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Abstract: Large wood (LW, log at least 1 m-long and 0.1 m in diameter) in river channels has great
relevance in fluvial environments. Historically, the most used approach to estimate the volume
of LW has been through field surveys, measuring all the pieces of wood, both as single elements
and those forming accumulation. Lately, the use of aerial photographs and data obtained from
remote sensors has increased in the study of the amount, distribution, and dynamics of LW. The
growing development of unmanned aerial vehicle (UAV) technology allows for acquisition of high-
resolution data. By applying the structure from motion approach, it is possible to reconstruct the 3D
geometry through the acquisition of point clouds and then generate high-resolution digital elevation
models of the same area. In this short communication, the aim was to improve a recently developed
procedure using aerial photo and geographic information software to analyze LW wood stored in
wood jams (WJ), shortening the entire process. Digital measurement was simplified using only
AgiSoft Metashape® software, greatly speeding up the entire process. The proposed improvement is
more than five times faster in terms of measuring LW stored in jams.

Keywords: UAV; large wood; wood jam; wood volume

1. Introduction

Large wood (LW, log longer than 1 m and bigger than 0.1 m in diameter [1]) in river
channels has great relevance in fluvial environments [2]. Once they are incorporated into
active channels, they tend to accumulate and generate a wood jam (WJ) [3,4] which under
the effects of different processes can generate impacts on hydraulics, riverine ecosystems,
and also anthropic impacts [5]. During the last decades, many authors analyzed the abun-
dance of LW, the distribution, the recruitment processes, and the qualitative characteristics
of the pieces of wood [6–10] taking into count also the relative budget and related organic
carbon subministration to the river [11]. Historically, the most used methodology to esti-
mate the abundance of LW is directly through field surveys where all the pieces of wood
laying into the study area are measured [12]. With the advancement of technology, new
methodologies have been applied to analyze the LW in river systems, and lately the use of
aerial photographs and data obtained from remote sensors has increased in the study of
the abundance, distribution and dynamics of large wood. Studies have been carried out
using data obtained from hyper spectral sensors [13,14], satellite images [15,16], LiDAR
data [17,18], and TLS (terrestrial laser scanner) data [19–21]. The growing development of
unmanned aerial vehicle (UAV) technology and its application to geomorphology [22,23]
allows for acquisition of high-resolution orthomosaics from photos to identify the distribu-
tion and orientation of LW and WJ among other characteristics within the channel [24]. In
an additional step, these methodologies allow for the reconstruction of the 3D geometry of
an area or an object, and the generation of high-resolution digital elevation models (DEMs)
is possible by applying a structure from motion (SfM) approach [25–27]. So far, SfM has
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been used to model braided river topography [28], map landslides [29], perform erosion
measurements and river deposition [30], study long-term fluvial geomorphic changes [31],
conduct investigations on grain size distribution [27,32], and study floodplain and riparian
habitats [33]. Only very recently have high-resolution photos obtained with UAV and
SfM been proposed to quantify LW [3,34,35]. The use of UAV and SfM is a great contri-
bution to the simplification of the complex field work that is required to quantify large
wood, as it is not necessary to measure the wood directly with a tape, and the field work
is limited only to the measurement of ground control points (GCPs) for georeferencing
UAV flights. To digitally measure wood, Ref. [34] used Agisoft® software, which meant
an advance in the use of the SfM for this type of research. However, there was no other
similar approach published with which results could be compared and advantages and
disadvantages sought [35]. Although the measurement process advanced by combining
Agisoft® and ArcGIS® software for the quantification of LW, the combination of software
adds several steps in the processing chain, which means a high work time [3]) that sim-
plified the digital processing using only Pix4D ®; however, the study requires a survey of
individual accumulations, which obviously mean a large amount of work in the field, and
in large areas this could mean several days of work, which would significantly increase
costs. These new approaches, using UAV and SfM, applied to the measurement of large
wood in fluvial systems are a new field of research in constant development, and the results
may be affected by some limitations. Among others, the presence of riparian vegetation,
the presence of vegetation in WJs, problems related to similitude on colors between sedi-
ments and wood [35]. The objective of this study is to propose a new large wood analysis
approach as to better quantify the large wood amount stored in WJs. This research has
been done using the Structure from Motion (SfM) following the approach proposed in [35],
but simplifying the workflow by using single GIS software to reduce processing time.

