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Abstract: Collision risk modelling has a long history in the aviation industry, with mature models cur-
rently utilised for the strategic planning of airspace sectors and air routes. However, the progressive
introduction of Unmanned Aircraft Systems (UAS) and other forms of air mobility poses new chal-
lenges, compounded by a growing need to address both offline and online operational requirements.
To address the associated gaps in the existing airspace risk assessment models, this article proposes a
comprehensive risk management framework, which relies on a novel methodology to model UAS
collision risk in all classes of airspace. This methodology inherently accounts for the performance of
Communication, Navigation and Surveillance (CNS) systems, and, as such, it can be applied to both
strategic and tactical operational timeframes. Additionally, the proposed approach can be applied
inversely to determine CNS performance requirements given a target value of collision probability.
This new risk assessment methodology is based on a rigorous analysis of the CNS error characteristics
and transformation of the associated models into the spatial domain to generate a protection volume
around each predicted air traffic conflict. Additionally, a methodology to quickly and conservatively
evaluate the multi-integral formulation of collision probability is introduced. The validity of the
proposed framework is tested using representative CNS performance parameters in two simulation
case studies targeting, respectively, a terminal manoeuvring area and an enroute scenario.

Keywords: Unmanned Aircraft Systems; UAS; UAS Traffic Management; UTM; collision risk; Air
Traffic Management; avionics; airspace risk; Communication, Navigation and Surveillance; CNS;
Required Navigation Performance; RNP; Required Communications Performance; RCP; Required
Surveillance Performance; RSP; robotics; aerial robotics; navigation; tracking; sense and avoid; detect
and avoid

1. Introduction

The airspace is currently in a state of transition with regard to the integration of Un-
manned Aircraft System (UAS) operations. These operations have largely been segregated
from manned aircraft up to this point. However, this is likely to change as more commercial
applications and use-cases for UAS emerge. Given the growth rate of the UAS population,
the current management framework would not be able to scale to meet the demand effi-
ciently. It is desirable that a highly automated management infrastructure be put in place
to holistically coordinate operations between all agents within the shared airspace [1]. The
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UAS Traffic Management (UTM) concept was introduced to fill this gap. At a fundamental
level, the UTM concept entails a cooperative network that is separate from but complemen-
tary to conventional Air Traffic Control (ATC) separation services, supporting the sharing
of information on flight intent and airspace constraints between all participating vehicles.
Initially, the UTM purview will be restricted to low-altitude uncontrolled airspace below
400 ft. However, there would be growing coordination and interoperability with ATC to
support unmanned operations that transition between uncontrolled-controlled airspace and
operations above 400 ft [1]. This is illustrated in Figure 1, which shows the current airspace
structure. In terms of unmanned traffic, the upper airspace layers are restricted primarily
to large, high-altitude (typically defence) platforms conducting surveillance exercises.
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A mature UTM CONOPS will define the responsibilities of both Remote Pilots in Com-
mand (RPIC) and UTM operators and will determine the performance envelope within
which the variety of UAS vehicles, UTM and ATM systems can implement automation
and autonomy. Such UTM CONOPS, however, cannot prescind from the airspace model
adopted by the regulator, which shall therefore be evolved coherently with the UTM
CONOPS and support it. The UTM architecture envisaged in the latest iteration of the
FAA CONOPS for UAS is detailed in [1]. The UTM project is structured into four distinct
phases or Technical Capability Levels (TCLs). These phases are characterised by succes-
sive progression from Visual Line Of Sight (VLOS) operations in scarcely populated areas
to Beyond Visual Line Of Sight (BVLOS) operations in urban areas. The progression of
the project is characterised by increasing scenario complexity and required autonomous
capabilities [2,3]. Each new TCL extends the capabilities of the previous TCL, with each
successive phase supporting a large range of UAS from remotely piloted vehicles to fully
autonomous UAS. Each capability is targeted to specific types of applications, geographical
areas, and use cases. TCL4 is characterised by complex operations in densely populated
urban areas, requiring a number of demanding capabilities. These include Beyond Line
Of Sight (BLOS) operations, large-scale contingency management, in-flight deconfliction
and trajectory conformance monitoring. In addition to widespread UAS operations, the
emergence of on-demand Urban Air Mobility (UAM) services will also place increasing
demands on the airspace. UAM and UTM are therefore seen both as subsets of the over-
arching Advanced Air Mobility (AAM) concept. While UTM is focused on managing
unmanned aircraft operations, UAM aims to enable highly automated, cooperative passen-
ger transport in urban and suburban areas. The realisation of this concept is supported by
the development of Distributed Electric Propulsion (DEP) and electric Vertical Take-Off
and Landing (eVTOL) aircraft, which are envisaged to operate in designated corridors [4].
A UAM corridor is also denoted in Figure 1, spanning multiple airspace classes. As
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UAM and UTM operations scale in size, transitions of conventional air traffic and un-
manned aircraft across UAM corridors will have to be considered. A highly automated
information bridge for communication between ATC, UTM and UAM is called for. To
minimise required ATC support in low-altitude airspace, the AAM initiative has proposed
the implementation of corridors that can be periodically redefined depending on traffic
demand [5,6]. It is expected that inter-aircraft cooperative communication protocols will
be mandated to maintain orderly flow and avoid conflicts within the corridor. As in the
case of UTM, the envisaged evolution of UAM is characterised by a progressive increase
in automation level, with the human operator gradually taking on a more strategic man-
agement role. The full realisation of a mature AAM network with seamlessly integrated
UTM and UAM operations requires the implementation of several advanced concepts
such as 4-Dimensional (4D) Trajectory-Based Operations (TBO) [7–9], Dynamic Airspace
Management (DAM) [10] and Performance-Based Operations (PBO). Each aircraft would
essentially be assigned a 4D trajectory that is continuously negotiated, monitored and
updated in real-time/quasi-real time. This is fundamentally different from legacy flight
plans in manned aircraft operations. The implementation of TBO within the dense route
structures and short timeframes characteristic of UTM operations is, in turn, dependent
on reliable and high-performance Communication, Navigation and Surveillance (CNS)
systems. The applicable performance requirements for these systems are embodied under
Performance-Based Communication/Navigation/Surveillance (PBC/PBN/PBS) standards.
The application of these standards supports trajectory conformance and safe separation.

DAM supports enhanced Demand Capacity Balancing (DCB) by allowing airspace
sectors to be dynamically reconfigured or morphed in response to traffic patterns, weather
patterns and other dynamic factors. An algorithmic morphing requires the use of metrics
or safety indices that characterise the safety of operations as well as the impact of proposed
changes in a specific airspace sector. A number of safety indices have been proposed in the
literature. A review of these indices can be found in [11]. Traditionally, the probability of
aircraft collision or collision risk has been widely used in conventional ATM processes as
a metric to assess the safety of operations and airspace structure design/reclassification.
Since air-air/air-ground collisions are the primary hazards associated with unmanned
aircraft operations, collision risk is well suited as an assessment metric to drive airspace
management in the different timeframes of a UAS operation.

