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Abstract: The recent combination of ambient backscatter communication (ABC) with non-orthogonal
multiple access (NOMA) has shown great potential for connecting large-scale Internet of Things
(IoT) in future unmanned aerial vehicle (UAV) networks. The basic idea of ABC is to provide
battery-free transmission by harvesting the energy of existing RF signals of WiFi, TV towers, and
cellular base stations/UAV. ABC uses smart sensor tags to modulate and reflect data among wireless
devices. On the other side, NOMA makes possible the communication of more than one IoT on the
same frequency. In this work, we provide an energy efficient transmission design ABC-aided UAV
network using NOMA. This work aims to optimize the power consumption of a UAV system while
ensuring the minimum data rate of IoT. Specifically, the transmit power of UAVs and the reflection
coefficient of the ABC system are simultaneously optimized under the assumption of imperfect
channel state information (CSI). Due to co-channel interference among UAVs, imperfect CSI, and
NOMA interference, the joint optimization problem is formulated as non-convex, which involves
high complexity and makes it hard to obtain the optimal solution. Thus, it is first transformed and
then solved by a sub-gradient method with low complexity. In addition, a conventional NOMA UAV
framework is also studied for comparison without involving ABC. Numerical results demonstrate
the benefits of using ABC in a NOMA UAV network compared to the conventional UAV framework.

Keywords: ambient backscatter communication (ABC); non-orthogonal multiple access (NOMA);
Internet of Things (IoT); unmanned aerial vehicles (UAVs)

1. Introduction

The future sixth-generation (6G) systems are expected to connect massive devices, sup-
port low energy consumption, provide diverse quality of services, and experience very short
latency [1]. These devices also contain low-powered wireless devices known as the Internet
of Things (IoT) which provide small data rates. In this regard, some disruptive technology
directions are intelligent reconfigurable surfaces [2], ambient backscatter communication [3],
Tera-hertz communication [4], non-orthogonal multiple access (NOMA) [5], unmanned
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aerial vehicles (UAVs) [6], and artificial intelligent/machine learning [7]. Among these two
promising technologies are backscatter communication and NOMA, which provide very
high energy and spectral efficiency. Using the existing radio frequency (RF) signals, i.e.,
WiFi, TV, cellular base stations, etc., backscatter communication is the concept of providing
battery-free transmission among different wireless devices. Backscatter communication
with the help of sensors harvests energy using these signals for circuit operation, then
reflects the signal to IoST by modulating valuable data [8]. In addition, NOMA allows mul-
tiple sensors to simultaneously communicate over the same frequency. It can be achieved
through superposition coding and successive interference cancellation (SIC) techniques.
The integration of ABC with NOMA can support the challenging requirements of future
6G networks.

UAVs, also known as drones, perform autonomous flight missions without a human
pilot onboard [9]. UAVs can be used for various applications such as rescue operations,
aerial photography, cargo transport, firefighting, agriculture, and telecommunications.
They are also used for military operations, i.e., surveillance, monitoring, and attacking
hostile targets. UAVs have recently drawn significant attention due to their low acquisition
and maintenance costs, hovering capability, low manufacturing cost, and high mobility [10].
A UAV can be used as a base station to provide cellular connections in flooded regions,
hot-spot zones, and remote areas where cellular infrastructures are unavailable. It is also
used as a relay node to improve the link connection between transmitter and receiver [11].
Recently, different works on NOMA and UAV communications have been reported. The
authors of [12] have integrated NOMA with intelligent reflecting surfaces and optimized
beamforming, power allocation, and phase design to improve the energy efficiency of the
system. The work in [13] has minimized the power consumption by optimizing the UAV
trajectory selecting an efficient cluster head for UAV-based sensor networks.

