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Abstract: In this paper, a new adaptive observer is proposed to estimate the actuator fault and distur-
bance of a quadrotor UAV system with actuator failure and disturbance. Based on this, a nonsingular
fast terminal sliding mode controller is designed. Firstly, according to the randomness of faults and
disturbances, the UAV system under faults and disturbances is regarded as one of the Markov jump
nonlinear systems (MJNSs). Secondly, an adaptive observer is designed to simultaneously observe
the system state, fault, and disturbance. In order to improve the precision, the fast adaptive fault
estimation (FAFE) algorithm is adopted in the adaptive observer. In addition, a quasi-one-sided
Lipschitz condition is used to deal with the nonlinear term, which relaxes the condition and contains
more nonlinear information. Finally, a nonsingular fast terminal sliding mode controller is designed
for fault-tolerant control of the system. The simulation results show that the faults and disturbances
can be observed successfully, and that the system is stochastic stable.

Keywords: fault-tolerant control (FTC); nonsingular fast terminal sliding mode control (NFTSMC);
UAV; FAFE; Markov jump nonlinear systems (MJNSs)

1. Introduction

Markov jump systems (MJSs) were firstly proposed by N. M. Krasovskii and E. A.
Lidskii in 1961 [1]. Over the years, relevant theories have been continuously improved.
Since they can better describe the system of stochastic mode jump, MJSs have been gradually
proven valid in the practical [2–4], and have had considerable research and application
in the fields of economics, physics, unmanned systems, machine learning, and so on.
On the other hand, unmanned aerial vehicles (UAVs) first appeared in the 1920s. Due
to their outstanding performance on the battlefield, Western countries ushered in an
upsurge of UAV research in the 1990s. In recent years, more and more cases of UAVs
being used in rescue and disaster relief have sprung up [5–8]. Considering the safety and
stability of UAVs, they can replace human beings by going to dangerous disaster relief sites
and accomplishing some dangerous tasks. Due to the particular working environment,
a quadrotor UAV system is easily affected by the wind environment, carried objects, human
intervention, and other factors in the process of performing missions. Therefore, the output
of the UAV system could be unstable. This kind of fault can be regarded as a Markov jump
process, and the UAV system can be described by the continuous-time MJSs.

At present, there have been many studies on the stability and control law of Markov
jump systems. Guan studies the stability of T-S fuzzy Markov jump systems based on
sampling control in [9]. Wang studies the stochastic stability of the MJSs, which are affected
by parameter uncertainty and actuator saturation [10]. Instead of asymptotic stability,
Chen et al. [11] paid more attention to the changes in the transient properties. They studied
the finite-time stability of a class of disturbed MJSs with random time delay. In terms of
the reinforcement learning of agents, Jiang creatively combines the reinforcement learning
method with Markov jump nonlinear systems (MJNSs). Based on this, he realizes optimal
tracking control for MJNSs in [12], which opened new data-based fields in the studies

Drones 2022, 6, 233. https://doi.org/10.3390/drones6090233 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones6090233
https://doi.org/10.3390/drones6090233
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0001-8002-7681
https://doi.org/10.3390/drones6090233
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones6090233?type=check_update&version=1


Drones 2022, 6, 233 2 of 20

of MJSs. He et al. [13] utilized another reinforcement learning method with the optimal
control for Markov linear jump systems.

Furthermore, fault-tolerant control (FTC) has been developed and is involved in
industrial systems. Usually, FTC can be divided into passive and active FTC. Sliding
mode control (SMC), which was proposed for a class of control problems with unknown
disturbance, is one of the primary methods for FTC. Since it owns the advantages of quick
response, and easy calculation and design, SMC has been used to design controllers and
observers in fault diagnosis. For passive FTC, Liu et al. [14] study a novel SMC of a
classic uncertain stochastic system with time delay, and design the corresponding adaptive
sliding mode control law. Two experiments demonstrate the advantages of this method.
Besides, for active FTC, Le et al. [15] proposed an extended state observer to estimate the
fault of a robot manipulator. They designed a fault-tolerant conventional sliding mode
controller and proved its stability. Considering a system with uncertain disturbances and
actuator faults, Mao et al. [16], who combined the adaptive method with SMC, proposed a
novel fault-tolerant controller to deal with the unknown bound of the input uncertainty.
For nonlinear systems, Guo et al. [17] combined SMC with a radial basis function neural
network and proposed a novel FTC control scheme. Zhao et al. [18] designed a novel
nonsingular terminal sliding mode controller (NTSMC) for a quadrotor affected by variable
mass. Compared with other SMC or FTC methods, the new FTC performs better.

Meanwhile, observer based on fault diagnosis and fault-tolerant control is a significant
active FTC method. This method monitors the system’s original state and actual state
by establishing an observer system to observe the type and time of fault, and provide an
essential reference for subsequent maintenance. A disturbance observer [19] combined with
neural networks, FO calculus and SMC is utilized to approximate nonlinearities, actuator
faults, and so on. For a Surface Vehicle, Wang [20] investigates a finite-time observer to
design FTC to handle input saturations and uncertain faults. For multi-agent systems,
an adaptive observer is designed for an event-triggered FTC to compensate for the fault
in [21]. Song et al. [22] proposed an adaptive hybrid fuzzy output feedback controller based
on a fuzzy observer to estimate the system state. A novel composite adaptive disturbance
observer used to estimate the disturbances and faults is given to design the FTC in [8].