Collision risk is typically measured and specified in units of hazard rates (i.e., number
of hazardous events per unit of time). The most commonly applied unit is fatal accidents
per flight hour. Therefore, its use in Decision Support Systems to trigger airspace man-
agement actions such as trajectory changes or sector morphing allows interventions to be
traceable and commensurate to an absolute safety metric. In general, aviation authorities
have embraced a risk-based approach in the process of developing new standards, opera-
tional procedures and safety assessments for supporting the introduction of UAS in the
airspace [12,13]. In [14], a risk assessment framework for UTM was proposed, which took a
number of internal (to the aircraft) and external environmental parameters into account
to evaluate the risk associated with a mission profile. Each phase of a UAS operation can
be assessed through a suitably formulated collision risk model. The relevant operational
timeframes are adapted from [15] and are illustrated in Figure 2. During the offline phase,
when the aircraft is on the ground, statistical traffic flow predictions at a macroscopic level
are made, typically using historical data within individual sectors (tactical) and across mul-
tiple sectors (strategic). The assessed risk is mitigated through optimising airspace design
and flight schedules to ensure that traffic management resources are adequate to meet
the foreseen/nominal demand in the foreseen operational conditions. During the online
phase, while the mission is in progress, risk assessment is performed over aircraft intents
spanning multiple sectors (strategic) or within one sector (tactical), with the former mostly
in the form of DCB interventions, while the latter normally involves tactical deconfliction
by Air Traffic Controllers (ATCOs) [10]. As part of the ATM evolutionary roadmap, these
will be increasingly performed through TBO and DAM, which will play key roles in UTM
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operations due to the high reliance on automation. The emergency timeframe is set based
on the time budget (with a buffer) allocated to a remote pilot and “safety net” systems to
assess the potential of a collision and resolve the conflict [16].
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To be applicable to the UAS and UAM context, a collision risk model must possess
several key attributes:

• it should be conservative (since it is always preferable to overestimate risk for a Safety
of Life application);

• it should explicitly budget contributions from different CNS elements to the over-
all risk;

• it should be capable of seamlessly and efficiently handling free routes and arbitrary
trajectories.

1.1. Scope and Structure of the Article

The key contribution of this paper is a comprehensive, cohesive and robust collision
risk assessment framework which encompasses the CNS infrastructure and performance
and its ongoing evolutions, along with emergent aspects of the current airspace such as the
introduction of UAS and UAM. The framework is also flexible enough to accommodate
the dynamics of the aircraft involved in the encounter. Additionally, human factors can
also be incorporated into the framework. This includes aspects such as the performance of
pilots, ATCOs and other stakeholders. The remainder of Section 1 will review prior work
in collision risk modelling methodologies and identify limitations which restrict their appli-
cation to current and emerging operations. After introducing the fundamental definitions
and notation, Section 2 outlines the proposed unified risk assessment framework, begin-
ning with an overview of the methodology followed by its mathematical underpinnings.
The application of the proposed framework to various timeframes of operations is also
discussed before a demonstration of the same through dedicated case studies in Section 3.
Conclusions and recommendations for future research are provided in Section 4.

1.2. Prior Work in Collision Risk Modelling

Collision risk modelling is a long-standing field of study for manned aviation. In
general, the deployment of new models or proposed updates to existing models occurs at a
very slow pace owing to the requirement for extensive verification and validation. As a
result, models that were developed as far back as the 1960s are still applied today with mod-
ifications and enhancements. The models surveyed for manned aircraft typically occupy
one of the broad categories illustrated in Figure 3. The most mature and commonly de-
ployed models in practice are analytical models, either with a closed-form expression or an
integral expression that is evaluated numerically. Of these, the Reich-Marks model [17–19]
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is the oldest and most widely applied. The model estimates the probability of a mid-air
collision between two enroute level flying aircraft. The main objective is the determination
of risk associated with lateral separation between adjacent parallel routes or vertical sep-
aration between adjacent flight levels. The model applies an ICAO-supported approach
and is simple to implement and evaluate. In particular, the model has an extensive history
of application in strategic offline scenarios to determine the risk associated with dense
routes. The inputs comprise the number of aircraft over an observation period, relative
velocities, aircraft dimensions and position error distributions. The model applies a number
of simplifying assumptions that make it inapplicable to a broad range of scenarios.
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The models that followed were in part developed to overcome some of these lim-
itations. For instance, the Anderson-Hsu model and subsequent extensions [20,21] are
applicable to aircraft on both parallel and intersecting routes and can accommodate differ-
ent navigational performances in cross- and along-track directions for both aircraft. The
impact of communication and surveillance infrastructure servicing a pair of aircraft is
also more readily incorporated in these models. The improved accuracy and applicability,
however, come at the expense of computational run time since the method calls for a
multiple-integral expression to be evaluated. Other notable examples of analytical models
include [22], in which a geometrical model of the aircraft encounter is used in conjunction
with empirical distributions characterising pilot and controller reaction times. In [23],
nominal aircraft positions were propagated over a tactical timeframe using an assumed
kinematic model, and an integral over estimated positions was approximated. In [24], the
probability of vertical loss of separation was computed by estimating altitude distributions
through a combination of simulation and real data. The impact of wind forecast uncer-
tainty on conflict probability estimation was investigated in [25]. Gas models and their
generalisations operate on the principle that aircraft behaviour is random, like the motion
of gas molecules in a container. This is useful in obtaining a conservative assessment of risk
where there is little to no historical traffic data. ATC environments without surveillance
capability, such as see-and-be-seen Visual Flight Rules (VFR) environments that involve
mostly General Aviation (GA) aircraft, are a prime candidate for this model. Moreover,
surveillance, communication and intervention capability cannot be natively accounted for.
Simulation-based techniques apply a markedly different approach to risk modelling. In
general, the approach is highly flexible and allows the analysis of a very wide range of
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causal and complex factors contributing to a collision. Cascading system and personnel
failures can be accounted for, which would be highly complex to capture in an analytical
approach. Agent-based simulations and Monte Carlo simulations are prime examples of
this. Highly realistic scenarios can be constructed and evaluated. However, improved
model fidelity is at the expense of computational expenditure. The Traffic Organization and
Perturbation AnalyZer (TOPAZ) model [26] is one such example of a highly flexible frame-
work that employs a combination of Agent-Based Models and Monte Carlo simulations to
construct and evaluate complex scenarios. Collision risk modelling for UAS is currently
an active area of research owing to the growing number of commercial and recreational
operations and the prospect of gradually desegregating the airspace. The field of study
is not as mature as in the case of manned aircraft. Nevertheless, several recent models
apply methodologies that have been tried and tested on manned aircraft for decades. For
example, in [27], the probability of mid-air collision was computed using principles related
to the collision frequency of gas molecules as embodied in the gas model. Similarly, in [28],
the collision risk between general aviation aircraft and unmanned aircraft was computed
using principles from the gas model theory. In [29,30], a data-driven collision risk model
was presented, which computed vertical overlap probabilities of manned and unmanned
aircraft in the proximity of aerodromes. The model is essentially based on the convolution
of altitude error distributions for manned and unmanned aircraft. Error distributions for
manned aircraft are approximated through kernel density estimation applied to radar
surveillance data. Vertical collision risk is computed and compared, assuming different
types of distributions for unmanned aircraft altitude errors. The model itself has not been
validated in an operational setting. However, the underpinning mathematical formulation
is based on determining the overlap of distributions, which is a well-established method-
ology. A methodology based on Monte-Carlo sampling to propagate unmanned aircraft
trajectories was presented in [31] to evaluate the probability of collision with manned
aircraft in restricted airspace scenarios. A large body of UAS research is focused on the
Detect-and-Avoid (DAA) problem [32] and on the use of radar or active and passive
electro-optical sensors [33] for detecting static and dynamic obstacles [34–37]. In general,
most of the proposed DAA solutions do not quantify the risk as a direct function of the
probability of collision. Rather, a set of metrics and thresholds are defined that serve as
proxy variables for defining a collision. For instance, time- and distance-based metrics
(tau, modified tau, DMOD) and thresholds are specified for caution and warning alerts in
the Minimum Operational Performance Standards (MOPS) for DAA systems that initiate
avoidance manoeuvres [38]. This framework was extended in [39], where a methodology
for assuring the integrity and continuity of estimating these metrics was presented. A
number of static and dynamic metrics were presented as part of a risk-based framework
in [40]. A key finding that emerges from the review of the prior work is that surveillance
and communication performance was not inherently accounted for in the early models.
Most early models essentially assumed that aircraft were ‘flying blind’ (i.e., aircraft on a
collision course would remain on the same course with no incorporation of intervention
mechanisms). Eventually, as in the case of [20], the capability of triggering an intervention
based on the communication and surveillance infrastructure was incorporated into several
models. This was typically parameterised in terms of the time required to perform an
intervention, quantified based on empirical distributions. Most of the models published
so far focussed on the offline planning (strategic) timeframe only (i.e., to drive the design
of airspace structures and air routes based on historical traffic data) [41]. In the case of
unmanned aircraft, mid-air collision risk models have a shorter history of development but
typically utilise modelling techniques that have previously been used for manned aircraft.
As UAS are expected to have greater interactions with general aviation aircraft operating
in uncontrolled airspace over the short to medium term, gas model-based methods are
popular since they apply conservative assumptions regarding the behaviour of aircraft in
the absence of data. A major gap that emerges from the review is that the majority of the
traditional models are largely data-driven [41].This presents problems when assessing the
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risk of introducing new aircraft (such as UAS), equipment classes and operations. There is
no holistic model-driven approach that accounts for CNS performance that is applicable in
both offline planning and real-time operational timeframes.