1.1. Recent Works on Backscatter Communications

Various research studies have been carried out on the performance of backscatter
communication in single-cell terrestrial networks. For example, the work in [14] has pro-
vided a joint resource allocation approach to maximize the achievable energy efficiency
of backscatter-aided NOMA networks. Jameel et al. [15] have employed a reinforcement
learning algorithm for reliable and scalable backscatter communication in IoT networks.
The work in [16] has investigated the system spectral efficiency by optimizing the power
allocation of the source and reflection power of the backscatter sensor in backscatter-aided
NOMA networks. To enhance the minimum throughput and ensure user fairness, the study
in [17] has optimized the subcarrier assignment, time allocation, and reflection power in
full duplex backscatter-aided NOMA systems. Another work in [18] has also considered
full duplex backscatter communication IoT network to maximize the minimum through-
put by optimizing the time allocation, subcarrier assignment, and reflection power of the
system. Moreover, the authors of [19] have proposed a secure communication design for
a backscatter-aided NOMA network in the presence of multiple eavesdroppers. Zhuang
et al. [20] have investigated a new resource allocation problem in a cognitive radio-based
backscatter-aided NOMA network to enhance the achievable throughput of the system.
Xu et al. [21] have minimized the total energy consumption of a mobile edge computing-
based backscatter communication network by optimizing user association, time allocation,
transmit power, computational offloading, and reflection power. Furthermore, the work
of [22] has studied a resource management problem to enhance the spectral efficiency
of backscatter-aided NOMA networks. The work in [23] has investigated physical layer
security in a cognitive ABC network. Of late, some researchers have also studied backscat-
ter communication in multi-cell terrestrial networks. For instance, Ahmed et al. [24] have
presented an efficient resource allocation scheme in backscatter-aided multi-cell NOMA
networks to maximize the system achievable energy efficiency with imperfect SIC detection.
The authors of [25] have exploited a learning-based algorithm for efficient resource alloca-
tion in backscatter-aided vehicular networks. Jameel et al. [26] have adopted reinforcement
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learning for interference management in software-defined backscatter-aided heterogeneous
networks.

Recently, some works have also considered backscatter in UAV networks. For instance,
Hua et al. have maximized the throughput of backscatter-aided UAV networks through effi-
cient time allocation, reflection coefficient, and trajectory design [27]. Farajzadeh et al. have
explored a problem of UAV altitude and trajectory optimization to improve the successful
decoded bits of NOMA backscatter-aided UAV networks [28]. The authors of [29] have
maximized the throughput of backscatter-aided UAV networks through dynamic power
splitting, reflection coefficient and trajectory design. Han et al. have instigated probabilities
of error detection and bit error rate in backscatter-aided UAV networks [30]. They have
also optimized the trajectory of UAVs for efficient power consumption. To improve the
fair secrecy rate, Hu et al. have proposed a block coordinate descent approach to optimize
the backscatter scheduling, UAV trajectory, and reflection coefficient [31]. Reference [32]
has investigated the outage probability and energy consumption of backscatter-aided
UAV networks. Of late, Gang et al. have maximized energy efficiency backscatter-aided
UAV networks by optimizing the UAV trajectory, backscatter scheduling, and carrier emit-
ter transmission power [33]. The detailed comparison of different works on backscatter
communications is also provided in Table 1.
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Table 1. Comparison of recent works involving backscatter communications.

Ref. Scenario Objective UAV/Backscatter Technique CSI

[14] Single cell Energy efficiency Single/single Dinkelbach and dual theory Perfect

[15] Single cell Efficient capacity None/multiple Reinforcement learning Perfect

[16] Single cell Spectral efficiency None/single Dual theory and KKT conditions Perfect

[17] Single cell Throughput None/multiple Block coordinated descent and successive convex optimization Perfect

[18] Single cell Max-min throughput None/multiple Block coordinated descent and successive convex optimization Perfect

[19] Single cell Secrecy rate None/single Dual theory Perfect

[20] Single Throughput None/multiple Lagrangian method Perfect

[21] Single cell Energy efficiency None/multiple Alternating optimization and Dual theory Perfect

[22] Single cell Spectral efficiency None/single Dual theory and KKT conditions Perfect

[23] Single cell Outage probability and intercept probability None/single Asymptotic expressions and approximate expressions Perfect

