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Abstract: We present Inverse Airborne Optical Sectioning (IAOS), an optical analogy to Inverse
Synthetic Aperture Radar (ISAR). Moving targets, such as walking people, that are heavily occluded
by vegetation can be made visible and tracked with a stationary optical sensor (e.g., a hovering camera
drone above forest). We introduce the principles of IAOS (i.e., inverse synthetic aperture imaging),
explain how the signal of occluders can be further suppressed by filtering the Radon transform of
the image integral, and present how targets’ motion parameters can be estimated manually and
automatically. Finally, we show that while tracking occluded targets in conventional aerial images is
infeasible, it becomes efficiently possible in integral images that result from IAOS.

Keywords: synthetic aperture imaging; through-foliage tracking; occlusion removal

1. Introduction

Higher resolution, wide depth of field, fast framerates, high contrast, or signal-to-
noise ratio can often not be achieved with compact imaging systems that apply narrower
aperture sensors. Synthetic aperture (SA) sensing is a widely recognized technique to
achieve these objectives by acquiring individual signals of multiple or a single moving
small-aperture sensor and by computationally combining them to approximate the signal of
a physically infeasible, hypothetical wide aperture sensor [1]. This principle has been used
in a wide range of applications, such as radar [2–28], telescopes [29,30], microscopes [31],
sonar [32–35], ultrasound [36,37], lasers [38,39], and optical imaging [40–47].

In radar, electromagnetic waves are emitted and their backscattered echoes are recorded
by an antenna. Electromagnetic waves at typical radar wavelengths (as compared with
the visible spectrum) can penetrate scattering media (i.e., clouds, vegetation, and partly
soil) and are quite useful for obtaining information in all weather conditions. However,
acquiring high spatial resolution images would require an impractically large antenna [2].
Therefore, since its invention in the 1950s [3,4], Synthetic Aperture Radar (SAR) sensors
have been placed on space-borne systems, such as satellites [5–8], planes [9–11], and
drones [12,13] in different modes of operation, such as strip-map [11,14], spotlight [11,14],
and circular [10,14] to observe various sorts of phenomena on Earth’s surface. These in-
clude crop growth [8], mine detection [12], natural disasters [6], and climate change effects,
such as the deforestation [14] or melting of glaciers [7]. Phase differences of multiple SAR
recordings (interferometry) have even been used to reconstruct depth information and
enables finer resolutions [15].

Analogous to SAR (which utilizes moving radars for synthetic aperture sensing of widely
static targets), a technique known as Inverse Synthetic Aperture Radar (ISAR) [16–18] con-
siders the relative motion of moving targets and static radars for SAR sensing. In contrast to
SAR (where the radar motion is usually known), ISAR is challenged by the estimation of
an unknown target motion. It often requires sophisticated signal processing and is often
limited to sensing one target at a time, while SAR can image large areas and monitor multi-
ple (static) targets simultaneously [17,18]. ISAR has been used for non-cooperative target
recognition (non-stationary targets) in maritime [19,20], airspace [21,22], near-space [23,24],
and overland surveillance applications [25–28]. Recently, spatially distributed systems and
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advanced signal processing, such as compressed sensing and machine learning, have been
utilized to obtain 3D images of targets, target’s reflectivity, and more degrees of freedom
for target motion estimation [27,28].