2. Models and Methods

Aircraft collisions are essentially discrete events whose occurrence is uncertain. Proba-
bility is one of the most widely accepted quantitative descriptions of such uncertainty. Since
a collision can result in loss of life and property, the probability of a collision is also referred
to as collision risk. Collision risk has a long history of application in aviation towards the
safety assessment of operations and associated equipment, resources, and infrastructure.
However, the operational and environmental parameters for manned passenger aircraft are
vastly different from those that characterise current (and emerging) UAS operations. As a
result, most collision risk models for manned aircraft are inapplicable to UAS. This section
provides the context behind the evolution of the airspace due to the introduction of UAS
operations and the implications this would have on collision risk modelling and evaluation.

2.1. Fundamental Definitions

In a deterministic formulation, a collision event can be defined as the simultaneous oc-
currence of a horizontal and vertical overlap between aircraft. To evaluate these conditions,
aircraft bodies are typically approximated as a regular shape to simplify the development
and application of collision risk models. Typical geometries include cylinders and spheres,
as illustrated in Figure 4. For computational efficiency, it is common practice to consider
one of the aircraft as a point object and inflate the dimensions of the other aircraft so that
a critical collision region equivalent to the sum of the individual aircraft dimensions is
defined. A collision event then simply corresponds to the point aircraft entering the inflated
collision region, as conceptually illustrated in Figure 5.
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A threshold value for the collision risk is typically specified as the so-called Target
Level of Safety (TLS), commonly specified in units of fatal accidents per flight hour. A com-
prehensive review of different TLS values adopted over the years for different operations is
provided in [42]. These threshold values typically have a basis in historical accident data.

2.2. Unified Airspace Risk Management Framework

A cohesive collision risk assessment framework is introduced henceforth, which
encompasses CNS performance and its ongoing evolutions, along with emergent aspects of
the current airspace such as the introduction of unmanned aircraft, urban air mobility and
space launch and re-entry. The high-level flowchart of this enhanced CNS performance-
based framework is depicted in Figure 6. The methodology is tailored to the strategic
offline phase of operations, in which historical surveillance or simulated data is used to
assess the risk associated with operations over a given region or route. The risk model
is nonetheless applicable to online timeframes as well, but this aspect will be covered in
future work. For all aircraft pairs in the simulation scenario passing the preliminary traffic
filtering step, a multi-step collision risk determination process is carried out. The primary
step in this procedure is the generation of a protection volume (i.e., the CNS protection
volume around each aircraft involved in the scenario). This volume accounts for errors in
navigation and surveillance, delays in executing an intervention due to the limitations of
the employed communication system(s), and delays introduced by operator/pilot response
times. Additionally, the framework allows for multiple inflations to be added to the volume
to compensate for aircraft dynamics and adverse weather conditions. Each of these factors
can be mapped to a corresponding inflation of the volume. A penetration of this volume
by another aircraft or by a ground obstacle then represents a collision risk. Evaluation of
this collision risk and subsequent assessment against a threshold triggers an appropriate
strategy for controlling the risk.

The remainder of this section will focus on the collision risk modelling phase in
Figure 6 as applied to the strategic offline timeframe of operations. The development of
risk control strategies and their deployment in response to assessed risk exceeding an
established TLS is beyond the scope of this paper and will be covered in future work.

2.3. Collision Risk Mitigation and Control Measures

To ensure that the probability of occurrence does not exceed the assigned threshold, the
hazard must either be removed, or the likelihood of risk arising from it must be minimised.
To this end, several risk-mitigating measures can be employed for a given scenario, several
of which are mentioned at the bottom of Figure 6. A risk mitigation measure is essentially
a safety barrier that minimises the probability of occurrence of the collision. A properly
designed risk management process requires (1) Detection of the hazard; (2) Assessment
of the hazard; (3) Implementation of risk reduction and control actions; (4) Monitoring of
satisfactory outcomes. This entire process could be implemented either as a human-in-the-
loop system (as a conventional ATM), an autonomous system or a combination of both. Risk
reduction and control actions in the strategic deconfliction context would be managed by a
UTM system limiting the density of unmanned aircraft to levels where their onboard DAA
can safely operate. The approval/denial process may take into account the performance
and equipping of the vehicle. A full analysis of the most effective risk reduction and control
measures in each operational context and to which these reduce the actual collision risk is
beyond the scope of this article and will be addressed in future research.

2.4. CNS Performance-Based Collision Risk Modelling

This section presents an overview of the proposed methodology to evaluate the colli-
sion risk arising from a given encounter between two or more aircraft. The methodology is
a unified approach with the flexibility to account for the performance of the CNS infrastruc-
ture servicing the aircraft involved in the encounter. The methodology can be applied in one
of two ways: (1) Evaluate risk given a set of operational and system parameters; (2) Solve
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the inverse problem (i.e., determine the required CNS performance given a prescribed
not-to-exceed TLS). This dual-application capability is illustrated in Figure 7.
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evaluating performance trade-offs.