2. Materials and Methods
2.1. Study Area

The study was carried out in two reaches of two mountain rivers in southern Chile
(Figure 1), both severely affected by volcanic eruptions; the Blanco River (hereinafter BR)
(Chaitén), and the Blanco Este River (hereinafter BER) (Puerto Varas).

The BR is located 254 km south of Puerto Montt in southern Chile. This river was
severely affected by the 2008 eruption of the Chaitén volcano. It is consistently sourced
by LW from active channel lateral migration to destroyed riparian forest remnants and
exhumation of volcanic deposits. More complete descriptions of the processes triggered by
the eruption and the associated effects on the riverbed and riparian forests of the Blanco
River can be found in [16,36–39].

This study was carried out in the same reach already considered by [35] with a length of
120 m and an area of 1.2 ha (Figure 1). The channel flows in a steep curve, has a longitudinal
slope of approximately 1.2%, and features a gravel bed (D50 = 26.2 mm) with patches of
fine material (i.e., lithic rhyolite sand), provided mainly by the erosion of volcanic deposits.
The riparian vegetation corresponds to the type of evergreen forest described by [40], and
the predominant species in the fluvial corridor are Nothofagus dombeyi, N. betuloides, Drimys
winteri, and several Myrtaceae, which were severely affected by the eruption of the Chaitén
volcano in 2008 [38].

BER is a fluvial system located 40 km NE of Puerto Montt in southern Chile. This river
was severely affected by the eruption of the Calbuco volcano in 2015. The channel flows in
a SW-NW direction from its source on the eastern side of the Calbuco Volcano to its mouth
at the confluence with the Petrohué River with an approximate length of 17.4 km. The
specific study site reach is 220 m long, with an average width of 213 m, a total area of 4.6 ha
(Figure 1), with a longitudinal slope of approximately 3.4% and a gravel bed (D50 = 67 mm).
The riparian vegetation corresponds to an evergreen native forest cover with patches of
forest plantations.
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Figure 1. Study area locations in Chile (left), and the specific location of Blanco Este River (top-right)
and Blanco River (bottom right) (modified after [35]).

2.2. Field Surveys

Field surveys were carried out to measure jam forming logs (hereinafter JFLW) within
the study area to be able to check the precision of the proposed methodology. This step con-
tains two tasks: (1) field surveys to accurately identify and georeference JFLW, measuring
the diameter and length of each of them.
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The WJs were georeferenced using a Trimble® R6 dGPS with average horizontal and
vertical precisions of 2 and 4 cm, respectively. Each WJ was georeferenced at the top and
center of the accumulation. Following [41], the diameter and length of each JFLW, were
measured with a caliper (estimated precision ≤1 cm) and tape (estimated precision ≤5 cm),
respectively. The volume of each accumulation was calculated by summing the volumes
of each of the individual logs, which were obtained using the formula for calculating the
volume of a cylinder, following [35]:

V = π (D/2)2 L (1)

where V is the volume of each JFLW (m3), D is the diameter (m), and L is the length (m).
(2) UAV surveys (performed simultaneously to JFLW measurements) to obtain high

resolution RGB images. Specifically, in the BR study area, 58 ground control points were set
and georeferenced with a Trimble ® R6 dGPS. A flight 50 m above the ground was carried
out using a DJI S900 hexacopter, equipped with a 20-megapixel Nikon Coolpix A camera.
Instead, in the BER study area, four flights were made 70 m above the ground with a DJI
Phantom 4 Pro quadcopter, equipped with a 20 mega pixels stock camera. Here, 48 ground
control points were set and georeferenced using the same Trimble® R6 dGPS.

2.3. Arcgis Approach

The approach proposed in [35] (hereinafter ArcGIS approach) was implemented with
ArcGIS ®. The orthomosaic was used first to detect the WJs, and the DEM was used second
to extract contour lines and generate a vector representation of the surface using Terrain
Irregular Networks (TIN) through the “nearest neighbours” interpolation method from
which the volume of the WJs was computed.

2.4. Agisoft Approach

On the contrary, in the new approach (hereinafter Agisoft approach), the RGB images
were subsequently processed using Agisoft Metashape® software (Agisoft Metashape Pro-
fessional, Version: 1.5.5 build 9097 (64 bit), Owner: 2019 © AgiSoft LLC’s: 11B Degtyarnyi
per., St. Petersburg, Russia, 191144) to generate a georeferenced orthomosaic (pixel dimen-
sion of 2.1 cm). In addition, a point cloud was produced to create the DEM of the study
area (resulting by default from processing in maximum resolution cells of 2.2 cm).