With Airborne Optical Sectioning (AOS) [48–60], we introduced an optical synthetic
aperture imaging technique that captures an unstructured light field with an aircraft, such
as a drone. We utilized manually, automatically [48–56,58,59], or fully autonomously [57]
operated camera drones that sample multispectral (RGB and thermal) images within a
certain (synthetic aperture) area above occluding vegetation (such as forest) and combined
their signals computationally to remove occlusion. The outcome is a widely occlusion-free
integral image of the ground, revealing details of registered targets while unregistered
occluders above the ground, such as trunks, branches or leaves disappear in strong defocus.
In contrast to SAR, AOS benefits from high spatial resolution, real-time processing rates,
and wavelength-independences, making it useful in many domains. So far, AOS has been
applied to the visible [48,59] and the far-infrared (thermal) spectrum [51] for various appli-
cations, such as archeology [48,49], wildlife observation [52], and search and rescue [55,56].
By employing a randomly distributed statistical model [50,57,60] the limits of AOS and its
efficacy with respect to its optimal sampling parameters can be explained. Common image
processing tasks, such as classification with deep neural networks [55,56] or color anomaly
detection [59] are proven to perform significantly better when applied to AOS integral
images compared with conventional aerial images. We also demonstrated the real-time
capability of AOS by deploying it on a fully autonomous and classification-driven adaptive
search and rescue drone [56]. Yet, the sequential sampling nature of AOS when being used
with conventional single-camera drones has limited its applications to recover static targets
only. Moving targets lead to motion blur in the AOS integral images, which are nearly
impossible to classify or to track.

In [59], we presented a first solution to tracking moving people through densely
occluding foliage with parallel synthetic aperture sampling supported by a drone-operated,
10 m wide, 1D camera array (assembling 10 synchronized cameras). Although feasible,
such a specialized imaging system is in most cases is impractical as it is bulky and difficult
to control.

Being inspired by the principles of ISAR for radar, in this article we present Inverse
Airborne Optical Sectioning (IAOS) for detecting and tracking moving targets through
occluding foliage (cf. Figure 1b) with a conventional, single-camera drone (cf. Figure 1c).
As with ISAR, IAOS relies on the motion of targets being sensed by a static airborne optical
sensor (e.g., a drone hovering above forest) over time (cf. Figure 1a) to computationally
reconstruct an occlusion-free integral image (cf. Figure 1d). Essential for an efficient
reconstruction is the correct estimation of the target’s motion.

In this article, we make four main contributions: (1) We introduce the principles of
IAOS (i.e., inverse synthetic aperture imaging) in Sections 1 and 2. (2) We explain how the
signal of occluders can be further suppressed by filtering the Radon transform of the image
integral in Section 2.1 (cf. Figure 1e). (3) We present how a target’s motion parameters can
be estimated manually and automatically in Sections 2.1 and 2.2. (4) Finally, we show that
while tracking occluded targets in conventional aerial images is infeasible, it is efficiently
possible in integral images that result from IAOS in Section 3.
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being sensed by a static airborne optical sensor (e.g., a drone (c) hovering above forest (b)) over time 
(a) to computationally reconstruct an occlusion-free integral image I (d). Essential for an efficient 
reconstruction is the correct estimation of the target’s motion (direction θ, and speed s). By filtering 
the Radon transform of I, the signal of occluders can be suppressed further (e). Thermal images are 
shown in (a,d,e). 
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age integral in Section 2.1 (cf. Figure 1e). (3) We present how a target’s motion parameters 
can be estimated manually and automatically in Sections 2.1 and 2.2. (4) Finally, we show 
that while tracking occluded targets in conventional aerial images is infeasible, it is effi-
ciently possible in integral images that result from IAOS in Section 3.  

2. Materials and Methods 
All field experiments were carried out in compliance with the legal European union 

Aviation Safety Agency (EASA) flight regulations, using a DJI Mavic 2 Enterprise Ad-
vanced, over dense broadleaf, conifer, and mixed forest, and under direct sunlight as well 
as under cloudy weather conditions. Free flight drone operations were performed using 
the DJI’s standalone smart remote controller with DJI’s Pilot application. RGB videos of 
resolution 1920 × 1080 (30 fps) and thermal videos of resolution 640 × 512 (30 fps) were 
recorded on the drone’s internal memory, and were processed offline after landing. For 
vertical (top-down, as in Figure 3) scans the drone was hovering at an altitude of about 35 
m AGL. For horizontal scans (sideways, as in Figure 4) the drone was hovering at a dis-
tance of about 10 m away from the vegetation. For quicker processing, we extracted a 
selection of 1–5 fps from the acquired 30 fps thermal videos using FFmpeg python bind-
ings. Offline processing included intrinsic camera calibration (pre-calibrated transfor-
mation matrix computed using MATLAB’s camera calibrator application) and image un-
distortion/rectification using OpenCV’s pinhole camera model (as explained in [48,55]). 
The undistorted and rectified images were cropped to a field of view of 36° and a resolu-
tion of 1024 × 1024 px. Image integration was achieved by averaging the pre-processed 
images being registered based on manually or automatically estimated motion parame-
ters, as explained in Sections 2.1 and 2.2. Radon transform filtering [61–63] (also explained 
in Sections 2.1 and 2.2) was implemented in Mathworks’ MATLAB R2022a. 