The risk evaluation for a proposed mission begins with identifying and modelling the
performance of the CNS infrastructure supporting the mission. These serve as inputs to
the unified collision risk model along with the planned trajectory and applicable separa-
tion standards. The model outputs the probability of collision with other aircraft (given
knowledge of their intents over the assessment period) and with terrain features (given a
terrain model). In the inverse application, the maximum allowable collision probability
is set as a target input to the model, which outputs the trade-space between the required
CNS performance and the planned mission profile. The development and assessment of
proposed separation standards can be supported in this manner. The high-level procedure
in the forward model application (risk evaluation) is illustrated in Figure 8.
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The methodology is centred on the generation of volumes that bound the nominal
positions of the aircraft. These volumes represent the uncertainty in CNS performance and
define temporal and spatial boundaries within which the collision risk is to be evaluated.

The first step is the identification of the CNS systems employed by the aircraft and
ground infrastructure. The performance of these systems is then modelled and the cor-
responding Probability Density Functions (PDF) are used to generate bounding volumes
around the nominal positions of the aircraft. Additionally, the framework allows for in-
flations to be added to the volume to compensate for delays in executing an intervention
due to the limitations of the employed communication system(s) and delays introduced
by operator/pilot response times. Aircraft dynamics and inclement weather conditions
can also be mapped to a corresponding inflation of the volume. A penetration of this
volume by another aircraft or by a ground obstacle then represents a collision risk. The
risk evaluation for a given pair of aircraft is performed by integrating the volume over the
conflict/collision region.

2.5. Model Formulation

The conventional starting point to formulate a collision risk model is to consider an
encounter scenario where one aircraft, designated ‘host’ or ‘aircraft a’ is in the proximity of
an ‘intruder’ aircraft, also designated ‘aircraft b’. This is depicted in Figure 9. The cases of
“in trail” aircraft and aircraft flying on parallel routes (both in the same and in opposite
directions) are also implicitly encompassed.

Drones 2022, 6, x FOR PEER REVIEW 12 of 30 
 

 
Figure 9. Prototypical encounter scenario between two aircraft. 

The kinematic states of each aircraft, consisting of individual position and velocity in 
a reference frame ℛ, are merged for convenience in a global state vector 𝑋௔௕: 𝑋௔௕ = (𝑟௔, 𝑣௔, 𝑟௕, 𝑣௕)் ∈ ℝ௡ (1)

The relative motion between aircraft is defined in terms of relative position and ve-
locity, respectively: 𝑟 = 𝑟௕ − 𝑟௔ (2)𝑣 = 𝑣௕ − 𝑣௔ (3)

The dynamics of the joint system are therefore expressed as: 𝑋. ௔௕(𝑡) = 𝑓൫𝑡, 𝑋௔௕(𝑡)൯, 𝑡 ∈ ሾ0, 𝑇ሿ, 𝑋௔௕(𝑡଴) = 𝑋଴ (4)

where 𝑇 is a terminal time horizon specifying the duration of the scenario and 𝑋଴ are the 
initial conditions. At any given time, a collision occurs if the following condition is met: ∥ 𝑟௕ − 𝑟௔ ∥ଶ− 𝑅ଶ < 0 (5)

where 𝑅 is a suitably defined distance threshold, which can be either a scalar value (de-
scribing a sphere) or a function of angular or other coordinates (describing a convex three-
dimensional shape). Considering that aircraft states are not known deterministically but 
are instead estimated based on uncertain sensor measurements, it is appropriate to intro-
duce the estimated aircraft states: 𝑋෠௔௕ = (𝑟̂௔, 𝑣ො௔, 𝑟̂௕, 𝑣ො௕)் ∈ ℝ௡ (6)

The collision event becomes a probabilistic one, reflecting the uncertainty in state es-
timates. To evaluate the probability of the collision event, it is necessary to know or as-
sume the Probability Density Function (PDF) of the relative distance 𝑟, and then integrate 
such PDF over a volume which encompasses the distance threshold 𝑅. Therefore, the in-
stantaneous probability of collision is given by:  𝑃௖(𝑡) = ම𝑝(𝒓)d𝒓௏  (7)

where 𝑝(𝒓) is the PDF of the relative distance and 𝑉 is the integration volume which 
depends only on the shape approximating the aircraft bodies. The first problem in solving 
Equation (7) is in determining the PDF of the relative position, which in turn depends on 
the PDFs describing the localisation of the host and intruder aircraft. The second lies in 
defining the integration limits bounding the volume 𝑉. If the aircraft bodies are repre-
sented by spheres, then the volume 𝑉 is also a sphere with radius 𝑅 = 𝑅௔ + 𝑅௕ which is 

Figure 9. Prototypical encounter scenario between two aircraft.

The kinematic states of each aircraft, consisting of individual position and velocity in
a reference frameR, are merged for convenience in a global state vector Xab:

Xab = (ra, va, rb, vb)
T ∈ Rn (1)

The relative motion between aircraft is defined in terms of relative position and
velocity, respectively:

r = rb − ra (2)

v = vb − va (3)

The dynamics of the joint system are therefore expressed as:

.
Xab(t) = f (t, Xab(t)), t ∈ [0, T], Xab(t0) = X0 (4)
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where T is a terminal time horizon specifying the duration of the scenario and X0 are the
initial conditions. At any given time, a collision occurs if the following condition is met:

‖ rb − ra ‖2 −R2 < 0 (5)

where R is a suitably defined distance threshold, which can be either a scalar value (de-
scribing a sphere) or a function of angular or other coordinates (describing a convex
three-dimensional shape). Considering that aircraft states are not known deterministically
but are instead estimated based on uncertain sensor measurements, it is appropriate to
introduce the estimated aircraft states:

X̂ab = (r̂a, v̂a, r̂b, v̂b)
T ∈ Rn (6)

The collision event becomes a probabilistic one, reflecting the uncertainty in state
estimates. To evaluate the probability of the collision event, it is necessary to know or
assume the Probability Density Function (PDF) of the relative distance r, and then integrate
such PDF over a volume which encompasses the distance threshold R. Therefore, the
instantaneous probability of collision is given by:

Pc(t) =
y

V

p(r)dr (7)

where p(r) is the PDF of the relative distance and V is the integration volume which
depends only on the shape approximating the aircraft bodies. The first problem in solving
Equation (7) is in determining the PDF of the relative position, which in turn depends on the
PDFs describing the localisation of the host and intruder aircraft. The second lies in defining
the integration limits bounding the volume V. If the aircraft bodies are represented by
spheres, then the volume V is also a sphere with radius R = Ra + Rb which is the combined
aircraft body radius. This is equivalent to stating that a collision event occurs when the
relative distance r = rb − ra is less than the sum of the two aircraft radii.

Pc can either be evaluated at the current instant or over a time horizon by projecting
the aircraft localisation PDFs along the estimated trajectories (obtained by integrating the
nominal equations of motion for each aircraft). This is illustrated in Figure 10. The projected
Time of Closest Approach (TCA) is of particular interest as an epoch to evaluate the
collision probability. This methodology can also be applied in a strategic sense by applying
conservative assumptions regarding the expected CNS performance over segments of the
planned trajectories. As mentioned, there are two PDFs that must be known or assumed
before determining the distribution of the relative distance:

• position of the host aircraft;
• position of the intruder aircraft.
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In principle, these variables can be typically assumed to follow a Gaussian distribu-
tion, as this is the de-facto standard for navigation and surveillance systems in aviation,
providing a relatively simple means of characterising uncertainty in system states.