[24] Multi cell Energy efficiency None/multiple Dinkelbach and dual theory Perfect

[25] Multi cell Utility None/multiple Reinforcement learning and supervised deep learning Perfect

[26] Multi cell Interference
management None/multiple Reinforcement learning Perfect

[27] Single cell Throughput Single/single Block coordinated descent and successive convex optimization Perfect

[28] Single cell Throughput Single/multiple Exhaustive search Perfect

[29] Single cell Throughput Single/single Block coordinated descent and successive convex optimization Perfect

[30] Single cell BER and Energy efficiency multiple/multiple Closed-form solution for BER Perfect

[31] Single cell Secrecy rate Single/multiple Block coordinate descent Perfect

[32] Single cell Energy efficiency Single/multiple Golden section Perfect

[33] Single cell Energy efficiency Single/multiple Block coordinated decent Perfect
[Our] Multi cell Energy efficiency Multiple/multiple Sub-gradient and alternating optimization Imperfect
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1.2. Motivation and Contributions

Even though extensive research studies have been done on NOMA ABC-aided net-
works [14–26], most of these studies have investigated various optimization problems in
single-cell terrestrial scenarios. In single-cell terrestrial scenarios, the optimization prob-
lems can be convex/concave because there is no inter-cell interference which makes it
non-convex. The solution is easy to obtain using convex optimization methods in those
cases. However, more practical communication scenarios consist of multi-cell networks,
where each cell has a different size and transmit power and can cause co-channel inter-
ference to other cells. Considering these challenges, some works have studied multi-cell
scenarios with inter-cell interference, where they assume that the network’s channel infor-
mation (CSI) is available, which is challenging to achieve in practice. It is important to note
that these studies are based on terrestrial scenarios and do not consider UAV communi-
cations. Some recent works have studied backscatter-aided UAV networks [27–33], only
one work considers NOMA communication. Moreover, most of the works do not consider
ambient backscatter communication (ABC) in their proposed frameworks.

Based on our recent literature study, the work of resource allocation that considers the
NOMA ABC-aided UAV network under the assumption of imperfect channel information
has not yet been investigated . This paper proposes a new resource allocation framework
for the NOMA ABC-aided UAV network to bridge this open gap. Specifically, the power
allocation at different UAVs and the reflection power of the backscatter sensor tag (BST) are
simultaneously optimized to improve total achievable energy efficiency under imperfect
channel information. Due to the inter-UAV interference, the optimization framework is
formulated as non-convex, which involves high complexity. Thus, we transform it into
convex optimization and then obtain an efficient solution based on a sub-gradient approach.
Numerical results are also plotted to check the advantages of the proposed NOMA ABC-
aided UAV network against the conventional NOMA UAV network without ABC. The
main contributions of this work can be summarized as follow:

1. A NOMA ABC-aided UAV network is considered in which multiple UAVs transmit
superimposed signals to the IoT in their coverage areas using a NOMA protocol.
Meanwhile, BSTs also receive UAV signals, add valuable data, and reflect it towards
the IoT. On the receiver side,the IoT with strong channel conditions applies SIC to
decode the signal received from the UAV and the BST by subtracting the information
of other IoT with poor channel conditions. However, the last IoT cannot apply SIC
and decode the received signal from the UAV and the BST directly by treating the
signal of the first IoT as noise. This work aims to minimize the power consumption of
the NOMA ABC-aided UAV network by efficiently allocating the available system
resources under the assumption of imperfect channel information.

2. The formulated power minimization problem is not convex due to inter-UAV inter-
ference among UAVs, NOMA interference, and interference of imperfect CSI. Thus,
solving the problem directly and obtaining the optimal solution is challenging and
complex. Therefore, we transform it and then adopt a sub-gradient approach for
an efficient solution. According to this method, all the optimization variables and
multipliers are updated in each iteration until convergence. For comparison, we pro-
posed an optimization framework for the traditional NOMA UAV network without
involving ABC.