The orthomosaic workspace was selected in AgiSoft® and the wood accumulations
were located on it, and the contours of each accumulation were drawn. Subsequently, the
workspace of the DEM was selected, keeping the polygons of the drawn contours on which
the “measure volume” tool was used.

Finally, analyses were carried out to determine if there were statistically significant
differences between the data collected from the field and those measured digitally using the
non-parametric tests Kruskal–Wallis (KW) (significance level of 95%) and Mann–Whitney
(MW) (significance level of 95%), with which statistical tests were performed both to the
total volumes of the accumulations (WJ) and to the individual logs of each accumula-
tion (JFLW).

A graphical summary (Figure 2) of the workflow of the new approach shows the work
methodology, while Figure 3 shows the different steps for identifying, delineating, and
measuring the volume of a wood jam applying the Arcgis and Agisoft approaches.
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Figure 2. Workflow detailing each stage of the methodological process, the necessary input, the
processing, and their outputs. Keywords: GCP (ground control points), UAV (unmanned aerial
vehicle), Photoset (set of images obtained from the UAV flight), DEM (digital elevation model),
Orthomosaic (mosaic built from the photoset), JFLW (jams forming logs) (modified after [35]).

Figure 3. Different steps to follow for the digital measurement process, starting from (A) the individ-
uation of a WJ in the red frame, (B) shows the WJ on the mosaic obtained from the photoset using
Arcgis, (C) shows the WJ delimited and with contour lines on the DEM, in Arcgis, (D) shows the
generated TIN in Arcgis that permit the calculation of the wood volume, (E) shows the WJ delimited
with a polygon on the mosaic obtained from the photos in Agisoft, (F) shows the polygon on the
DEM (hillshade effect) from which the wood volume is calculated in Agisoft.
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2.5. Measurement Time Recording

Moreover, analysis of the laboratory activity time was carried out for both study
areas. The post-processing time was calculated for both methodologies to estimate eventual
differences in the duration of both approaches to obtain the same results.

3. Results

Contrary to what was analyzed in [35], in this study only the WJs were considered since
the methodological improvements are related just to these woody typologies. Considering
this, in the next section the characterization of JFLW and WJ is presented.

3.1. Field Surveys, Arcgis Approach and Agisoft Approach

All the wood jams located into the study reaches were considered. In BR, 37 WJs were
detected and measured. These WJ were composed of 522 JFLWs, as already presented
in [35]. On the other hand, along the BER, 45 WJ were found, composed of 382 JFLW that
were measured in the field. Considering both datasets (i.e., BR and BER), differences in
the diameter (Table 1A; Figure 4A), length (Table 1A; Figure 4B), and volume (Table 1;
Figure 4C) of each JFLW were not statistically significant (MW test), with p-values = 0.41,
0.10, and 0.58, respectively.

Table 1. Statistical summaries of (A) the diameters, lengths, and volumes of each JFLW measured
manually in the field and (B) total volumes of WJ obtained with each method: Field Volume, Agisoft
and Arcgis approaches. Q1 and Q3 correspond to the first and third quartile, respectively.

(A) BR BER (B) BR BER

Diameter (m)

Minimum
Q1

Median
Mean

Q3
Maximum

IQR

0.10
0.14
0.20
0.25
0.30
1.15
0.16

0.10
0.13
0.20
0.24
0.31
1.10
0.18

Field Volume (m3)

Minimum
Q1

Median
Mean

Q3
Maximum

IQR

0.06
0.47
0.98
4.69
3.81

81.41
3.34

0.04
0.31
1.21
1.81
2.82

11.10
2.51

Length (m)

Minimum
Q1

Median
Mean

Q3
Maximum

IQR

1.00
1.60
2.40
3.48
4.00

27.90
2.40

0.10
0.13
0.20
0.24
0.31
1.10
0.18

Agisoft Volume (m3)

Minimum
Q1

Median
Mean

Q3
Maximum

IQR

0.05
0.59
1.57
6.15
3.30
129
2.71

0.06
0.40
1.48
2.06
3.35

11.99
2.95

Volume (m3)