However, the fault-tolerant theorems are seldom used to control Markov jump systems.
Scholars have concentrated on this field and done some research. Considering possible
multiple faults in high-speed trains, a novel disturbance observer is given in [23] to promise
the system’s stability. Yang et al. [24] regarded a specific aero-engine system as one of the
MJSs. Then, they considered that under the conditions of unknown sensor fault, actuator
fault, and bounded external disturbance, a linear generalized reduced-order observer is
designed to realize fault estimation, and the accuracy and effectiveness of the algorithm
were validated. Adaptive and fuzzy theorems are utilized in the FTC of MJNSs in [25] to
handle additive and multiplicative faults. For networked control systems, Bahreini et al.
regarded them as classic MJSs. In consideration of the difficulty of estimating stochastic
fault, a novel auxiliary system approach is used to estimate the random fault of continuous-
time MJSs in [26]. In the case of partly unknown transition probabilities, they also proposed
a new FTC to deal with actuator faults in [27]. When actuator and sensor fault happened
simultaneously, Chen et al. [28] proposed two novel fault estimation observers to estimate
the faults of MJSs.

In the field of fault estimation and UAV control, there have also been development
and research in recent years. A novel robust nonlinear controller is proposed for a UAV
system in [29] to achieve Cartesian position trajectory tracking capability. Besides, a novel
fault estimation method based on an adaptive observer is designed for taking off mode.
Nian et al. [30] designed a robust adaptive fault estimation observer to obtain the actuator
fault of a UAV system. Then, they proposed a dynamic output feedback fault-tolerant
controller for the stability of the system. For a high-altitude long-endurance UAV, an es-
timation algorithm is proposed to estimate the three-axis accelerations in [31]. Through
flight tests, the algorithm can detect the fault of the accelerometer. Combining with a novel
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two-stage Kalman filter, a fault estimation algorithm is designed in [32]. Using a sensor
fault detection algorithm and robust Kalman filter, the state parameters of the UAV can
be accurately estimated. Goslinski et al. [33] also pay attention to estimation of the state
of UAVs, and they proposed a quadrotor model for fault-tolerant observation and a new
filtration method.

In order to facilitate analysis and calculation, the theoretical research is mostly based
on a linear system. In practical engineering applications, most systems will be affected
by nonlinear phenomena, which will destroy the stability of the system. This work will
concentrate on the observer-based FTC of MJNSs. We take the specificity of the work
environment and the impact of nonlinearity on UAV systems into consideration, and that
actuator faults and disturbances are stochastic and hard to predict in advance. Therefore,
an observer with adaptive technology is designed in this work. A nonsingular fast terminal
sliding mode controller is adopted to improve the rapidity and to avoid the singularity.
Moreover, the Lyapunov-Krasovskii functional (LKF) and linear matrix inequalities (LMI)
techniques are utilized to guarantee the stochastic stability of the fault-tolerant controller.
The main contributions of this paper are summarized as follows:

1. We consider the specificity of the work environment, and the UAV system is regarded
as a Markov jump nonlinear system that is proven to be stochastically stable. The non-
linear term is satisfied with the quasi-one-sided Lipschitz condition, which relaxes
the constraints and contains more nonlinear information.

2. The FAFE algorithm is utilized to design the adaptive observer to estimate the fault
and disturbance, where there is is no need to know the bound of the fault in advance.

3. Based on the estimation given by the observer, a nonsingular fast terminal sliding-
mode fault-tolerant controller is applied to control the MJNS, which is proven stable
by the LKF.

4. The simulation results on a quadrotor UAV system show the feasibility of the theory.

The rest of this paper is arranged as follows: Section 2 gives a dynamic model of MJNSs
and some assumptions, lemmas, and definitions, which will be utilized in the following
sections. In Section 3, an adaptive observer is given to estimate the faults and disturbances
of the UAV system, and a nonsingular fast terminal sliding-mode fault-tolerant controller
whose stability is ensured by the Lyapunov-Krasovskii functional is designed. In Section 4,
by the numerical simulation on the UAV system, the feasibility of the method is proven.
Eventually, brief conclusions are given in Section 5.

2. System Description and Preliminaries
2.1. Quadrotor Kinematic Model

To establish the kinematic model of a quadrotor like Figure 1, it is necessary to analyze
the motion and the force of the system in the same coordinate system.

Figure 1. Model of a quadrotor.
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As is shown in Figure 1, the origin of body coordinate system B is the center of mass
of the quadrotor. The x-axis is the roll axis of the body, the y-axis is the pitch axis of the
body, and the z-axis is the yaw axis of the body. We select the reference coordinate system
E, whose origin coincides with the origin of the body coordinate system.

There is a rotation matrix from coordinate system B to E, which can be given by the
following formula.