3. To validate our proposed framework, we obtain numerical results using Monte Carlo
simulations for the NOMA ABC-aided UAV network and the benchmark NOMA
UAV network without ABC. Results demonstrate the benefits of the ABC-aided
NOMA UAV network compared to the benchmark network. Moreover, results also
show the effect of imperfect channel information on the overall system’s achievable
energy efficiency. Furthermore, the impact of other optimization parameters , such
as minimum quality of services of individual IoT, transmit power of each UAV, and
the number of UAVs, is also depicted. The results reveal that using ABC in NOMA
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UAV networks can significantly improve the total achievable energy efficiency of the
system.

1.3. Paper Organization

The rest of the work is structured as follow. Section 2 provides the details of the
proposed system model, i.e., various assumptions and considerations. It also presents the
total power minimization problem and discusses different practical constraints. Section 3
presents an efficient solution for the optimization problem based on the sub-gradient
method. Section 4 presents and explains the numerical results based on Monte Carlo
simulations. Finally, Section 5 concludes our paper with a few exciting future issues and
research gaps.

2. System Model and Problem Formulation

We consider a NOMA ABC-aided UAV network as shown in Figure 1, where M UAVs
communicate with IoT using a downlink NOMA protocol. Meanwhile, N BSTs in the
geographical area of UAVs also receive superimposed signals. More specifically, a BST
(denoted as n-th BST) utilizing the superimposed signal received from m-th UAV, adding
useful information on it and then reflecting towards the IoT. This work assumes that: all
the devices use an omnidirectional antenna; the CSI is imperfect; UAVs can adjust their
heading with a fixed altitude H; the horizontal and vertical coordinates of each UAV are
represented as f ∈ {Xm, Ym}.

IoT

BST

BST

IoT

IoT

IoT

UAV

UAV

IoT

IoT

BST

BST Signal

Interference Signal

RF signal

UAV

Figure 1. System model of NOMA backscatter-aided UAV network

For simplicity, this work assumes that each UAV communicates with two IoT (i and
j) at any given time. Let us denote the transmit power of m-th UAV as Pm, the power
allocation coefficient of i-th and j-th IoT over m-th UAV as $̂i,m and $̂j,m, respectively. Then,
the superimposed signal of m-th UAV, i.e., xm can be expressed as:

xm =
√

Pm$̂i,mxi,m +
√

Pm$̂j,mxj,m, (1)

where xi,m and xj,m are the unit power signals of i-th IoT and j-th IoT. In air to ground UAV
communication, the channel is mainly dominated by line of site propagation when the
UAV is hovering at moderate altitude [34]. The IoT and BST are considered to be located at
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vι in the horizontal plane under a 2D Cartesian coordinate system, where ι ∈ {i, j, n}. The
downlink channel gain from m-th UAV to ι-th IoT/BST can be expressed as:

gι,m =
α0

‖f− vι‖2 + H2 (2)

where α0 shows the reference channel gain over a 1 m distance. Next, we model the uplink

channel from n-th BST to i-th and j-th IoT associated with m-th UAV as gu
n,i,m = Gu

i,m × d
β
2
i,m

and gu
n,j,m = Gu

j,m × d
β
2
j,m [35]. Here, Gu

i,m and Gu
j,m denote the coefficient of Rayleigh fading,

di,m, dj,m represent the distance from n-th BST to i-th and j-th IoT. Moreover, β shows the
path-loss. Since we consider imperfect CSI, therefore, according to the minimum mean
square error model, the above channel models can be estimated as:

gι,m = ḡι,m + φι,m, (3)

gu
n,i,m = ḡu

n,i,m + φn,i,m, (4)

gu
n,j,m = ḡu

n,j,m + φn,j,m, (5)

where ḡι,m, ḡu
n,i,m, and ḡu

n,j,m are the estimated channel gains of gι,m, gu
n,i,m, and gu

n,j,m, respec-
tively. Moreover, φι,m, φn,i,m, and φn,j,m denote the estimated channel errors with variance
of σ2

