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Abstract: Topological maps generated in complex and irregular unknown environments are mean-
ingful for autonomous robots’ navigation. To obtain the skeleton of the environment without obstacle
polygon extraction and clustering, we propose a method to obtain high-quality topological maps
using only pure Voronoi diagrams in three steps. Supported by Voronoi vertex’s property of the
largest empty circle, the method updates the global topological map incrementally in both dynamic
and static environments online. The incremental method can be adapted to any fundamental Voronoi
diagram generator. We maintain the entire space by two graphs, the pruned Voronoi graph for
incremental updates and the reduced approximated generalized Voronoi graph for routing planning
requests. We present an extensive benchmark and real-world experiment, and our method completes
the environment representation in both indoor and outdoor areas. The proposed method generates
a compact topological map in both small- and large-scale scenarios, which is defined as the total
length and vertices of topological maps. Additionally, our method has been shortened by several
orders of magnitude in terms of the total length and consumes less than 30% of the average time cost
compared to state-of-the-art methods.

Keywords: topological maps; generalized Voronoi diagram; largest empty circle; unstructured
environment; large-scale environment

1. Introduction

As an important achievement of SLAM (Simultaneous Localization and Mapping),
topological maps play an important role in the environment representation [1,2]. In contrast
from a metric map and a semantic map, a topological map uses a skeleton composed
of vertices and edges to describe the world. The skeleton makes the topological map
compact and efficient, which is illustrated by the lower memory consumption of storage
and lower time cost of map updating and routing, especially in large-scale scenarios [3].
These advantages of topological mapping are vital in geographic environment modeling,
autonomous exploration, and robot navigation [4].

The topological representation problem is similar to the robot path-planning prob-
lem [5]. It focuses on the multi-path, while path planning aims to find the optimal result.
The three most established methods are random sampling-based, visibility graph-based
and skeleton-based, which can solve the problem in known, partially known, and unknown
environments.

Random sampling-based method. The classic methods using random sampling in-
clude the probabilistic roadmap (PRM) [6], sparse roadmap spanners (SPARS) [7], and
rapidly exploring random tree (RRT) family [8], which include RRT and its variants, such
as Bi-RRT, RRT*, and BIT* [9,10]. Witting constructed the topological map using a history
of previously visited positions as seeds of the RRT to guide MAVs’ autonomous explo-
ration [11]. Additionally, Umari used multiple RRTs [12]. TARE constructed a sparse
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random roadmap in the traversable space expanded from the past trajectory for global
planning [13]. To adapt to a large environment, Wang and Dang incrementally constructed
a graph structure along with the exploration process by sampling random points uni-
formly [14,15]. These methods are complete when they sample enough points, which
requires high computation in narrow environments.

Visibility graph-based method. The method constructs visibility edges among obsta-
cles’ vertices, which need to extract convex polygons from irregular obstacles [16], and
sometimes the extraction is complex in unstructured environments. The FAR expanded the
visibility edges incrementally in dynamic scenarios and addressed navigation tasks in both
known and unknown environments [17]. Lee and Shah used the Visibility Graph (VG) for
long-distance planning for USVs fulfilling target missions in marine environments [18,19].
Most of them use A* to efficiently search for the optimal path in VG. The limits of VG
in complex environments are its high computational complexity and the requirement for
well-defined polygonal geometry.

Skeleton-based method. Thrun first proposed generalized Voronoi diagram (GVD)-
based topological maps and segmentation [20], which can be used for the safe autonomous
navigation of mobile robots in unknown structured environments [21]. Li constructed
a reduced approximated generalized Voronoi graph (RAGVG) by an occupancy grid map
(OGM), which improved autonomous exploration [22]. Ok considered uncertainty with
GVD [23]. The Voronoi edge is the perpendicular bisector of adjacent sites, and thus, the
map paths are safer than other topological map construction methods [24]. The methods to
construct GVD incrementally include dynamic brushfire [25] and a random incremental
algorithm [26]. Most dynamic brushfire algorithms must load the whole range area first and
calculate the Euclidean distance maps (EDM), just as the Dijkstra searcher. Liu constructed
Voronoi segmentation incrementally with virtual obstacles using dynamic brushfire [3].
The random incremental algorithm is an efficient Voronoi diagram generation method in
computational geometry by adding sites one by one, but it is poor at removing the existing
site [27].