RE
B(φ, θ, ψ) = Rx(φ) · Ry(θ) · Rz(ψ) (1)

where,

Rx(φ) =

1 0 0
0 cosφ sinφ

0 −sinφ cosφ

, Ry(θ) =

cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ

, Rz(ψ) =

 cosψ sinψ 0
−sinψ cosψ 0

0 0 1

 (2)

Therefore,

RE
B(φ, θ, ψ) =

cosθcosψ cosψsinθsinφ− sinψcosφ cosψsinθcosφ + sinψsinφ
cosθsinψ sinψsinθsinφ + cosψcosφ sinψsinθcosφ− cosψsinφ
−sinθ sinφcosθ cosφcosθ

 (3)

Regarding the quadrotor system as a rigid body and ignoring the change of the earth’s
shape and gravitational acceleration, the mass center motion equation can be written as:{

~F = md~V
dt

~M = d~H
dt

(4)

where V =
[
vx vy vz

]T is the velocity vector of the center of mass of the quadrotor, ~F is
the sum of all external forces acting on the quadrotor, m is the equality of the quadrotor, ~M
is the linear momentum, and ~H is moment of momentum of the quadrotor relative to the
ground coordinate system.

The elevating force and the torque can be given as:
F =

4
∑

i=1
kFω2

i

M =
4
∑

i=1
kMω2

i

(5)

where, kF is the lift coefficient, kM is the torque quotient, and ωi =
[
p q r

]T
(i = 1, 2, 3, 4)

is the angular rate of the ith motor. The conversion relationship between the angular
velocity of the Euler angle and the angular velocity of the body is as follows:p

q
r

 =

 φ̇− ψ̇sinθ
θ̇cosφ + ψ̇sinφcosθ
−θ̇sinφ + ψ̇cosφcosθ

 (6)

If the quadrotor is symmetrical, the moment of the inertia matrix can be given as:

Iφθψ =

Ix 0 0
0 Iy 0
0 0 Iz

 (7)

The equations of motion for angular velocity are as follows:Mx
My
Mz

 =

 ṗIx − ṙ Ixz + qr
(

Iz − Iy
)
− pqIxz

q̇Iy + pr(Ix − Iz) +
(

p2 − r2)Ixz
ṙ Iz − ṗIxz + pq

(
Iy − Ix

)
+ qrIxz

 (8)
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Therefore, we can obtain the kinematic equations of the quadrotor.



ẍ
ÿ
z̈
φ̈
θ̈
ψ̈

 =



Fx−Kx ẋ
m

Fy−Ky ẏ
m

Fz−mg−Kz ż
m

(Mx + (Ix − Iz)qr)/Ix(
My + (Iz − Ix)qr

)
/Iy(

Mz +
(

Ix − Iy
)
qr
)
/Iz


(9)

Design the input of the system,
U1 = kFl

(
ω2

1 −ω2
2 −ω2

3 + ω2
4
)

U2 = kFl
(
ω2

1 + ω2
2 −ω2

3 + ω2
4
)

U3 = kM
(
ω2

1 −ω2
2 + ω2

3 −ω2
4
)

U4 = k f
(
ω2

1 + ω2
2 + ω2

3 + ω2
4
) (10)

where U1, U2, U3 represent the control input of roll, pitch, and yaw, respectively, and U4 is
the input control of height.

Considering the UAV flying at low speed, we can simplify the model:



ẍ
ÿ
z̈
φ̈
θ̈
ψ̈

 =



(sinφsinψ+cosφsinθcosψ)U4
m

(−sinφcosψ+cosφsinθsinψ)U4
m

(sinθcosφ)U4
m

U1+θ̇ψ̇(Iy−Iz)
Ix

U2+φ̇ψ̇(Iz−Ix)
Iy

U3+φ̇θ̇(Ix−Iy)
Iz


(11)

In this paper, we pay more attention to the attitude of the quadrotor, and complete
further simplification of the model [34]:



φ̇
θ̇
ψ̇
φ̈
θ̈
ψ̈

 =



p
q
r

U1
Ix
U2
Iy
U3
Iz


(12)

Selecting the equilibrium points as [34], the state space equation can be written into:{
ẋ = Ax + Bu

y = Cx
(13)

where A =

[
O3×3 I3×3
O3×3 O3×3

]
, B =

[
O3×3
I−1
φθψ

]
, C =

[
I3×3 O3×3

]
.

2.2. Markov Jump Nonlinear Systems Dynamic Model

In practice, under the interference of external factors, actuator failure, uncertain
disturbance, and other influencing factors easily appear. Therefore, this paper comprehen-
sively considers these factors and gives the following dynamic model of a Markov jump
nonlinear system.{

ẋ(t) = A(r(t))x(t) + B(r(t))(u(t) + f (x(t), t)) + Fa(r(t)) fa(t) + Bω(r(t))ω(t)
y(t) = C(r(t))x(t)

(14)
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where, x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input vector, and y(t) ∈ Rp

is the measured output vector. The coefficient matrices A(r(t)) ∈ Rn×n, B(r(t)) ∈ Rn×m,
C(r(t)) ∈ Rp×n are known constant matrices. f (x(t), t) represents the nonlinear function,
fa(t) represents actuator failure, and ω(t) is the disturbance. In addition, Fa(r(t)) and
Bω(r(t)) are the constant matrices with appropriate dimensions and column full rank.

Let {r(t), t ≥ 0} be a Markov process with right continuous trajectories on the proba-
bility space (Ω, F, P). r(t) takes values in the finite set N = {1, 2, · · · , n}.