φι,m
, σ2

φn,i,m
, and σ2

φn,j,m
. For the ease of calculations and discussion, we assume that

σ2
φι,m

= σ2
φn,i,m

= σ2
φn,j,m

= σ2
φ in the rest of this paper. The signals that receive at i-th IoT and

j-th IoT from m-th UAV can be stated as:

yi,m = ḡi,mxm +
√

ηn,m ḡd
n,m ḡu

n,i,mxm x̂n,m

+ φi,mxm + φn,i,m
√

ηn,m + ωi,m, (6)

yj,m = ḡj,mxm +
√

ηn,m ḡd
n,m ḡu

n,j,mxm x̂n,m

+ φj,mxm + φn,j,m
√

ηn,m + ωj,m, (7)

where ηn,m is the reflection power of n-th BST in the coverage area of m-th UAV, ḡd
n,m is

the channel gain from m-th UAV to n-th BST, while ωi,m and ωj,m are the additive white
Gaussian noises. Following the above received signals, the achievable data rate of i-th and
j-th IoT can be stated as:

Ri,m = log2(1 + γi,m) (8)

Rj,m = log2(1 + γj,m) (9)

where γi,m and γj,m denote the signal to interference plus noise ratios which can be defined
as:

γi,m =
Pm$̂i,m(ḡi,m + ηn,m ḡd

n,m ḡu
n,i,m)

σ2
φ(Pm($̂i,m + $̂j,m) + ηn,m) + ξi,m + σ2

(10)

γj,m =
Pm$̂j,m(ḡj,m + ηn,m ḡd

n,m ḡu
n,j,m)

ζ j,m + σ2
φ(Pm($̂i,m + $̂j,m) + ηn,m) + ξ j,m + σ2

(11)

in which ξκ,m = ḡm′
κ,m ∑M

m′=1 Pm′ is the co-channel interference from other UAVs while
ζ j,m = Pm$̂i,m(ḡj,m + ηn,m ḡd

n,m ḡu
n,j,m) is the NOMA interference after the SIC decoding

process.
This work seeks to minimize the total power consumption of UAVs to design an energy

efficient transmission framework for the NOMA ABC-aided UAV network. More specifically,
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the power of each UAV and reflection of BSts are simultaneously optimized while ensuring
the minimum data rate of the individual IoT. Mathematically, it can be formulated as:

P1 : min
($̂i,m ,$̂j,m ,ηn,m)

M

∑
m=1

Pm($̂i,m + $̂j,m) (12)

s.t.



C1 :
M
∑

m=1
Ri,m ≥ Rmin

i,m , ∀i,

C2 :
M
∑

m=1
Rj,m ≥ Rmin

j,m , ∀j,

C3 :
M
∑

m=1
pm($̂i,m + $̂j,m) ≥ Pmax, ∀m,

C4 :
M
∑

m=1
($̂i,m + $̂j,m) ≤ 1, ∀i, j,

C5 :
M
∑

m=1
ηn,m ≤ 1, ∀n,

where C1 and C2 guarantee the minimum data rate of i-th IoT and j-th IoT, where Rmin
i,m and

Rmin
j,m denote the minimum thresholds. C3 limits the total power budget of UAVs, where

Pmax is the maximum power budget. Constraint C4 ensures the power allocation according
to NOMA protocol while C5 is used for reflection power control.

3. Proposed Optimization Solution

This section presents an efficient solution for our optimization problem, formulated in
(12). We can see that P1 is non-convex due to rate constraints which contain interference
due to NOMA users, co-channel, and imperfect CSI. Moreover, the formulated problem
is coupled with two optimization variables, i.e., transmit power and reflection coefficient,
which pose high complexity and make it very challenging to obtain the optimal global
solution. Thus, a low complex and energy efficient technique is required and essential.
Therefore, an alternating optimization approach can be efficiently adopted here, where the
original problem will be decoupled into subproblems for individual optimization variables.
Following the work in [36], constraints C1 and C2 can be smartly simplified as:

C̄1 = Pm$̂i,m(ḡi,m + ηn,m ḡd
n,m ḡu

i,m) ≥ (Rmin
i,m − 1)

(σ2
φ(Pm($̂i,m + $̂j,m) + ηn,m) + ξi,m + σ2) (13)

C̄2 = Pm$̂j,m(ḡj,m + ηn,m ḡd
n,m ḡu

j,m) ≥ (Rmin
j,m − 1)

(ζ j,m + σ2
φ(Pm($̂i,m + $̂j,m) + ηn,m) + ξ j,m + σ2) (14)

Next, for any given reflection at BSTs, P1 can be expressed as:

P2 : min
($̂i,m ,$̂j,m)

M

∑
m=1

Pm($̂i,m + $̂j,m)

s.t.
{
C̄1, C̄2, C3, C4, (15)

where P2 is now a power allocation problem at UAVs and convex optimization. To effi-
ciently solve this problem, we adopt the sub-gradient method as
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L2(λi,m, λj,m, µm, πm) = Pm($̂i,m + $̂j,m) + λi,m

((Rmin
i,m − 1)(σ2

φ(Pm($̂i,m + $̂j,m) + ηn,m) + ξi,m + σ2)

− Pm$̂i,m(ḡi,m + ηn,m ḡd
n,m ḡu

i,m)) + λj,m((Rmin
j,m − 1)

(ζ j,m + σ2
φ(Pm($̂i,m + $̂j,m) + ηn,m) + ξ j,m + σ2)

− Pm$̂j,m(ḡj,m + ηn,m ḡd
n,m ḡu

j,m)) + µm(Pmax

− Pm($̂i,m + $̂j,m)) + πm(1− ($̂i,m + $̂j,m)) (16)

where L2(.) is the Lagrange function ofP2, and λi,m, λj,m, µm, πm are its associated variables.
Now the partial derivation of (16) with respect to power allocation coefficients can be
obtained as:

∂L2(λi,m, λj,m, µm, πm)

∂$̂i,m
= Pm(1− ḡi,mλi,m − ηn,m ḡu

i,m

ḡd
n,mλi,m + (Rmin

i,m − 1)(λi,m + λj,m)σ
2
φ + µm), (17)

∂L2(λi,m, λj,m, µm, πm)

∂$̂j,m
= Pm(1− ḡj,mλj,m − ηn,m ḡu

j,m

ḡd
n,mλi,m + (Rmin

i,m − 1)(λi,m + λj,m)σ
2
φ + µm). (18)

Accordingly, for the given values of $̂i,m and $̂j,m, the problem P1 can be simplified as

P3 : min
(ηn,m)

M

∑
m=1

Pm($̂i,m + $̂j,m)

s.t.
{
C̄1, C̄2, C5, (19)

where P3 is the problem of efficient reflection power design at BSTs which can be solved
through the sub-gradient method as:

L3(λi,m, λj,m, αn,m) = Pm($̂i,m + $̂j,m) + λi,m

((Rmin
i,m − 1)(σ2

φ(Pm($̂i,m + $̂j,m) + ηn,m) + ξi,m + σ2)

− Pm$̂i,m(ḡi,m + ηn,m ḡd
n,m ḡu

i,m)) + λj,m((Rmin
j,m − 1)

(ζ j,m + σ2
φ(Pm($̂i,m + $̂j,m) + ηn,m) + ξ j,m + σ2)−

Pm$̂j,m(ḡj,m + ηn,m ḡd
n,m ḡu

j,m)) + αn,m((ηn,m − 1) (20)

where L3(.) is the Lagrange function of P3, and $n,m is the Lagrange multiplier. Now we
compute the partial derivation as:

∂L3(λi,m, λj,m, αn,m)

∂ηn,m
= $̂i,m ḡi,mλi,mPm − $̂j,m ḡj,mλi,m

λj,mPm + (Rmin
i,m − 1)(λi,m + λj,m)σ

2
φ + αn,m). (21)