Figure 1. Inverse Airborne Optical Sectioning (IAOS) principle: IAOS relies on the motion of targets
being sensed by a static airborne optical sensor (e.g., a drone (c) hovering above forest (b)) over time
(a) to computationally reconstruct an occlusion-free integral image I (d). Essential for an efficient
reconstruction is the correct estimation of the target’s motion (direction θ, and speed s). By filtering
the Radon transform of I, the signal of occluders can be suppressed further (e). Thermal images are
shown in (a,d,e).

2. Materials and Methods

All field experiments were carried out in compliance with the legal European union
Aviation Safety Agency (EASA) flight regulations, using a DJI Mavic 2 Enterprise Ad-
vanced, over dense broadleaf, conifer, and mixed forest, and under direct sunlight as well
as under cloudy weather conditions. Free flight drone operations were performed using
the DJI’s standalone smart remote controller with DJI’s Pilot application. RGB videos of
resolution 1920 × 1080 (30 fps) and thermal videos of resolution 640 × 512 (30 fps) were
recorded on the drone’s internal memory, and were processed offline after landing. For
vertical (top-down, as in Figure 3) scans the drone was hovering at an altitude of about
35 m AGL. For horizontal scans (sideways, as in Figure 4) the drone was hovering at a
distance of about 10 m away from the vegetation. For quicker processing, we extracted
a selection of 1–5 fps from the acquired 30 fps thermal videos using FFmpeg python
bindings. Offline processing included intrinsic camera calibration (pre-calibrated trans-
formation matrix computed using MATLAB’s camera calibrator application) and image
un-distortion/rectification using OpenCV’s pinhole camera model (as explained in [48,55]).
The undistorted and rectified images were cropped to a field of view of 36◦ and a resolu-
tion of 1024 × 1024 px. Image integration was achieved by averaging the pre-processed
images being registered based on manually or automatically estimated motion parameters,
as explained in Sections 2.1 and 2.2. Radon transform filtering [61–63] (also explained in
Sections 2.1 and 2.2) was implemented in Mathworks’ MATLAB R2022a.

2.1. Manual Motion Estimation

If the target’s motion parameters (i.e., direction, θ [◦] and speed, s [m/s]) are known
and assumed to be constant for all time intervals, the captured images can be registered
by shifting them accordingly to θ and s. Thereby, θ can directly be mapped to the image
plane, while s must be mapped [m/s] to [px/s] (which is easily possibly after camera
calibration and knowing the drone’s altitude). By averaging the registered images results
in an integral image that shows the target in focus (local motion of the target itself, such as
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arm movements of a walking person, lead to defocus) while the misregistered occluders
vanish in defocus.

Large occluders that are shifted in direction θ while being integrated appear as linear
directional blur artifacts in the integral image (cf. Figure 1d). Their signal can be suppressed
by filtering (zeroing out) the Radon transform of the integral image I(θ,s) in direction θ

(+/− an uncertainty range that considers local motion non-linearities of the occluders, such
as movements of branches caused by wind, etc.). The inverse Radon transform (filtered back
projection [63]) of the filtered sinogram results in a new integral image with suppressed
signal of the directionally blurred occluders (cf. Figure 1e). This process is illustrated in
Figure 2, and can be summarized mathematically with:

I′(θ, s) = Rf−1(F(Rf(I(θ, s)), θ)), (1)

where F is the filter function which zeros out coefficients at angle θ (+/− uncertainty range)
in the sinogram.
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One way of estimating the correct motion parameters is by visual search (i.e., θ and 
s are interactively modified until the target appears best focused in the integral image). 
Exploring the two-dimensional parameter space within proper bounds is relatively effi-
cient if the motion can be assumed to be constant. Sample results are presented in Section 
3. See also Supplementary Video S1 for an example of manual visual search for the motion 
parameters of results shown in Figure 3k. In case of non-linear motion, the motion param-
eters must be continuously and automatically estimated. A manual exploration becomes 
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ferent parameters. Here, we utilize simple gray level variance (GLV) [64] as an objective 

Figure 2. Radon transform filtering: to suppress directional blur artifacts of large occluders integrated
in direction θ (a), the Radon transform (Rf) of the integral image (b) is filtered with function F that
zeros out θ, +/− an uncertainty range which takes local motion of the occluders themselves into
account (c). The inverse Radon transform (Rf−1) of this filtered sinogram suppresses the direction
blur artefacts of the occluders (d). Note: remaining directional artifacts in orthogonal directions are
caused by under-sampling (i.e., the number of images being integrated). They are fluctuating too
much to be suppressed in the same manner. In the example above, θ = 118◦ with +/− 15◦ (image
coordinate system: clockwise, +y-axis = 0◦).

One way of estimating the correct motion parameters is by visual search (i.e., θ and
s are interactively modified until the target appears best focused in the integral image).
Exploring the two-dimensional parameter space within proper bounds is relatively efficient
if the motion can be assumed to be constant. Sample results are presented in Section 3.
See also Supplementary Video S1 for an example of manual visual search for the motion
parameters of results shown in Figure 3k. In case of non-linear motion, the motion parame-
ters must be continuously and automatically estimated. A manual exploration becomes
infeasible in this case.

2.2. Automatic Motion Estimation

Automatic estimation of motion parameters requires an error metric which is capa-
ble of detecting improvement and degradation in visibility (i.e., focus and occlusion) for
different parameters. Here, we utilize simple gray level variance (GLV) [64] as an objec-
tive function. We already proved in [53] that, in contrast to traditionally used gradient-,
Laplacian-, or wavelet-based focus metrics [65], GLV does not rely on any image features
and is thus invariant to occlusion. In [54] (see also Appendix A), we demonstrated that the
variance of an integral image is:

Var[I] =
D(1− D)((µo − µs)

2) + Dσ2
o + (1− D)σ2

s
N

+ (1− D)2(1− 1
N
)σ2

s , (2)
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where D is the probability of occlusion, while µo, σ2
o and µs, σ2

s are the statistical properties
of occlusion and the target signal, respectively.

Integrating N individual images with optimal motion parameters results in an occlusion-
free view of the target’s signal whereas the signal strength of the occluders reduces and
disappears in strong defocus. To further suppress occluders, we used Radon filtering [61–63]
as described in Section 2.1. However, we now utilize the linearity property of the Radon
transform which states that:

R f
(
∑i αi Ii

)
= ∑i αiR f (Ii). (3)

Thus, instead of filtering the integral image I(θ,s), as explained in Equation (1), we
apply Radon transform filtering to each single image Ii before integrating it.

For automatic motion parameter estimation, we registered the current integral image I
(integrating I′1 . . . I′i−1) to the latest (most recently recorded) inverse Radon transformed fil-
tered image I′i = Rf−1(F(Rf(Ii), θ)) by maximizing Var[I] while optimizing for best motion
parameters (θ, s). Deterministic-global search, DIRECT [66] (as implemented Nlopt [67]),
was applied for optimization. Consequently, we considered each discrete motion compo-
nent between two recorded images and within the corresponding imaging time (e.g., 1/30 s
for 30 fps) to be piecewise linear. The integration of multiple images, however, can reveal
and track a non-linear motion pattern where (θ, s) vary in each recording step. Sample
results are presented in Section 3 and in Supplementary Videos S2 and S3.