The state transition matrix Π =
(
πij
)

is set as:

Pr{r(t + δ) = j|r(t) = i} =
{

πijδ + o(δ), i 6= j
1 + πiiδ + o(δ), i = j

(15)

where, δ > 0, lim
δ→0

o(δ)
δ = 0. When i 6= j, πij > 0, which is the transition Rates (TRs) from

state i at time t to state j at time t + δ and satisfies that πii = −
n
∑

j=1,i 6=j
πij < 0.

Therefore, the transition rate matrix can be expressed as:

Π =

π11 · · · π1n
...

. . .
...

πn1 · · · πnn

 (16)

When the system is in the state i, that is, when r(t) = i, i ∈ N , A(r(t)), B(r(t)), C(r(t))
can be simplified to the real constant matrix Ai, Bi, Ci, and the nonlinear function f (x(t), t)
is written as fi(x(t), t).

System (14) can be rewritten as follows:{
ẋ(t) = Aix(t) + Bi(u(t) + fi(x(t), t)) + Fai fai(t) + Bωiω(t)
y(t) = Cix(t)

(17)

Remark 1. In this paper, N is the set of positive integers, and R is the set of real numbers. Rn

denotes the n-dimensional vector space and Rm×n denotes the space of all m × n-dimensional
matrices. AT represents the transpose of matrix A. ‖·‖ indicates the Euclidean norm of the vector.
The inner product of vectors x, y ∈ Rm is denoted by 〈x, y〉, and 〈x, y〉 = xTy.

Assumption 1. The nonlinear term fi(x(t), t) is continuous with x(t) and satisfies the following
inequality on the domain of definition:

〈 fi(x(t), t)− fi(x̂(t), t), x(t)− x̂(t)〉 ≤ (x− x̂)T M(x− x̂), x(t) ∈ Rn (18)

where, M is a real symmetric matrix and the one-sided Lipschitz constant matrix, and x̂ is the
estimation of x.

Assumption 2 ([35]). The nonlinear term fi(x(t), t) satisfies the quadratic inner-boundedness
condition. If ∃α, βεR is in a continuous closed region containing the origin, such that ∀x, x̂ ∈ Rn,

‖ fi(x(t), t)− fi(x̂(t), t)‖2 ≤ α‖x(t)− x̂(t)‖2 + β〈x(t)− x̂(t), fi(x(t), t)− fi(x̂(t), t)〉 (19)

Remark 2. The two assumptions are used to describe the quasi-one-sided Lipschitz condition.
In the system description, the nonlinear terms are assumed to satisfy this condition. Compared
with traditional Lipschitz, this quasi-one-sided Lipschitz condition relaxes restrictions, which can
facilitate the calculation of LMI.
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Definition 1 ([36]). For any e0 ∈ Rn, r0 ∈ N ; when u(t) = 0, if the MJSs satisfy the following
inequality, the MJSs are stochastically stable.

E
{∫ t

0
‖e(t)‖2dt

∣∣∣e0, r0

}
< ∞ (20)

Definition 2 ([37]). For the stochastic Lyapunov-Krasovskii function V(x(t), i), the weak in-
finitesimal operator L meets with

LV(x(t), i) = lim
∆→0+

1
∆
[E{V(x(t + ∆), rt+∆)|x(t), rt = i} −V(x(t), i)]

= Vt(x(t), i) + Vx(x(t), i)ẋ(t) +
n

∑
j=1

πijV(x(t), j)
(21)

Lemma 1 ([38]). For given real matrices A, B, C, D, E , F , and Ξ, there exists a symmetrical
matrix P > 0, such that PAT +AP + Ξ B PCT

∗ D ET

∗ ∗ F

 < 0 (22)

Lemma 2 ([39]). According to the classical Paul and Peter inequality, for a scalar ρ > 0, real
vectors x and y, and a symmetric positive definite matrix R, only for real Euclidean space E, endowed
with the scalar product 〈·|·〉, the following inequality holds:

2xTy ≤ 1
ρ

xT Rx + ρyT R−1y (23)

Lemma 3 ([40]). Consider a nonsingular fast terminal sliding mode surface:

s = z1 + κ−1
i1 zγ

1 + κ−1
i2 z

p
q
2 (24)

If s(0) 6= 0, the convergence time to s = 0 can be given as:

T =
∫ |z1(0)|

0

kq/p
2

(z1(t) + k1z1)
q/p dz1

=

p
q |z1(0)|1−q/p

k1

(
p
q − 1

) F

(
q
p

,
p
q − 1

(λ− 1) p
q

; 1 +
p
q − 1

(λ− 1) p
q

;−k1|z1(0)|λ−1

) (25)

3. Main Results
3.1. Observer Design and Fault Estimation

Considering the fault and disturbance, this paper sets that Fig(t) = Fai fa(t) + Bωiω(t).
Then, the following adaptive observer is designed for the dynamic system model (17):{ ˙̂x(t) = Ai x̂(t) + Bi(u(t) + f (x̂(t), t)) + Fi ĝ(t) + Li(y(t)− ŷ(t))

ŷ(t) = Ci x̂(t)
(26)

where, Li is the gain matrix of the observer, x̂(t) is the estimation of the true state x(t), ŷ(t)
is the estimation of the true output y(t), and ĝ(t) is the estimation of g(t).

Define the estimation error as: e(t) = x(t)− x̂(t), ey(t) = y(t)− ŷ(t), ea(t) = g(t)−
ĝ(t). Then, the error equation is given by ė(t) = ẋ(t)− ˙̂x(t).