Finally, the optimization variables and Lagrange multipliers are iteratively updated
as:

$̂i,m(θ + 1) =
[

$̂i,m(θ)− ϕ(θ)
∂L2(.)
∂$̂i,m

]+
(22)
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$̂j,m(θ + 1) =
[

$̂j,m(θ)− ϕ(θ)
∂L2(.)
∂$̂j,m

]+
(23)

ηn,m(θ + 1) =
[

ηn,m(θ)− ϕ(θ)
∂L3(.)
∂ηn,m

]+
(24)

λi,m(θ + 1) =
[

λi,m(θ)− ϕ(θ)
(

Pm$̂i,m(ḡi,m + ηn,m

ḡd
n,m ḡu

i,m)− (Rmin
i,m − 1)(σ2

φ(Pm (25)

($̂i,m + $̂j,m) + ηn,m) + ξi,m + σ2)
)]+

,

λj,m(θ + 1) =
[

λj,m(θ)− ϕ(θ)
(

Pm$̂j,m(ḡj,m + ηn,m

ḡd
n,m ḡu

j,m)− (Rmin
j,m − 1)(ζ j,m + σ2

φ(Pm (26)

($̂i,m + $̂j,m) + ηn,m) + ξ j,m + σ2)
)]+

,

µm(θ + 1) =
[

µm(θ)− ϕ(θ)
(

Pmax − pm($̂i,m + $̂j,m)
)]+

(27)

πm(θ + 1) =
[

πm(θ)− ϕ(θ)
(

1− ($̂i,m + $̂j,m)
)]+

(28)

αn,m(θ + 1) =
[

αn,m(θ)− ϕ(θ)
(

1− ηn,m

)]+
(29)

where θ indicates iteration number, and ϕ ≥ 0 is the step size, respectively. The proposed
iterative sub-gradient method can be updated in each iteration until convergence of the
transmit power and reflection coefficient.

4. Numerical Results and Discussion

In this section, we provide and discuss numerical results obtained from the solution
provided in the previous section. This work compares the proposed NOMA ABC-aided
UAV network (denoted as ABC-enhanced NOMA) with the traditional pure NOMA UAV
network (stated as Pure NOMA), where ABC is not considered. For simulation, the
maximum number of UAVs is considered as 10. The imperfect CSI parameter is 0.01 and
0.001. The individual data rate of IoT varies from 0.2 to 0.9 b/s. Moreover, the maximum
transmit power of each UAV is 30 dBm. Each UAV altitude is fixed at H = 10 m, and
the path loss exponent is set as 5 dBm. The achievable energy efficiency of the system
is calculated as the ratio of the sum data rate to the total power consumption (including
circuit power).

Figures 2 and 3 show the achievable energy efficiency versus individual data rate of
IoT for different numbers of UAVs and imperfect CSI parameters. In particular, the number
of UAVs in Figure 2 is considered as 5 and 10, while the values of the imperfect parameter
in Figure 3 are varied from 0.001 to 0.01, respectively. In both figures, the minimum data
rate per IoT varies from 0.2 to 0.9 b/s, and the maximum power budget of a UAV is set
as 30 dBm. Moreover, the value of the imperfect CSI parameter in Figure 2 is set to 0.001
while the number of UAVs in Figure 3 is set as 10. It can be evident from both figures that
the proposed NOMA ABC-aided UAV network achieves higher energy efficiency than the
traditional NOMA UAV network without ABC. This is because ABC adds useful gain to
the received signal of IoT without consuming any additional power at UAVs, which shows
the benefit of integrating the ABC system into NOMA UAV networks. We can also observe
that the system with more UAVs in Figure 2 obtains higher achievable energy efficiency
than the system with fewer UAVs. A system with more UAVs can have more BSTs and
accommodate more IoT, resulting in extra energy efficiency. Similarly, a system with a
lower value of imperfect CSI, as shown in Figure 3 can achieve higher performance than
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the system with high values. Furthermore, it can also be noted that the achievable energy
efficiency of the system reduces when the minimum quality of services of individual IoT
increases. This is because IoT with high data rate demands requires more transmit power
at UAVs, which affects the overall system’s energy efficiency. In both figures, the proposed
NOMA ABC-aided UAV network significantly outperforms its counterpart benchmark
pure NOMA UAV network.
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Figure 2. The minimum data rate of IoT versus achievable energy efficiency of the proposed NOMA
ABC-aided UAV network and the benchmark traditional NOMA UAV network without ABC. Here
we plot results with different numbers of UAVs.
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Figure 3. The minimum data rate versus achievable energy efficiency of the NOMA ABC-aided UAV
network and the traditional pure NOMA UAV network without ABC. Here we plot results with
different values of σφ.