Minimum
Q1

Median
Mean

Q3
Maximum

IQR

0.01
0.03
0.08
0.34
0.26

12.25
0.23

0.01
0.03
0.08
0.22
0.17
4.84
0.13

Arcgis Volume (m3)

Minimum
Q1

Median
Mean

Q3
Maximum

IQR

0.06
0.57
1.29
5.31
4.14

92.38
3.57

0.09
1.84
4.14

10.89
9.91

89.52
8.07
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Figure 4. Boxplots of JFLW diameter (A), length (B), and volume (C) for the Blanco River (BR)
(n = 522) and Blanco Este River (BER) (n = 382). The bottom and top of the box indicate the first and
the third quartiles, respectively, the line inside the box is the median value, the whiskers are the
highest values within 1.5 interquartile range from the third quartile and a minimum value, whereas
circles are the outliers and the extreme values, respectively.

In BR, the biggest JFLW was characterized by a diameter of 1.15 m, a length of 27.90 m,
and a volume of 12.25 m3 (Table 1A). On the contrary, along the BER, smaller JFLW were
detected. Despite the maximum diameter being just slightly smaller than in BR (1.10 m),
bigger differences are reported for length and volume, with maximum values equal to
20.30 m and 4.84 m3, respectively (Table 1A).

The WJ volumes in BR (Table 1B; Figure 5A) are not significantly different (KW test,
p-value = 0.80), while for the BER (Table 1B; Figure 5B;) there are significant differences
(KW test, p-value < 0.01) among the results obtained applying the different methodologies.

Considering the Blanco River, both methodological approaches appear highly accurate,
showing a statistically significant linear correlation (MW test < 5%) (Figure 5). As already
seen in [35], an overestimation of the field results was also detected with the Agisoft
approach. For this specific study case, the wood volume allocated in WJs is overestimated
by approximately 31.16 % in respect of those obtained by field measurements (227.42 m3

and 173.39 m3, respectively), contrary to the 13.3% obtained in [35].
Considering then the BER, interesting differences appeared using the different ap-

proaches (Figure 6). In fact, clear differences in performance can be ascribed to the different
approach applied for WJ volume computation. The Agisoft approach also shows in this case
a statistically significant linear correlation (MW test < 5%), generating an overestimation of
approximately 12.3% with respect to field observation. On the contrary, the application of
the ArcGIS approach does not work precisely even if maintaining a positive correlation. In
this case, there is an overestimation of approximately 446.73%, with respect to field results.
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Figure 5. Boxplots of WJ volumes detected using three different approaches along the Blanco River
(BR) (n = 37) (A), and the Blanco Este River (BER) (n = 45) (B). Boxplots as in Figure 3.

Figure 6. Relationships between the volumes of WJ obtained from the field versus those obtained from dig-
ital analysis methodologies, using Agisoft (A,C) and Arcgis (B,D) in BR (A,B) and BER (C,D), respectively.
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3.2. Measurement Time Recording

Considering then the software processing time, in BR (Table 2) using the ArcGIS
approach it was 6.1 times slower than the AgiSoft approach (total of 4 h 34 min vs. 45 min).
Moreover, the AgiSoft approach was 3.5 times faster than the ArcGIS approach in the
longest WJ measurement (13 min vs. 45 min) and 10.3 times faster in the shortest WJ
measurement (20 s vs. 3 min 26 s).

Table 2. Shows the summary of software processing times in both study areas and using the
two methodologies.

Measurement Time

BR BER

Arcgis Agisoft Arcgis Agisoft
hh:mm:ss hh:mm:ss hh:mm:ss hh:mm:ss

Total 04:34:43 00:44:51 04:23:05 00:45:06
Mean 00:07:25 00:01:13 00:05:51 00:01:00

Maximum 00:45:21 00:13:00 00:13:29 00:06:00
Minimum 00:03:26 00:00:20 00:03:44 00:00:20

In BER, the total software processing time with the ArcGIS approach was 5.8 times
slower than the AgiSoft approach (4 h 23 min vs. 45 min). The AgiSoft approach was
2.2 times faster than the ArcGIS approach in the shortest WJ measurement (6 min vs. 13 min)
and 11.2 times faster in the longest WJ measurement (20 s vs. 3 min 44 s).