Considering Equations (17) and (26), the expression of the error dynamic system is:

ė(t) = (Ai − LiCi)e(t) + Bie f (x(t), x̂(t)) + Fieg(t) (27)
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A fast adaptive fault estimation (FAFE) algorithm can be adopted in the adaptive
observers. The estimation of the derivatives of faults can be written as:

˙̂g = −ΛTi
(
ey + ζ ėy

)
(28)

where ζ > 0 is a scalar, Λ ∈ Rn×p is a symmetric positive definite matrix, Ti ∈ Rr×p, and
their specific definitions will be given in Theorem 1.

From Equation (28), the uniformly ultimate boundedness of ex(t) and ey(t) can
be achieved.

3.2. Observer-Based Nonsingular Fast Terminal Sliding Mode Fault-Tolerant Control Design

This section designs a nonsingular fast terminal sliding mode fault-tolerant controller
(NFTSM-FTC) for the system (14). Considering Equation (17), the controller can be de-
signed as: {

ẋ1 = x2
ẋ2 = Aix2 + Bi(u(t) + fi(x2(t), t)) + Fi ĝ(t) + Fieg(t)

(29)

where Fi ĝ(t) represents the estimation of fault and disturbance that is known, eg(t) includes
the uncertain part of fault and disturbance, and Fieg(t) = Faieai(t) + Bωieω(t).

The tracking error z1 and the second error z2 are defined as follows:

z1 = x1 − xd

z2 = x2 −v
(30)

where v = −χz1 + ẋd is a virtual control.
Then, by calculating the differential of the equation, we can get:

ż1 = ẋ1 − ẋd

ż2 = ẋ2 − v̇
(31)

Considering the system (29), we design the following sliding surface for each Markov
mode i ∈ N :

s = z1 + κ−1
i1 zγ

1 + κ−1
i2 z

p
q
2 (32)

where s = (s1, · · · , sn)
T ∈ Rn is the sliding variable, κ−1

i1 = diag
{

κ−1
11 , . . . , κ−1

1n

}
and

κ−1
2 = diag

{
κ−1

21 , . . . , κ−1
2n

}
are diagonal positive definite matrices, p, q > 0, and they are

odd numbers satisfying the relation 1 < p/q < 2, γ > p/q.
Calculating ṡ, we can get:

ṡ = ż1 + κ−1
i1 zγ−1

1 · ż1 + κ−1
i2

p
q

z
p
q −1
2 · ż2 (33)

where zγ−1
1 = diag

{
|z11|γ−1sgn(z11), . . . , |zn1|γ−1sgn(zn1)

}
,

z
p
q −1
2 = diag

{
|z21|

p
q−1sgn(z21), . . . , |z2n|

p
q−1sgn(z2n)

}
.

Design the following NFTSM-FTC:

u(t) = u1 + u2 + u3 (34)

where
u1 = −B+

i (Aix2 + Fi ĝ(t)− κ̇)− fi(x2(t), t) (35)

u2 = − q
p

B+
i κi2z

1− p
q

2 ·
(

ż1 + κ−1
i1 zγ−1

1 · ż1

)
(36)
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u3 = − q
p

B+
i κi2 · z

1− p
q

2 ε|s1|sgn(s) (37)

where B+
i satisfying the relation BiB+

i = I, is the generalized inverse matrix of Bi, ε ∈ R+.

Proof. Choose the Lyapunov function as:

V1(x(t), i) =
1
2

sTs (38)

According to the Definition 2 and paper [14], we have

LV1(x(t), i) =
1
2

lim
∆→0

1
∆

{
N
∑

j=1,i 6=j
Pr{r(t + δ) = j | r(t) = i}sT(t + ∆)s(t + ∆)

+Pr{r(t + h) = i | r(t) = i}sT(t + ∆)s(t + ∆)− sT(t)s(t)
}

=
1
2

lim
∆→0

1
∆

{
N
∑

j=1,j 6=i

$ij(FXi(δ + ∆)− FXi(δ))

1− FXi(h)
sT(t + ∆)s(t + ∆)

+
1− FXi(δ + ∆)

1− FXi(δ)
sT(t + ∆)s(t + ∆)− sT(t)s(t)

}
= sT(t)ṡ(t) +

1
2

N
∑
j=1

πij

= sT(t)ṡ(t)

(39)

where δ is the time from mode i to mode j; $ represents the probability from mode i to
mode j. FXi(x) denotes the cumulative distribution function (CDF) of x on mode i.

Therefore,

LV1(x(t), i) = sT ṡ

= sT
(

ż1 + κ−1
i1 zγ−1

1 · ż1 + κ−1
i2

p
q

z
p
q −1
2 · ż2

)
= sT

(
ż1 + κ−1

i1 zγ−1
1 · ż1

)
+ sTκ−1

i2
p
q

z
p
q −1
2 ·

(
Aix2 + Bi(u(t) + fi(x2(t), t)) + Fi ĝ(t) + Fieg(t)− v̇

)
(40)

Substituting (34) into (40), it becomes:

LV1(x(t), i) ≤ sTκ−1
i2

p
q

z
p
q −1
2 ·

(
Fieg(t)

)
− sTε|s|sgn(s)