Constructing a skeleton to describe the reachable region is the main challenge of
topological mapping. Some methods are efficient enough, but the maps generated by them
are not compact enough. For example, visibility graph-based methods easily generate
too many road branches, while RRT- or PRM-based methods easily generate redundant
vertices and edges on the trunk road. In this article, our topological map is built based on
a Voronoi diagram, which is generated by obstacle information in a metric map. Consider-
ing the increase in time and decrease in accuracy caused by obstacle clustering and polygon
extraction, our Voronoi diagram is generated based on the original obstacle points directly.
On this basis, a new pruning strategy is proposed that deletes unnecessary branches while
retaining the main road, and the strategy is used to simplify the relationship in the main
road as much as possible.

Many existing methods of topological mapping based on Voronoi diagrams are one-
time or global incremental. In other words, these methods have to update the whole map
when the environment changes slightly, rather than updating the changed region. The
efficiency of these methods decreases substantially with the expansion of the environmental
scale, and it is difficult to build and update the topological map in real-time. To solve
this problem, we propose a local incremental updating method as shown in Figure 1a,
which can update topological boundaries only within a changed region. The method is
implemented by using the largest empty circle property of the Voronoi diagram. Thus, the
real-time and high efficiency of map construction are ensured.

The benefit of our method is that it is both more compact and more efficient than
the state-of-the-art methods. We evaluate the proposed incremental and pruned Voronoi
mapper (IPVM) by comparing it against state-of-the-art and classical methods in small-
and large-scale simulation benchmarks. The results conclude that the proposed method
generates fewer vertices and shorter map lengths. Furthermore, we also validate the online
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topological map generator in a real-world experiment under some posed drifts. The main
contributions of this paper are summarized as follows:

Compactness: We propose a novel Voronoi diagram pruning strategy, which can
extract the road skeleton in the environment in a sufficiently compact way.
Efficiency: Based on the largest empty circle property of the Voronoi diagram, we
propose a novel method to incrementally update the topological map in the changed
region rather than the whole map. Even in large-scale and complex environments, the
map can still maintain efficiency in real-time.

Figure 1. An overview of framework. (a) Global and local topological structure. The black areas are
global occupied grids, and the nattier blue lines are edges of the graph; the pink edges are extracted
by our algorithm, and the blue circles are vertices of the routing graph. The point cloud shown in the
upper right is new data corresponding to occupied grids. A local map is generated from the metric
map using a pruned Voronoi diagram and is merged into the global structure. (b) Flow diagram of
the proposed topological mapping framework.

As illustrated in Figure 1b, the proposed work operates upon perception data and
localization data, and it is composed of a local topological map generator (Section 2)
and an incremental map generator (Section 3). This paper is structured as follows: In
Sections 2 and 3, we introduce our proposed method in detail. Experimental results and
analyses are presented in Section 4. Our work is summarized in Section 5.

2. Pruned Voronoi Graph Construction
2.1. Voronoi Diagram

The traditional Voronoi diagram is the spatial division of point sets, also known as
the Thiessen polygon. We define points set (sites) P= {P1, P2, · · · , PN}, d

(
Pi, Pj

)
as the

Euclidean distance between point Pi and Pj, C(Pi) is the matched Voronoi cell of site Pi, and
Vor(P) denotes the Voronoi diagram of sites P. The C(Pi) is defined as follows:

C(Pi) = {x|d(x, Pi) < d(x, Pk), Pi, Pk ∈ P, i 6= k, i, k ∈ {1, 2, · · · , N}} (1)
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2.2. Pruned Voronoi Graph

The purpose of establishing a Voronoi diagram in this paper is to obtain the topological
structure of the environment. The skeleton structure of the topological map is GVD, which
divides space into generalized Voronoi cells around objects O [28]. However, irregular
objects are difficult to define d

(
Oi, Oj

)
. Based on the traditional Voronoi construction

method [24] and our pruning method, an approximate GVD is generated. We define
ED = {E1, E2, . . . , EM} and VD = {V1, V2, . . . , VN} as the edges and vertices of Vor(P), where
Ei, j = (Vi, Vj), i, j ∈ {1, 2, · · · , N}, and L

(
Vi, Vj

)
denotes the line segment consisting of

two vertices. We dilate the environment to configuration space C = Cfree ∪ Coccupied and
then eliminate the invalid Ei,j if L

(
Vi, Vj

)
∩ Coccupied 6= ∅, as shown in Figure 2.