For completeness, the basic formulation of a multi-variate Gaussian probability den-
sity function is presented here. Let Nn(ξ, η, P) represent a normal distribution for an
n-dimensional variable ξ with mean η and covariance matrix P. Thus, we have:

Nn(ξ, η, P) =
1√
(2π)n

1√
|P|

exp
[
−1

2
(ξ − η)T P−1(ξ − η)

]
(8)

As an illustrative example, Figure 11 shows aircraft positioning error modelled as a
Gaussian random variable in three dimensions. The ellipsoid visible in such a figure is the
3D representation of the equiprobability surface for a purely Gaussian distribution, which
is the most convenient graphical representation. The dimensions and orientation of the
ellipsoid are dictated by the elements of the covariance matrix P or their multiples (for
instance leading to 1-, 2- or 3-σ ellipsoids, among others).
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Under the Gaussian assumption, the position of each aircraft can be described simply
as a function of the nominal position and covariance as:

pa(ra, t; t0) = N3(ra, µa, Pa) (9)

pb(rb, t; t0) = N3(rb, µb, Pb) (10)

Assuming the collision risk to be evaluated around the host aircraft, pa(ra) represents
the error in the navigation system on board aircraft a and pb(rb) represents the error in the
surveillance system which is deployed at a given epoch to monitor aircraft b. The relative
distance is simply the distance vector between the two platforms, which is the difference
between two Gaussians as illustrated in Figure 12:

p(r) = N3(rb, µb, Pb)−N3(ra, µa, Pa) (11)

This is equivalent to a convolution operation:

N3(rb, µb, Pb)−N3(ra, µa, Pa) = N3(rb, µb, Pb)⊕N3(ra, µa, Pa) = N3(r, µ, P) (12)
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The resulting distribution of the relative distance is also a Gaussian mean:

µ = µb − µa (13)

and covariance matrix:
P = Pa + Pb (14)

where P now represents the combined uncertainty in navigation and surveillance estimates.
This uncertainty volume is placed at the nominal position of the intruder aircraft. The prob-
ability of collision is essentially the influx of the relative position probability distribution
into the collision region defined by the sum of radii of the two aircraft. The collision region
is placed at the nominal host position and defines the integration volume V to be evaluated.
This is illustrated in Figure 13.
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The probability of collision can now be expressed as a three-dimensional integration
of the relative distance over the spherical integral volume V:

Pc =
1

(2π)3/2|P|1/2

y

V

exp (−1
2

rTP−1r)dxdydz (15)

An exact closed-form solution of Equation (15) is not available for any of the shapes
typically adopted in collision risk modelling. Therefore, such an equation must be numeri-
cally integrated or, alternatively, a Monte Carlo simulation-based approach can be adopted.
Both options present practical issues for real-time implementation owing to their computa-
tional costs. Even for an offline evaluation, Monte Carlo simulations are impractical since
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the probability of collision is typically an extremely small value and evaluating it through
this approach would require a prohibitive number of samples.

2.6. Risk Evaluation

Here, a methodology is adopted for approximating the spatial triple integral for
collision risk (Equation (15)) conservatively and in closed form, thus overcoming the
previously mentioned difficulty of efficiently and accurately evaluating it. In particular,
by approximating the volume integral domain as a suitably orientated overbounding
cuboid, we can apply the Cumulative Distribution Functions (CDF) along each dimension.
Following this approach, the integral evaluation is replaced by an algebraic expression
which is immediate to compute and can be inverted to determine trade-offs in system
performance. The approach is illustrated in Figure 14, which for simplicity, shows a
2D ellipse.
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First, a rotational transformation is applied to the relative distance distribution. A
transformation method that is commonly employed [23] is adapted here. This is accom-
plished by first performing an eigenvalue decomposition of the generic protection vol-
ume P:

PY = Yλ (16)

where Y is the matrix of eigenvectors, and λ is a diagonal matrix of corresponding eigen-
values. Rewriting Equation (16) as:

P = YλY−1 (17)

Equation (17) essentially recasts P as the combination of a rotation and scaling op-
eration. Y represents the orientation of the volume and

√
λ represents a set of scaling

parameters along each axis. Applying the rotation yields:

P′ = YTλ Y (18)

By rotating the volume P, the integration domain is shifted to:

µ′ = YTµ (19)

The evaluation of the collision risk integral is therefore rewritten as the difference
between Cumulative Distribution Functions (CDF) Φ along each dimension. Along the
x-axis, the probability can therefore be calculated as:

Pcx

(
µ′ − R

2
< rx ≤ µ′ +

R
2

)
= Φ

(
rx − µ′x +

R
2

σdx

)
−Φ

(
rx − µ′x − R

2
σdx

)
(20)
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The dependence on navigation and surveillance performance is explicitly included as:

Pcx(µ
′
x −

R
2
< rx ≤ µ′x +

R
2
) = Φ

(
rx − µ′x +

R
2

σnav,x + σsur,x

)
−Φ

(
rx − µ′x − R

2
σnav,x + σsur,x

)
(21)

The probabilities along the y and z axes are expressed in a similar form. Assuming
that the probability of overlap in each dimension is independent, the total collision risk is
then given by:

Pc = Pcx Pcy Pcz (22)

2.7. CNS Risk Volume

Further discussion is provided regarding the construction of the volume around each
aircraft. Previously, it was discussed that the combined covariance matrix P is placed at
the nominal location of the intruder aircraft. The individual components Pa and Pb of this
volume can be inflated to provide a larger buffer zone around the aircraft commensurate
to the target level of risk for a given mission. In this way, by designing trajectories such
that the volume is not breached at any given epoch, it can be ensured that the target
level of risk is not exceeded. The volume is, therefore, a risk volume whose avoidance
protects the surrounding traffic against possible collisions. This is notionally depicted in
Figure 15. The primary contributions to this volume are the navigation uncertainty and the
surveillance uncertainty.
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Further inflations are added to the protection volume to account for additional failure
modes potentially leading to a collision. For instance, an additional buffer to compensate
for delays in receiving, acknowledging and enacting an instruction due to the limitations of
the employed communication system(s) and delays introduced by operator/pilot response
times is also depicted in Figure 15. In this manner, each system failure mode is translated
to a spatial bound to form the overall protection volume.

In this study, the discussion is restricted to the failure of CNS systems. In this context, the
cause of a collision can be traced back to a failure of one or more of the following elements:

• Failure of navigation systems: loss of accuracy beyond a specified limit without timely
detection. This constitutes hazardously misleading information preventing timely
recovery action from pilots/controllers;

• Failure of surveillance systems: loss in accuracy of aircraft localisation and non-timely
relay of surveillance information to downstream sub-systems for recovery actions;

• Failure of Communication: loss/degradation of a link to the point where necessary
recovery actions cannot be implemented in a timely manner.

As previously mentioned, the framework also allows the addition of further inflations
to account for other factors. Two of these are mentioned here:
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• Relative dynamics: an inflation is introduced, which is commensurate with the known
or assumed closure rate of the aircraft;

• Wake turbulence: a buffer region is added, which guarantees sufficient separation
from the hazardous region in the wake of the preceding aircraft.