≤
n

∑
j=1

{(
κ−1

i2
p
q

z
p
q −1
2

)
j
·
∣∣sj
∣∣ · ∥∥Fieg(t)

∥∥
∞

}
− sTε|s|sgn(s)

≤ −ε‖s‖2

(41)

Since ε > 0, when s 6= 0, we can get LV1(x(t), i) < 0. According to Lemma 3, the time
in which the system state reaches the equilibrium point is finite, and the convergence time
T can be given. This is if and only if s = 0, LV1(x(t), i) = 0.
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Theorem 1. The error dynamic system (27) and the control system (29) are stochastically stable,
if there exist symmetrical matrices Qi > 0, Q > 0, Oi > 0, O > 0, Λ > 0, Mi > 0, which is the
Lipschitz constant matrix, and Oi ∈ Rr×r, Ti ∈ Rr×p, such that the following conditions hold

n

∑
j=1

πij(−Oj) ≤ −O,
n

∑
j=1

πijQj ≤ Q

FT
i Qi = TiCi

Φ =


Φ11 Φ12 Φ13 0
∗ Φ22 Φ23 0
∗ ∗ Φ33 0
∗ ∗ ∗ Φ44

 < 0

(42)

where
Φ11 = Qi(Ai − LiCi) + (Ai − LiCi)

TQi +
n
∑

j=1
πijQj + ki Mi + αimi

Φ12 = − 1
ζ

(
AT

i QiFi − (QiLiCi)
T Fi

)
Φ13 = QiBi +

1
2 (βimi − ki)I

Φ22 = − 2
ζ FT

i QiFi +
1

ζρ Oi +
1
ζ

n
∑

j=1
πijΛ−1

Φ23 = − 1
ζ FT

i QiBi
Φ33 = −mi I
Φ44 = − ρ

ζ (O + Λ−1OiΛ−1)

Proof. Choose the Lyapunov function as:

V2(x(t), i) = e(t)TQie(t) +
1
ζ

eT
g (t)Λ

−1eg −
ρ

ζ
gT(t)Λ−1OiΛ−1g(t) (43)

Like the proof of the Lyapunov function (39), we now calculate LV2(x(t), i),

LV2(x(t), i) = e(t)T
(

Qi(Ai − LiCi) + (Ai − LiCi)
TQi

)
e(t)

+ 2e(t)TQiBie f (x(t), x̂(t)) + 2e(t)T FT
i Qieg(t) +

2
ζ

eT
g (t)Λ

−1 ėg(t)

− ρ

ζ
ġT(t)Λ−1OiΛ−1g(t)− ρ

ζ
gT(t)Λ−1OiΛ−1 ġ(t) +

n

∑
j=1

πijV2(x(t), i)

= e(t)T
(

Qi(Ai − LiCi) + (Ai − LiCi)
TQi

)
e(t) + 2e(t)TQiBie f (x(t), x̂(t))

− 2
ζ

eT
g (t)TiCi(A− LC)ex(t)−

2
ζ

eT
g (t)FT

i Qi

(
Fieg(t) + Bie f (x(t), x̂(t))

)
− 2

ζ
eT

g (t)Λ
−1 ġ(t)− ρ

ζ

(
ġT(t) + gT(t)

)
Λ−1OiΛ−1(ġ(t) + g(t)) +

n

∑
j=1

πijV2(x(t), i)

(44)

According to Lemma 2,

− 2
ζ

eT
g (t)Λ

−1 ġ(t) ≤ 1
ζρ

eT
g (t)Oieg(t) +

ρ

ζ
ġT(t)Λ−1OiΛ−1 ġ(t) (45)
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Substitute (45) into (44),

LV2(x(t), i) ≤ e(t)T
(

Qi(Ai − LiCi) + (Ai − LiCi)
TQi

)
e(t) + 2e(t)TQiBi e f (x(t), x̂(t))

− 2
ζ

eT
g (t)TiCi(A− LC)ex(t)−

2
ζ

eT
g (t)FT

i Qi

(
Fieg(t) + Bie f (x(t), x̂(t))

)
+

1
ζρ

eT
g (t)Oieg(t) +

ρ

ζ
ġT(t)Λ−1OiΛ−1 ġ(t)

− ρ

ζ

(
ġT(t) + gT(t)

)
Λ−1OiΛ−1(ġ(t) + g(t)) +

n

∑
j=1

πijV2(x(t), i)

(46)

Considering the assumptions (1) and (2), the following equations can be given:{
kie(t)T Mie(t)− kie f i(x(t), x̂(t))Te(t) ≥ 0
αimie(t)Te(t)−mie f i(x(t), x̂(t))e f i(x(t), x̂(t))T + βimie(t)Te f i(x(t), x̂(t)) ≥ 0

(47)

where ki, mi ∈ R+.
Add Formula (47) to the right of Formula (46), and then we can get:

LV2(x(t), i) ≤ e(t)T
(

Qi(Ai − LiCi) + (Ai − LiCi)
TQi

)
e(t) + 2e(t)TQiBi e f (x(t), x̂(t))

− 2
ζ

eT
g (t)TiCi(A− LC)ex(t)−

2
ζ

eT
g (t)FT

i Qi

(
Fieg(t) + Bie f (x(t), x̂(t))

)
+

1
ζρ

eT
g (t)Oieg(t) +

ρ

ζ
ġT(t)Λ−1OiΛ−1 ġ(t)