Figure 2. Pruned Voronoi diagram. (a) Origin Voronoi diagram generated by [24], (b) C space with
an obstacle dilated, and (c) Voronoi diagram pruned by Coccupied.

Then, the undirected graph G = (VG, EG) is constructed by the geometrical relationship
of adjacent edges in Vor(P), and VGj and VGp are connected if

L
(
VGi, VGj

)
∩ L
(
VGp, VGq

)
6= ∅(i 6= j, p 6= q) (2)

The undirected Voronoi graph has many invalid edges that are short and isolated. We
reduce those edges by two steps and obtain a reduced approximated generalized Voronoi
graph (RAGVG) for further pruning. First, we find the edge Ei, j that has only one joint
relation in the set EG except itself, in other words, the leaf node. We eliminate Ei, j by the
robots’ length dv and distance buffer dbuffer. Therefore, we regard the short edge Ei, j as
an invalid edge by Equation (3) as follows{

Ei,j ∩ EG =
{

Ep,q
∣∣(p = i ∧ q 6= j) ∨ (p = j ∧ q 6= i)

}
d(i, j) ≤ dv + dbuffer

(3)

Second, this paper divides the topological structure G into two segmentations by
topological relation: The main segmentation Sm where the robot is located and the isolated
segmentation Ss, and Ss ∩ Sm = ∅. In the divided algorithm, we select the closest edge
Er with the robot location in the history graph and then add Er into the open list L and
the priority queue Q. Aiming at traversing the whole G quickly, we ignore the distance
of each edge and apply the uninformed search strategy known as the breadth-first search
(BFS) algorithm until Q is empty. The vertices that have searched in BFS consist of the main
segmentation Sm, and others consist of Ss. We eliminate the Ss that cannot arrive from the
robot location in G, as shown in Figure 3. We also simplify the adjacent edges with similar
angles to an edge for fast route planning.

After the above steps, we obtain the RAGVG from the undirected Voronoi graph,
and the final G is a connected graph, enabling the route path to be found at any starting
point and ending point within the map. Through these steps, we do not need to cluster
and extract the polygon of obstacles in complex and irregular environments. Hence, the
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algorithm reduces the error of geometric shape fitting and the complexity of constructing
the GVD.

Figure 3. RAGVG construction. (a) The undirected Voronoi graph, and (b) the RAGVG constructed
by BFS and simplification.

3. Incremental Topological Map Generator

Due to the continuous growth of the map region, the computation of RAGVG for the
whole region will consume a large amount of resources. Based on the results in Section 2,
we construct the local layer graph Glocal, and then we merge the Glocal into the global layer
graph Gglobal to update the overlapping area in the whole map. The Voronoi vertices and
edges are affected by added or removed sites and considering that obstacle points do not
increase or decrease randomly in the global map but change in a fixed local area close to
the robot’s location, we replace the Glocal in region RN by the vertex property of the largest
empty circle.

3.1. Perception Data Update

We divide sites in blocks by geometrical position and place them into file storage
in a large scenario. The perception result of the latest frame input is overlapped with
the historical map based on the grid index. Obstacle points in the same grid have the
same index, as shown in Figure 4. There are also some useless points (grid points of
dynamic obstacles), which will be deleted according to the attribute identification from the
perception results.

Figure 4. Global metric map update. (a) The global map and existing sites. (b) The updated map
with the latest data.

3.2. Voronoi Diagram Generation Region Identification

With q as the center of a circle, the largest circle without any sites in P is called the
largest empty circle CP(q).