The approach we follow in this paper is to generate protection volumes and allocate
safety buffers based on theoretical models (with conservative assumptions) of system
performance and environmental factors. For operational deployment, these theoretical
bounds can be reduced based on actual air traffic data gathered in a certain UTM scenario
and over extended time periods. Regarding the inflation associated with relative dynamics,
this can either be directional or omnidirectional. For instance, in a hypothetical worst-case
scenario where only non-cooperative surveillance is available, the estimation of the velocity
vector (absolute or relative) of an intruder aircraft would likely be very inaccurate, especially
in the early detection stages. In this case, the most conservative approach assumes that the
direction and magnitude of such a velocity vector can take any value that is theoretically
possible [36]. In our unified collision risk model, this mathematically corresponds to
omnidirectional inflation of the original protection volume, of a magnitude sufficient to
encompass the minimum and maximum flight speeds which are theoretically possible.

The potential failure causes and their combinatorial logic leading to a collision for a
specific scenario are illustrated in Figure 16.
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Figure 16. Sequential combination of system failures leading to a collision. The failure in tactical
online separation is expanded.

Separation in this instance is provided through multiple sequential layers of protection
in the strategic and tactical timeframes. This is captured through the use of a priority
AND gate for which the output is true if the inputs are all true in a specified sequence.
The sequence of failures is denoted within the block (i.e., tactical failures are followed by
strategic failures). The faults leading to a failure in tactical online separation are expanded.
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In this instance, a loss of separation is the consequence of either a failure to assess potential
collision risk or a failure to execute a timely resolution manoeuvre. Both the assessment
and resolution are performed primarily by onboard autonomous functionalities. A failure
of these functionalities leads to fully manual separation assurance actions performed by the
Pilot in Charge (PIC). The fault combinatorial logic can be represented by a combination of
basic and more sophisticated logic gates.

Each branch emerging from the topmost event are applicable to different collision
scenarios depending on the available CNS elements and human operators involved to
accomplish the Separation Assurance and Collision Avoidance (SA/CA) tasks. For instance,
for VFR aircraft, a collision can occur due to a failure in self-separation as executed by
the pilot(s). For IFR aircraft, a collision can occur as the result of a failure of airborne
cooperative separation assurance or due to a failure in ground-based surveillance and ATC
intervention systems (whichever is employed at a given point in time). Conceptually, each
of the terminal events in the fault tree corresponds to an inflation of the original volume or
an additional buffer layer. The dimensions of each are discussed next.

2.7.1. Risk Volume Decomposition

The risk volume comprises a number of layers:

• Navigation: The navigation component of the volume is conveniently represented by a
Gaussian ellipsoid. For most avionics systems, navigation sensor outputs are typically
fused in a state estimator such as a Kalman filter, which outputs an optimal estimate
of aircraft position as well as position uncertainty in the form of a state covariance
matrix. Alternately, a more standardised and conservative representation of position
uncertainty, the protection level, can be utilised. A protection level is essentially an
upper bound on the position error for a given navigation system, which also takes into
account the employed fault detection and isolation algorithm. The methodology of
inflating the protection level to bound errors to a target probability is also well defined.

• Surveillance: The error in localising the intruder aircraft arises from two sources.
The first of these is the error arising from the sensor used to measure the states
of the intruder. The second arises from the time difference between observing the
intruder and utilising the observation to assess the likelihood of a threat. Depending
on the type of employed system, there can be a significant component of latency in
the surveillance system. If the intruder aircraft are observed through a cooperative
surveillance system such as ADS-B, then the error in localising the aircraft error will
essentially be dependent on the error of the onboard GNSS system [43,44]. If a non-
cooperative system such as radar is used to observe the intruder, then the localisation
error will depend on the deployed radar characteristics and the intruder parameters.
Before the estimated position of the intruder is used to assess the likelihood of a
collision, it is compensated for latency in the system. Since latency cannot be directly
observed in real-time, latency compensation is based on a priori modelled or measured
system characteristics. Therefore, a residual error component will remain.

• Communication: If the assessment of collision risk is performed on the ground, either
through an autonomous system or through visual observation by the remote PIC, then
the execution of an avoidance manoeuvre is performed through the communication
link between the GCS and the unmanned platform. The communication component of
the risk volume is determined to provide a sufficient buffer that protects against a loss
of separation due to a failure of the communication system.

The mathematical models underpinning the dimensions of two of these buffers—
navigation and surveillance, are covered in the next sub-section.

2.7.2. Navigation and Surveillance Modelling

The localisation error that must be accounted for in the risk volume generation is
mathematically described in this sub-section. The scope of the navigation and surveil-



Drones 2022, 6, 184 19 of 29

lance modelling in this paper is restricted to GNSS and Primary Surveillance Radar
(PSR), respectively.

Primary Surveillance Radar Errors

Radar calculates the target location by measuring its range and two angular coordi-
nates with respect to the radar position. The angular coordinates commonly used are the
elevation angle that is relative to the local horizontal and the azimuth measured relative
to the true north [45]. A tracking radar has to initially identify the target in space and
then determine its range and angular coordinates [46]. Curry [45] summarises the multiple
sources that can cause errors in the radar target measurement, such as:

• A Signal to Noise (S/N) dependent random measurement error
• Random measurement error with fixed standard deviation due to noise sources in the

radar receiver’s final stages. These errors are usually small and correspond to the S/N
dependent errors that are produced when S/N is high

• A bias error that occurs due to radar calibration and measurement
• Errors due to conditions of radar propagation and the uncertainties in correcting

these errors
• Interference errors that occur due to various reasons such as radar clutter

A range measurement error equation is determined based on the major causes of range
error [45]:

σR =
(

σ2
RN + σ2

RF + σ2
RB

)1/2
(23)

where σRN is the S/N dependent random range measurement error, σRN = ∆R√
2( S

N )
S/N is

the signal-to-noise ratio, and ∆R is the Radar Range Resolution (∆R = c
2B , c is the speed of

sound and B is the bandwidth of the signal)

σRF is the random error with a fixed standard deviation produced when S/N is high.
σRB is the range bias error as a result of calibration and measurement.

Tracking refers to a radar identifying the position of one or more objects in space.
Errors also occur when determining the target’s azimuth and elevation angles and the
requirements determining the accuracy of these angle measurements for a tracking radar are
more exacting than those for a search radar [46]. An angular measurement error equation
is based on the major causes of angular errors on a radar system:

σA =
(

σ2
ω + σ2

ε + σ2
EBG

)1/2
(24)

where σω is the rotational error of the radar system occurring due to the jitter of the motor
mounted at the base of the radar that enables the rotation of the radar antenna; σε is the error in
determining the elevation of the target; σEBG is the error from the electron beam generated.

GNSS Errors

The main error sources affecting GNSS positioning are the pseudorange and carrier
phase measurements. Sabatini et al. [47] summarise these errors into the following categories:

1. Receiver Dependent Errors such as Clock Error, Noise and Resolution;
2. Ephemeris Prediction Errors;
3. Satellite Dependent Errors that include Clock Offset and Group Delays;
4. Propagation Errors such as Ionospheric Delay, Tropospheric Delay and Multipath;
5. User Dynamics Error.

The User Equivalent Range Error (UERE) is a vector alongside the line-of-sight of the
user-satellite that is a resultant of the projection of all system errors and is given by the
following equation [47]:

UERE =
√

σ2
e+cl + σ2

atm + σ2
mp + σ2

n (25)
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where σe+cl is the broadcast ephemeris and clock error, σatm is the atmospheric (ionospheric
and tropospheric) error, σmp is the multipath interference and σn is the receiver noise.

