.30 5246.20
C11 669.90 5809.46
C12 671.50 5138.40
C13 676.80 4737.80
C14 638.40 4323.09
C15 569.50 4344.34
C16 790.50 4739.49
C17 696.60 4376.91
C18 930.60 5008.68
C19 907.80 5400.04
C20 693.60 5593.89
C21 761.40 4861.65
C22 754.80 6119.89
C23 940.50 5043.02
C24 643.20 5541.37
C25 756.00 3979.26
C26 639.60 4034.90
C27 481.00 4030.50
C28 768.00 5069.61
C29 739.50 4459.73
C30 846.00 5057.83
C31 717.80 5099.76
C32 943.40 4919.87
C33 1100.00 4863.21
C34 921.50 5200.45
C35 897.60 5133.75
C36 789.60 4736.87
C37 916.70 5116.49
C38 795.60 4361.68
C39 791.70 4330.99
C40 875.50 4513.94
C41 797.90 4274.79
C42 897.60 5219.46
C43 911.80 4838.37
C44 949.40 5150.25
C45 865.20 4860.50
C46 738.00 4792.67
C47 632.40 4907.05
C48 777.60 4858.27
C49 717.80 4474.98
C50 556.80 3831.51
C51 639.00 3843.09
C52 671.60 5055.71
C53 703.10 4854.22
C54 809.60 4684.16
C55 595.90 4780.87
C56 791.20 5104.70
C57 838.30 4868.06
C58 855.60 5268.38
C59 600.60 5418.95
C60 662.40 4837.42
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