Next, we study the achievable energy efficiency of the system against the varying
transmit power of the UAV for different numbers of UAVs in the system, as shown in
Figure 4, and for different values of imperfect CSI parameter, as shown in Figure 5. In both
figures, the achievable energy efficiency first increases with the increase in the transmit
power of UAVs and then remains unchanged with a further increase in the available
power. For instance, when the UAV in each coverage area is transmitting with 10 dBm,
the achievable energy efficiency of the NOMA UAV network is 330 b/j, and it reaches
370 b/j as the power of the UAVs approaches 15 dBm. The system performance remains
unchanged when the allocated power UAVs exceeds 15 dBm. However, in both figures, the
proposed NOMA ABC-aided UAV network achieves significantly high energy efficiency
than the traditional pure NOMA UAV network. It shows the importance of ABC system
for low-powered IoT in future UAV networks. Moreover, the system with more UAVs in
Figure 4 achieves higher achievable energy efficiency than the system with fewer UAVs.
Accordingly, the system with lower values of imperfect CSI in Figure 6 obtains more energy
efficiency compared to the system having higher values of imperfect CSI.
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Figure 4. The available transmit power at UAVs versus achievable energy efficiency of the NOMA
ABC-aided UAV network. Here we plot results with different number of UAVs.
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Figure 5. The available transmit power at UAVs versus achievable energy efficiency of the NOMA
ABC-aided UAV network. Here we plot results with different values of σφ.

Finally, Figure 6 discusses the system’s achievable energy efficiency against the differ-
ent values of IoT minimum data rate when changing the values of circuit power (i.e., Pc)
consumption. In this figure, we set two circuit power consumption such as Pc = 5 dBm and
Pc = 10 dBm, respectively. We can see that the system with higher Pc consumption provides
lower achievable energy efficiency than the one with lower Pc consumption. However, we
can see that the proposed NOMA ABC-aided UAV network performs significantly better
in achievable energy efficiency than the pure NOMA UAV network. Moreover, system
performance reduces as the quality of services of IoT increases. This is because high data
rate demands require more transmit power at UAVs, which affects the system’s achievable
energy efficiency.
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Figure 6. The minimum data rate of IoT versus achievable energy efficiency of the NOMA ABC-aided
UAV network and the traditional pure NOMA UAV network without ABC system. Here we plot
results with different values of Pc.
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5. Conclusions

NOMA and ABC are promising technologies for next-generation UAV networks to
connect low-powered IoT. This paper has provided a new optimization framework for a
NOMA ABC-aided UAV network to minimize the total power consumption under imper-
fect CSI. The optimization problem has been formulated as non-convex, hence challenging
to obtain the optimal global solution. Therefore, it has been solved through an alternating
optimization approach, where the original problem is coupled into subproblems. Then, a
sub-gradient method is adopted to obtain a low complexity, efficient solution. A benchmark
pure NOMA UAV optimization framework without ABC has also been investigated for
comparison. Simulation results have proved the significance of the proposed NOMA ABC-
enabled UAV NOMA network compared to the benchmark pure NOMA UAV network
without the ABC system. Our work can be enhanced in several directions. For example,
intelligent reflecting surfaces can be combined with ABC-enabled NOMA UAV networks.
Another potential topic is to investigate the physical layer security of such networks.
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