The GNSS accuracy is not dependent on just the ranging errors, which determines
position accuracy, but also on the navigation accuracy that is determined by the relative
geometry of the satellites and the user and is given by the Dilution of Precision (DOP)
factors [47].

Vertical Dilution of Precision (VDOP)

VDOP = σh (26)

Horizontal Dilution of Precision (HDOP)

HDOP =
√

σ2
n + σ2

e (27)

Position Dilution of Precision (PDOP)

PDOP =
√

σ2
n + σ2

e + σ2
h (28)

Time Dilution of Precision (TDOP)

TDOP = στ (29)

where σe, σn, σh are the variances of east, north and height components, στ is the standard
deviation in the receiver clock bias. The Estimated Position Error (EPE) and the Estimated
Time Errors (ETE) of a GNSS receiver can be calculated using the PDOP (contributing to
EPE in 3D), the HDOP (contributing to EPE in 2D) and the TDOP and are given by the
following equations [47]:

EPE3D = σR·PDOP (30)

EPE2D = σR·HDOP (31)

ETE = σR·TDOP (32)

where σR is the standard deviation of pseudo-range measurement error. Several longstand-
ing models exist for each component of the UERE [47]. However, many of these models
will have to be adapted to the UAS context. For example, low-altitude UAS operations in
an urban environment would be vulnerable to severe multipath, and traditional multipath
models for aviation do not account for the specificities of the urban environment [43].

ADS-B Errors

ADS-B is a cooperative surveillance system wherein aircraft share data through a
network. The relevant messages shared via the communication link include aircraft position,
velocity, and ID, which are transmitted through a Mode-S Extended Squitter (1090 MHz).
This type of scenario is illustrated in Figure 17.

As per aviation standards [48], the aircraft position and velocity is obtained from the
onboard GNSS receiver. Therefore, the localisation component of the error associated with
a given ADS-B system is essentially the error affecting the position estimate of the GNSS
receiver (as modelled in Section GNSS Errors). In aviation, GNSS-based navigation systems
are categorised based on their performance into distinct Required Navigation Performance
(RNP) groups, which specify most importantly for the collision risk problem, the accuracy
of the computed position solution and its integrity [49,50]. In addition to the localisation
error, the latency between when the measurement is made and when it is utilised to assess
risk must also be accounted for.
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2.7.3. Volume Coordinate Transformation

To combine the different layers into a unified risk volume, the layers must be described in a
common coordinate system. Assumed uncertainties for navigation and tracking based on GNSS
and Radar are defined as [σX_GNSS, σY_GNSS, σZ_GNSS] and [σR_Radar, σA_Radar, σE_Radar] re-
spectively. The tracking uncertainty ellipsoid resulting from the azimuth, elevation and range
errors is given by the following equations:

Rradar = RT + σRcosη cosν (33)

αradar = αT + σαsinη cosν (34)

εradar = εT + σεsinν (35)

where rT , αT and εT is the position of the detected target in terms of range, azimuth and
elevation. The practice employed in this paper will be to transform the radar observations
of the host and intruder aircraft into a local Cartesian coordinate system.

Transformation of this ellipsoid is given by the following equations

XT_radar = Xradar + Rradarcosαradarcosεradar (36)

YT_radar = Yradar + Rradarsinαradarcosεradar (37)

ZT_radar = Zradar + Rradarsinεradar (38)

Substituting Rradar, αradar, εradar from the equations above

XT_radar = Xradar + (RT + σRcosηcosν)× cos(αT + σαsinηcosν)× cos(εT + σεsinν) (39)

YT_radar = Yradar + (RT + σRcosηcosν)× sin(αT + σαsinηcosν)× cos(εT + σεsinν) (40)

ZT_radar = Zradar + (RT + σRcosηcosν)× sin(εT + σεsinν) (41)

Expanding the above equations:

XT_radar = Xradar + (RT + σRcosη cosν)[cos αT cos(σαsinη cosν) cos εT cos(σεsinν)
− cos αT cos(σαsinη cosν) sin εT sin(σεsinν)− sin αT sin(σαsinη cosν) cos εT cos(σεsinν)
+ sin αT sin(σαsinη cosν) sin εT sin(σεsinν)]

(42)

YT_radar = Yradar + (RT + σR cos η cos ν)[sin αT cos(σα sin η cos ν) cos εT cos(σε sin ν)
− sin αT cos(σα sin η cos ν) sin εT sin(σε sin ν) + cos αT sin(σα sin η cos ν) cos εT cos(σε sin ν)
− cos αT sin(σα sin η cos ν) sin εT sin(σε sin ν)]

(43)

ZT_radar = Zradar + (RT + σR cos η cos ν)[sin εT cos(σε sin ν)− cos εT sin(σε sin ν) (44)
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Mean error of the tracking error ellipsoid is given by the following equations:

µx,Radar = Xradar + µR,Radar cos µα,Radar cos µε,Radar (45)

µy,Radar = Yradar + µR,Radar sin µα,Radar cos µε,Radar (46)

µz,Radar = Zradar + µR,Radar sin µε,Radar (47)

Assuming the range, azimuth and elevation of the target tracked by the radar as
rT , αT , εT respectively, the tracking error uncertainty ellipsoid is given by the follow-
ing equations:

σX_ellipse_Radar = Xradar
+ (RT + σR cos η cos ν)[cos αT cos(σα sin η cos ν) cos εT cos(σε sin ν)

− cos αT cos(σα sin η cos ν)· sin εT sin(σε sin ν)− sin αT sin(σα sin η cos ν) cos εT cos(σε sin ν)

+ sinαT sin(σα sin η cos ν) sin εT sin(σε sin ν)]− Xradar − rT cos αT cos εT

(48)

σY_ellipse_Radar = Yradar
+(RT + σR cos η cos ν)[sin αT cos(σα sin η cos ν) cos εT cos(σε sin ν)

− sin αT cos(σα sin η cos ν) sin εT sin(σε sin ν) + cos αT sin(σα sin η cos ν) cos εT cos(σε sin ν)

− cos αT sin(σαsinηcosν) sin εT sin(σεsinν)]−Yradar − rT sin αT cos εT

(49)

σZellipseRadar
= Zradar + (RT + σRcosηcosν)[sin εT cos(σεsinν)− cos εT sin(σεsinν)]Zradar − rTsinεT (50)

Since the rotation transform is non-linear, the Jacobian of the rotation matrix is used. This
locally linear approximation of the rotation is performed to preserve the Gaussianity of the
tracking errors. Considering a GNSS-based navigation system, the navigation uncertainty
ellipsoid is given by the following equations, which are natively in the Cartesian frame:

σX_ellipse_GNSS = σX_GNSScosη cosν (51)

σY_ellipse_GNSS = σY_GNSSsinη cosν (52)

σZ_ellipse_GNSS = σZ_GNSSsinν (53)

Examples of uncertainty ellipsoids due to Radar, GNSS and total system error are
plotted in Figure 18. The radar uncertainty volume is transformed into a Cartesian frame
and combined with the GNSS uncertainty volume as described in [51].
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3. Application Case Studies

Two case studies are presented in this section to illustrate the application of the
proposed CNS performance-based models in different contexts and to analyse the re-
lated results.