4. Discussion

Based on the presented results, there were differences in the accuracy of both ap-
proaches (i.e., ArcGIS and Agisoft) for estimating the volume of WJs. As already seen
in [35] and with the Agisoft approach, there is still overestimation for both study cases (i.e.,
31.16 % and 12.30% for BR and BER, respectively). Porosity has already been recognized
as a determining factor in the overestimation of the WJ volume [12], and it can also be
responsible for these approaches. For instance, Ref. [42] determined the proportion of air
between 18.9% and 93% in WJs from two rivers in south-eastern France, and [43] studied
WJs along a stretch of the Highland Water in southern England with high degrees of poros-
ity (80%). The precision of UAV methodology varies depending on the composition of the
WJ (i.e., quantity and characteristics of JFLW, their mutual orientation, and the shape of WJ)
and the morphological setting of the channel (i.e., complexity, slope, grainsize). Therefore,
differences in the results of both approaches in this research can be explained by three main
factors: (i) different computational methods for calculating the volumes; (ii) differences
between the bed grain sizes; and iii) differences between the wood dimensions in both
study areas. An important factor is the interpolation methods used by each approach to
represent the form of the WJs. The ArcGIS approach uses “Nearest Neighbors” to create
a TIN and to represent the form of the WJs, while the AgiSoft® interpolation method is
IDW. This could be a determining factor since there are interpolation methods that are
more accurate than others to represent surfaces [44,45].

Differences in grain size are important since they determine the roughness of the
surface where the LW is deposited and also the porosity. In BR (D50 = 26.2 mm), there
is a smoother, less rough surface, while in BER (D50 = 67 mm) there is a rougher surface.
Porosity is an important problem when determining the volume of the LW [12] because air
spaces generate overestimation [42].

The ArcGIS approach works better (is more precise) in BR (13.2% difference with
respect to the volume measured in the field, versus a 31.1% difference obtained with the
Agisoft approach), and this can be ascribable to the fact that the wood is thicker [46] and
the ground is smoothed, favouring the delineation of each JFLW and reducing the inclusion
of porosity in the computation; in contrast, the approach proposed in this study is more



Drones 2022, 6, 218 10 of 12

precise in BER, where the wood is thinner, and the channel surface is rougher [47]. The
Agisoft approach works better (is more precise) in BER (12.3% difference with respect to the
volume measured in the field, compared to a difference of 494.8% overestimation obtained
by the ArcGIS approach). This is probably due to the presence of such bigger boulders
and cobbles that permit better digitalization of the JFLW (maintaining it suspended over
the ground) defining the volumes in a more precise way and avoiding the computation
of porosity as wood volume. This may suggest that this new approach fits better with
such characteristics in JFLW and roughness (i.e., small logs and big cobbles), while the
original approach proposed apparently fits better with rivers having bigger JFLW and
finer substrate.

However, in terms of processing time, the Agisoft approach works much faster, using
a single software to perform all post-processing, from photo set processing to volume
measurements. Due to the reduced number of steps, the Agisoft approach is approximately
six times faster in terms of post-processing time. This new approach can be applied to
quantify the volume of wood after extreme events, such as lahars, which can consider-
ably increase the sediment load and debris flow processes in river courses after volcanic
eruptions [48].This approach, as well as that of ArcGIS, is less risky for field operators
since the field work is limited to UAV flights and GCP measurement, reducing a lot time
spent in the field, where sudden movements can be risky for operators doing traditional
measurements (i.e., using tape and tree callipers) and permitting continuation with research
subsequent to extreme events, such as those of the Blanco River after the eruption of the
Chaitén volcano [49] and the Blanco Este River after the Calbuco volcano eruption [50],
which can be more safely studied in the field.

5. Conclusions

Remote sensing analyses can estimate the volume of LW in riverbeds, saving large
amounts of time and resources, reducing working time in the field and in post-process
operations and thus optimizing economic resources. In addition, working from a remote
perspective reduces the risks of working in unstable environments by reducing exposure to
risk factors present in rivers, such as sudden movements of soil, water, or sediment. The
Agisoft approach presented in this research, accomplished objectives well with a combi-
nation of adequate precision and reduction of working time. These results can be further
improved through automatization of the process of LW individuation and detection. This
last step would greatly improve the detection of WJ, minimizing both operator errors and
the time consumption of the operator at the desk.
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