3. Results

Figure 3 presents results from field studies of IAOS with manual motion estimation,
as explained in Section 2.1. Images are recorded top-down, with the drone hovering
at a constant position above conifer (Figure 3a–l), broadleaf (Figure 3m–o), and mixed
(Figure 3p–r) forest. Estimated motion parameters of hidden walking people were: 118◦,
0.5 m/s (Figure 3a–l), 108◦, 0.6 m/s (Figure 3m–o), and 90◦, 0.6 m/s (Figure 3p–q).
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integral image (k), and Radon transform filtered integral image (l). Target indicated by yellow ar-
row. Different forest types: single thermal image example (m,p), integral images (n,q), and Radon 
transform filtered integral images (o,r). 

Figure 3. Manual motion estimation (vertical): sequence of single thermal images (a–j) with walking
persons indicated (yellow box), distance covered by person during capturing time (j), computed
integral image (k), and Radon transform filtered integral image (l). Target indicated by yellow
arrow. Different forest types: single thermal image example (m,p), integral images (n,q), and Radon
transform filtered integral images (o,r).

Figure 4 illustrates an example with the drone hovering at a distance of 10 m in front of
dense bushes (at an altitude of 2 m, recording horizontally). The hidden person is walking
from right to left at 260◦ with 0.27 m/s (both manually estimated).
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of drone (a). Single thermal images with person position indicated with yellow box (b–k). Distance
covered by person during capturing time (k). Integral image (l) and close-up (m) where the shape of
the person can be recognized.

Figure 5 illustrates two examples for automatic motion estimation, as explained in
Section 2.2, with the drone hovering at an altitude of 35 m and a hidden person walking
through dense forest.
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Figure 5. Automatic motion estimation (vertical): Two examples of tracking a moving hidden person
within dense forest ((a,d) RGB images of drone) in either single thermal images (b,e) and IAOS
integral images. Note: the tracking results of the integral images were projected back to a single
thermal image for better spatial reference (c,f). Motion paths are indicated by yellow lines. While
tracking in single images leads to many false positive detections, tracking in integral images results
in clear track-paths of a single target. See Supplementary Videos S2 and S3 for dynamic examples of
these results.

For tracking, moving targets are first detected by utilizing background subtraction
based on Gaussian mixture models [68,69]. The resulting foreground mask is further
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processed using morphological operations to eliminate noise [70,71]. Subsequently blob
analysis [72,73] detects connected pixels corresponding to each moving target. Association
of detections in subsequent frames is entirely based on motion where the motion of each
detected target is estimated by a Kalman filter. The filter predicts the target location in
subsequent frame (based on previous motion and associated motion model) and then
determines the likelihood of assigning the detection to the target.

For comparison, we applied the above tracking approach to both: the sequence of
captured single thermal images and to the sequence of integral images computed from
the single images, as described in Section 2.2. For each case, tracking parameters (such as
minimum blob size, max. prediction length, number of training images for background
subtraction) were individually optimized to achieve best possible results.

While tracking in single images leads to many false positive detections becoming
practically infeasible, tracking in integral images results in clear track-paths of a single target.
Estimated mean motion parameters were: 291◦, 0.82 m/s (Figure 5a–c), 309◦, 0.16 m/s
for the first leg, and 241◦, 0.41 m/s for the second leg (Figure 5d–f). See Supplementary
Videos S2 and S3 for dynamic examples of these results.

4. Discussion and Conclusions

In this article we presented Inverse Airborne Optical Sectioning (IAOS), an optical
analogy to Inverse Synthetic Aperture Radar (ISAR). Moving targets, such as walking
people, that are heavily occluded by vegetation can be made visible and tracked with a
stationary optical sensor (e.g., a hovering camera drone above forest). We introduced the
principles of IAOS (i.e., inverse synthetic aperture imaging), explained how the signal of
occluders can be further suppressed by filtering the Radon transform of the image integral,
and presented how targets’ motion parameters can be estimated manually and automati-
cally. Furthermore, we showed that while tracking occluded targets in conventional aerial
images is infeasible, it is efficiently possible in integral images that result from IAOS.