3.1. Terminal Control Area

A UAS encounter in a terminal area scenario is analysed upfront. The terminal area
scenario specifications are provided in Table 1. In the terminal area scenario, both aircraft
are tracked by a single ground-based primary surveillance radar. The two aircraft are
in level flight at the same altitude and are on intersecting trajectories, as illustrated in
Figure 19. The collision risk is plotted in Figure 20. The radar errors of the two aircraft
are correlated as they are being tracked by the same radar platform. In the event that two
aircraft are being tracked by the same radar, there exists a covariance between the tracking
uncertainties of both aircraft that needs to be determined and encapsulated in the error
volume modelling.

Table 1. Terminal area scenario specifications.

Operational Factors Specifications

Aircraft Fixed wing UAVs
Wingspan: 15 m

Surveillance

Monostatic scanning PSR
σR = 10 m
σAz = 13
σEl = 26

Trajectories
Level flight (altitude: 110 m AGL)

Constant speed (25 m/s) and heading
Intersecting routes
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Figure 20. Collision risk for the intersecting trajectories scenario.

3.2. Enroute

A set of UAS encounters in an enroute scenario was also simulated. The specifications
of this enroute scenario are summarised in Table 2. The surveillance system considered
in this case is ADS-B. The two aircraft follow parallel and level routes with constant
speed and heading. The risk incurred is examined for two navigation accuracy categories:
(1) 2σ = 185.2 m; 2σ = 75 m. The first category corresponds to an RNP 0.1 accuracy
specification, whereas the second category corresponds to a containment radius of 75 m (a
notional RNP 0.04 specification).

Table 2. Enroute area scenario specifications.

Operational Factors Specifications

Aircraft Fixed wing UAVs
Wingspan: 15 m

Surveillance ADS-B

Navigation
GNSS receiver: GPS

RNP 0.1; Accuracy: 185.2 m
RNP 0.04; Accuracy: 75 m

Trajectories
Level flight (altitude: 110 m/s AGL)

Constant speed (25 m/s, 40 m/s) and heading
Parallel routes

The navigation performance is modelled using a GNSS constellation and receiver
simulator. An elevation mask of 10◦ is applied to extract visible satellites. Each receiver has
an EKF-based processor for estimating position and velocity from the satellite-to-receiver
pseudoranges. Each aircraft is assumed to track the other using ADS-B transceivers.

The collision risks time series calculated for the abovementioned enroute cases are shown
in Figure 21. As expected, the risk incurred is an order of magnitude lower in the case of a
higher navigation performance standard for a given separation distance—Pc = 2.9 × 10−4 for
RNP 0.1 and Pc = 1.19× 10−6 for the navigation containment of 75 m. The risk exposure is also
greater in the case of an overtaking scenario owing to the longer duration of the encounter.
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3.3. Discussion

In general, an inverse relationship between CNS performance and collision risk is
demonstrated. Although only navigation performance from current RNP standards was
investigated in this instance, the results are generalisable to surveillance and communi-
cation performance as well. To investigate this trade-off more closely, the collision risk
for the parallel trajectory scenario was computed for different combinations of horizontal
navigation performance and trajectory separation thresholds. Assuming both aircraft are
flying level at the same altitude, the model is used to assess the combinations of navigation
accuracy (95% RMS) and trajectory spacing. The collision probability at the closest point
of approach is evaluated for each of these combinations. Navigation accuracy is varied
up to 500 m (i.e., a value between RNP 0.1 and 0.3. Surveillance performance is set at a
constant value). An ADS-B performance of 200 m was assumed (i.e., the intruder can be
localised within a containment bound of a radius of 200 m). This corresponds to the NIC 8
performance category for ADS-B. Trajectory separation is varied from 1000 m to 2000 m.
The risk trade-off is illustrated in Figure 22. As expected, collision risk increases with a
lower separation and lower navigation accuracy. Given the maximum achievable accuracy
by the navigation equipment, the required separation can be evaluated or inversely, the
required accuracy can be determined to meet a maximum allowable separation due to
airspace constraints. The lowest recorded risk was 2 × 10−6 at a separation slightly greater
than 1200 m for a horizontal accuracy of 280 m. Assuming this number to be the limit of
achievable navigation performance, risk reduction below this value would then require
either greater separation or improved surveillance performance.
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4. Conclusions

This article presented a performance-based collision risk model and associated airspace
risk assessment framework, which address some of the key limitations of pre-existing
approaches. The unified collision risk model accounts for the varying Communication,
Navigation and Surveillance (CNS) infrastructure and system mandates that apply to
different sectors of the conventional airspace and, potentially, to future low-altitude and
very high-altitude airspace (i.e., below and above current controlled airspace). The model
is specifically tailored to facilitate the integration of Unmanned Aircraft Systems (UAS)
and Urban Air Mobility (UAM) in unsegregated airspace and to address the complexities
associated with such evolution. In addition to CNS performance, factors such as relative dy-
namics, adverse weather and human decision-making processes can be easily incorporated
into the model and translated to conservative spatial bounds, allowing the computation of
convenient protection volumes around each aircraft and ground obstacle in a given scenario,
which are based on statistical modelling of all factors involved in the predicted encounters.
Additionally, an efficient method for approximating the probability of collision was intro-
duced, which conservatively evaluates horizontal and vertical collision probabilities. Such
conservative approximation can be analytically inverted to inform the design of an airspace
region starting from a preselected level of acceptable risk. The model’s applicability to
strategic offline scenarios was demonstrated through two case studies, where Primary
Surveillance Radar (PSR) and Automatic Dependent Surveillance-Broadcast (ADS-B) were
separately considered. The sensitivity of collision risk to navigation performance was a core
element in these case studies, aiming to demonstrate the effectiveness of the proposed CNS
performance-based formulation. A maximum risk of 1.1× 10−6 was determined for the
intersecting route scenario. In the parallel route scenario, a 2σ navigation accuracy bound
of 185.2 m was found to incur a maximum collision risk of approximately 1.5× 10−4 at a
separation of 200 m. By reducing the required navigation accuracy bound to 92.6 m, a risk
of approximately 0.1× 10−4 was incurred, representing a reduction of approximately 93%.
Future work will extend the analytical framework to include the impacts of communication
performance and relative dynamics on the collision risk. Additionally, the potential of
incorporating factors such as adverse weather and wind gusts as additional buffers in
the protection volume will be investigated. Particular focus will be on the extension of
the model to capture the notable differences in manoeuvrability, guidance, path-planning
and wake turbulence characteristics of Electric Vertical Take-Off and Landing (eVTOL)
and various other emerging rotary-wing platforms compared to fixed-wing aircraft. This
development will necessarily occur after the conclusion of various ongoing studies in the
dynamics modelling and handling qualities of these new aircraft [52–55]. Future work will
also address the application of the proposed collision risk model to tactical online ATM
operations and online risk estimation performed onboard UAS platforms. This will include
the investigation of different numerical methods for evaluating risk in real-time/near real-
time and the corresponding trade-off in evaluation accuracy. This line of future work will
also explore the synergy between different online system performance estimation methods
and risk estimation models. Another key focus area will be on the application of risk mitiga-
tion and control strategies suitable for 4-Dimensional Trajectory Optimisation (4DTO) and
Dynamic Airspace Management (DAM). The application of the model to assess risk under
different GNSS augmentation strategies will also be studied. These include existing Space
Based Augmentation Systems (SBAS) and the future Dual Frequency Multi-Constellation
(DFMC) SBAS. Another promising area of future work is the use of the model to assess the
impact of airspace design on risk for AAM platforms.
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