− ρ

ζ

(
ġT(t) + gT(t)

)
Λ−1OiΛ−1(ġ(t) + g(t)) + kie(t)T Mie(t)

− kie f i(x(t), x̂(t))Te(t) + αimie(t)Te(t)−mie f i(x(t), x̂(t))e f i(x(t), x̂(t))T

+ βimie(t)Te f i(x(t), x̂(t))

+ e(t)T
n

∑
j=1

πijQje(t) +
1
ζ

eT
g (t)

n

∑
j=1

πijΛ−1eg(t)−
ρ

ζ
gT(t)Og(t)

(48)

The inequation (48) can be written as:

LV2(x(t), i) <


e(t)
eg(t)

e f i(x(t), x̂(t))
g(t)


T
Ai Bi Ci 0
∗ Di Ei 0
∗ ∗ Fi 0
∗ ∗ ∗ Gi




e(t)
eg(t)

e f i(x(t), x̂(t))
g(t)

 (49)

where
Ai = Qi(Ai − LiCi) + (Ai − LiCi)

TQi +
n
∑

j=1
πijQj + ki Mi + αimi

Bi = − 1
ζ

(
AT

i QiFi − (QiLiCi)
T Fi

)
Ci = QiBi +

1
2 (βimi − ki)I

Di = − 2
ζ FT

i QiFi +
1

ζρ Oi +
1
ζ

n
∑

j=1
πijΛ−1

Ei = − 1
ζ FT

i QiBi
Fi = −mi I
Gi = −

ρ
ζ (O + Λ−1OiΛ−1)
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Based on Lemma 1, we obtain that

LV2(x(t), i) ≤ ηT(t)Φiη(t)

= −ηT(t)(−Φi)η(t)

≤ −µ‖η(t)‖2

(50)

where ηT(t) =
[
eT(t) eT

g (t) eT
f (x(t), x̂(t)) g(t)

]
, Φi =


Ai Bi Ci 0
∗ Di Ei 0
∗ ∗ Fi 0
∗ ∗ ∗ Gi

, and

µ = min
i∈N
{σ(−Φi)} > 0.

According to the Dynkin theorem,

E{V(x(t), i)} − E{V0} ≤ − µE
{∫ t

0
(LV(x(t), i))ds

}
E
{∫ t

0
(LV(x(t), i))ds

}
≤ − 1

µ
[E{V(x(t), i)} − E{V0}] ≤

1
µ

E{V0}

E
{∫ t

0
‖e(t)‖2dt

∣∣∣e0, r0

}
< ∞

(51)

Based on Definition 1, the system is stochastically stable.

4. Simulation Study

In this paper, the quadrotor of Canada company is used as the simulation object of the
fault-tolerant algorithm [41]. The quadrotor system used in the experiment is presented in
Figures 2–4. This quadrotor system can upload control programs and faults to the onboard
processor via Wi-Fi, which is helpful for fault injection and experiments. This experimental
platform includes a Qdrone quadrotor, an OptiTrack motion capture system, and a ground
station with a PC and a router. Through the data from 12 OptiTrack Flex-3 motion capture
cameras, the OptiTrack Tools software on the PC can give the real-time flight status of
the Qdrone quadrotor, so as to realize online control of the quadrotor. In addition, faults,
nonlinear factors, and disturbances can be designed on the PC for experiments.

Figure 2. Qdrone.
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Figure 3. OptiTrack Flex-3 motion capture cameras.

Figure 4. The ground station.

According to [41], we choose the appropriate parameters of the quadrotor UAV system
in Table 1.

Table 1. Parameters of the Qdrone.

Parameter Numerical Value Unit

m 1.121 kg
g 9.80 m/s2

Ix 0.010 kg ·m2

Iy 0.008 kg ·m2

Iz 0.015 kg ·m2

We choose N = 4, and the transition rates matrix is chosen as:

Π =


−0.36 0.16 0.16 0.04
0.64 −0.84 0.16 0.04
0.64 0.16 −0.84 0.04
0.64 0.16 0.16 −0.96

 (52)

The trajectories of the system mode are presented in Figure 5.
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Figure 5. System mode.

When some actuators considering the rolling and pitching directions fail, the matrix B
will change. Four different modes of matrix B are given as follows:

B1 =



0 0 0
0 0 0
0 0 0

100 0 0
0 125 0
0 0 67

, B2 =



0 0 0
0 0 0
0 0 0

75 0 0
0 125 0
0 0 67

, B3 =



0 0 0
0 0 0
0 0 0

100 0 0
0 93.75 0
0 0 67

, B4 =



0 0 0
0 0 0
0 0 0

75 0 0
0 93.75 0
0 0 67

 (53)

where B1 represents the healthy system and others represent actuator faults of different
direction. B2 represents some actuator failure in the roll direction, B3 represents some
actuator failure in the pitch direction, and B4 represents actuator failure in both the roll
direction and pitch direction.