IAOS has several limitations: We assume that local motion of occluders and of the
drone (e.g., caused by wind) is smaller than the motion of the target. Small local motion of
the target itself, such as individual moving body parts, appear blurred in integral images.
Moreover, the field of view of a hovering drone is limited and moving targets might
be out of view quickly. In the future, we will investigate how drone movement being
adapted to target movement can increase field of view and reduce blur of local target
motion. This corresponds to a combination of IAOS (i.e., occlusion removal by registering
target motion) and classical AOS (i.e., occlusion removal by registering drone movement).
Furthermore, results of Radon transform filtering have artifacts that are due to under-
sampling; higher imaging rates can overcome this. The blob-based tracking approach
applied for proof-of-concept is very simple; more sophisticated methods achieve superior
tracking results. See supplementary Videos S2 and S3 for dynamic examples of these results.
However, we believe that tracking in integral images will always outperform tracking in
conventional images.

Supplementary Materials: The following supporting information can be downloaded at: https:
//github.com/JKU-ICG/AOS/, Video S1: Manual visual search for the motion parameters. Video S2:
Automatic motion estimation (example 1). Video S3: Automatic motion estimation (example 2).
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Appendix A

In the following, we present the derivation of an integral image’s variance (Var[I]).
We applied the statistical model described in [50], where the integral image I is composed
of N single image recordings Ii and each single image pixel in Ii is either occlusion-free (S)
or occluded (O), determined by Z:

Ii = ZiOi + (1− Zi)S.

Similar to [50], all variables are independent and identically distributed with Zi, follow-
ing a Bernoulli distribution with success parameter D (i.e., E[Zi] = E

[
Z2

i
]
= D; furthermore

note that E[Zi(1− Zi)] = 0 is true). The random variable S follows a distribution whose
properties can be described with mean E[S] = µs and E

[
S2] = (

µ2
s + σ2

s
)
. Analogously,

the occluded variable Oi follows a distribution whose properties can be described with
E[Oi] = µo and E

[
O2

i
]
=
(
µ2

o + σ2
o
)
. We compute the first and second moments of Ii to

determine its mean and variance with:

E[Ii] = Dµo + (1− D)µs

and
E
[

I2
i

]
= D

(
µ2

o + σ2
o

)
+ (1− D)

(
µ2

s + σ2
s

)
.

Variances of single images Ii can be obtained as:

Var[Ii] = E
[
I2
i
]
− (E[Ii])

2

= D
(
µ2

o + σ2
o
)
+ (1− D)

(
µ2

s + σ2
s
)

−(D2µ2
o + (1− D)2µ2

s + 2D(1− D)µoµs

= D(1− D)
(
(µo − µs)

2
)
+ Dσ2

o + (1− D) σ2
s .

Similarly, for I we determine the first and second moments where the first moment of
I is given by:

E[I] = E

[
1
N

N

∑
i=1

ZiOi + (1− Zi)S

]
= Dµo + (1− D)µs

and the second moment of I is as derived in [50]:

E
[

I2
]
=

1
N2

 N
(

D
(
σ2

o + µ2
o
)
+ (1− D)

(
σ2

s + µ2
s
))

+N(N − 1)
(

D2µ2
o + 2D(1− D)µoµs

+(1− D)2(σ2
s + µ2

s
) )

.
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Consecutively, we calculate the variance of the integral image as:

Var[I] = E
[
I2]− (E[I])2

= 1
N
(

D
(
σ2

o + µ2
o
)
+ (1− D)

(
σ2

s + µ2
s
))

+
(

D2µ2
o + 2D(1− D)µoµs + (1− D)2(σ2

s + µ2
s
))

− 1
N

(
D2µ2

o + 2D(1− D)µoµs + (1− D)2(σ2
s + µ2

s
))

−
(

D2µ2
o + (1− D)2µ2

s + 2D(1− D)µoµs

)
= 1

N
(

D
(
σ2

o + µ2
o
)
+ (1− D)

(
σ2

s + µ2
s
))

+ (1− D)2σ2
s

− 1
N

(
D2µ2

o + 2D(1− D)µoµs + (1− D)2(σ2
s + µ2

s
))

= 1
N

(
D(1− D)

(
(µo − µs)

2
)
+ Dσ2

o + (1− D)σ2
s

)
+(1− D)2

(
1− 1

N

)
σ2

s .
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