Taking the parameters p = 7, q = 5, γ = 2, ε = 0.1, ζ = 1, m = 0.5, k = 0.5.
The initial attitude of the UAV system is shown as

[
φ θ ψ

]T
=
[
0.2 −0.2 0.5

]T ,

and the initial angle rate is shown as
[
φ̇ θ̇ ψ̇

]T
=
[
0 0 0

]T . Besides, the nonlinear
term is f (x(t), t) = 5sin(πt). Moreover, the actuator faults and disturbances are given as:

ω(t) =
{

0, 0 ≤ t < 2
e−0.8t, 2 ≤ t ≤ 10

(54)

fa(t) =


0, 0 ≤ t < 0.5

te−0.8t, 0.5 ≤ t < 2
0.8sin(πt), 2 ≤ t ≤ 10

(55)

By solving the linear matrix inequalities in Theorem 1, the parameter matrices can be
given as follows:

Q1 =



76.4090 −3.0527 −7.5335 −0.5193 −0.0131 0.0455
−3.0527 64.9062 −6.5765 0.0013 −0.4108 0.0449
−7.5335 −6.5765 97.3179 0.0091 −0.0083 −0.7604
−0.5193 0.0013 0.0091 0.0072 0.0021 0.0021
−0.0131 −0.4108 −0.0083 0.0021 0.0049 0.0022
0.0455 0.0449 −0.7604 0.0021 0.0022 0.0132

,
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Q2 =



91.1962 −4.9524 −7.3058 −0.6946 −0.0137 0.0401
−4.9524 64.8688 −6.0623 0.0279 −0.4145 0.0431
−7.3058 −6.0623 97.5787 0.0285 −0.0116 −0.7758
−0.6946 0.0279 0.0285 0.0115 0.0022 0.0021
−0.0137 −0.4145 −0.0116 0.0022 0.0049 0.0022
0.0401 0.0431 −0.7758 0.0021 0.0022 0.0136

,

Q3 =



59.0632 −5.0682 −6.3968 −0.3917 0.0049 0.0337
−5.0682 60.8165 −6.5345 0.0001 −0.4149 0.0331
−6.3968 −6.5345 69.7799 −0.0019 0.0018 −0.5558
−0.3917 0.0001 −0.0019 0.0067 0.0019 0.0021
0.0049 −0.4149 0.0018 0.0019 0.0073 0.0021
0.0337 0.0331 −0.5558 0.0021 0.0021 0.0111

,

Q4 =



49.1919 −3.3174 −4.2157 −0.4438 0.0021 0.0252
−3.3174 42.6652 −4.0112 0.0224 −0.3625 0.0355
−4.2157 −4.0112 52.8587 0.0099 0.0035 −0.4967
−0.4438 0.0224 0.0099 0.0091 0.0024 0.0025
0.0021 −0.3625 0.0035 0.0024 0.0064 0.0023
0.0252 0.0355 −0.4967 0.0025 0.0023 0.0108

,

O1 =

−12574 770 814
770 −12598 1059
814 1059 −12769

,

O2 =

−12490 827 415
827 −12595 935
415 935 −12570

,

O3 =

−8890.5 163.7 316.1
163.7 −8865.5 320.6
316.1 320.6 −8664.8

,

O4 =

−5896.2 193.5 128.1
193.5 −5985.4 232.8
128.1 232.8 −5904.0

,

L1 =



370160 −18210 −37230
−5120 309560 −24930
−62930 −60550 469170
−2510 40 50
−110 −1940 −80
430 440 −3670

, L2 =



437770 −41530 −42600
−14220 310500 −22000
−49140 −53640 469420
−3330 280 190
−120 −1960 −100
300 410 −3730

,

L3 =



186440 −18190 −23090
−20060 190580 −25500
−34660 −35090 208300
−1220 30 30

50 −1290 50
220 220 −1660

, L4 =



105470 −11190 −10920
−9370 93370 −11390
−12080 −14630 113900
−950 90 40

30 −790 30
80 130 −1070

.

Compared the adaptive algorithm in [42], the FAFE algorithm used in the adaptive
observer has obvious advantages, which can be seen in Figure 6.

From Figure 6, it can be obviously seen that both observers have an accurate estimation
of faults and disturbances. The observer method proposed in this paper has a shorter
response time and smaller steady-state error than the method proposed in [42].
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Figure 6. Estimated fault and disturbance from observer.

From Figures 7 and 8, the method proposed by this paper can do well with actuator
faults and disturbances, and finally converge to zero.
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Figure 7. State response of attitude angle.
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Figure 8. State response of angular velocity.

Figures 9 and 10 show the state response of attitude angle and angle velocity, based on [43].
The state responses in Figures 7 and 8 have faster responses than those in Figures 9 and 10.
Comparing the results of the two methods, the nonsingular fast terminal sliding mode controller
proposed in this paper has better control performance.
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Figure 9. State response of the attitude angle by the method in [43].
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Figure 10. State response of the angular velocity by the method in [43].

5. Conclusions

In this paper, an adaptive-based nonsingular fast terminal sliding mode controller of
Markov jump nonlinear systems is discussed. An adaptive observer with the FAFE method
is proposed to estimate the actuator faults and external disturbances. Based on this observer,
a nonsingular fast terminal sliding mode controller is provided for fault-tolerant control.
By utilizing the Lyapunov-Krasovskii functional (LKF) and linear matrix inequalities (LMI)
techniques, the original system is ensured to be stochastic stable.

Through the method proposed in this paper, the MJNSs can demonstrate resistance to
actuator faults and disturbances. In practice, UAVs may encounter more complex situations,
including human factors and environmental factors. Future research should consider more
factors and focus on eliminating chattering.
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