Theorem 1. Vq is a vertex in Vor(P) if and only if there are at least three sites on the boundary of
its largest empty circle CP(Vq), as illustrated in Figure 5a.
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Figure 5. Voronoi diagram generation region. (a) The largest empty circle of Voronoi vertices.
(b) A schematic diagram of a region identified by Theorem 1.

The change in the Voronoi diagram is the vertices’ position change essentially, and
vertices’ positions are influenced by adjacent sites. The sweep line algorithm generates
Voronoi edges by constantly moving a fixed line [24]. Inspired by this idea, we design
a minimum area identification algorithm based on the sweep line to obtain RN. The edges
inside of the minimum polygon RN are changed or removed after the latest points PN
update, while the edges and vertices outside of RN are consistent. We obtain the whole
sites P = PN ∪ PH within the perception range first, where PH is history sites and PN
denotes new sites. Then, we obtain the rectangular envelope box Rmin of P and sweep the
side-line. During line sweeping, edges EL that satisfy EL = E ∩ Li are found, and vertices
VL = {V1, V2, . . . , VN} of EL are contained in RN. The sweeping stops when ∀p in N, and
the following exists 

PC = CP
(
Vq
)
∩ P

PC = {sk|k ∈ {1, 2, · · · , K}}
K ≥ 3∧ ∀k, sk ∈ PH

(4)

where PC is the sites within or on the circumference of CP(Vq). Note that vertex Vq does
not change when any site sk belongs to historical site PH. In practice, we use the k-d tree
to find the nearest site of Vp and its distance dk, which is the radius of CP(Vq). Then, we
search sites sk, of which the distance to Vq are shorter than dk in the k-d tree. According
to Theorem 1, if the size of PC is greater than 2 and all the sk belong to PH, Vp will not be
influenced by PN.

3.3. Global Layer Update

We divide the whole space into two subspaces through the above steps, and the
subspace RN aims to store the surfaces of potential change after the perception data update.
Again, we extend the rectangle to contain the sites belonging to CP(Vq) and set the distance
buffer dB to obtain the final region Rmax, as seen in Figure 6. The Voronoi diagram Vor(PN)
is generated and pruned by sites within Rmax, and then we remove edges out of RN. It
should be noted that the edge is out of RN if and only if two vertices are not within RN. In
other words, we remove vertices out of RN in Vor(PN). Finally, we remove the obsolete
vertices in Vor(P) within RN and fulfill the subspace with Vor(PN) to update the global
layer map.

In practice, we hold two graph structures in the global layer: Vor(P), which is pruned
by Section 2 and constructed incrementally by Section 3, and Gglobal, which is constructed
incrementally from Vor(P). Let n ∈ Z+ be the number of points in RN. The time complexity
of constructing Vor(PN) is O(nlogn), and RN identification consumes O(n) time. Benefitting
from storing data in geometrical blocks, concatenating Vor(P) and Vor(PN) takes constant
time. The time complexity of the global layer map update algorithm is O(nlogn). Similar to
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other route-planning algorithms, we use A* to search in the topological map Gglobal for the
shortest route path.

Figure 6. Global Voronoi diagram updated incrementally. (a) The origin Vor(PH). In (b), we identify
RN and Rmax in the origin Vor(PH) and generate Vor(PN). (c) The updated Voronoi diagram.

4. Results

We conduct experiments in both benchmark simulation and the real world. The
benchmark is from the autonomous exploration development environment [29]. Our
data collection platform in the real world is equipped with a 32-line LiDAR forward and
a 16-line LiDAR backward. In the simulation, we do not consider the large location er-
ror and the closed-loop correction in SLAM mapping. The mapper algorithm runs on
a 3.2 GHz, i7-8700 computer using a single CPU thread, and all methods replan at
1 Hz. We compare our method against four representative methods, all using open-source
code to experiment on the topological mapper: TARE [13]: A method using random sam-
pling to obtain topological maps for fast autonomous exploration; FAR [17]: A visibility
graph-based method for fast route planning in known and unknown environments. These
two methods generate maps incrementally. Additionally, we test an incremental Voronoi
Diagram generator [25], which employs a dynamic variant of the brushfire algorithm to
update those cells that are actually affected by the environmental change (abbreviated as
DB) and a pure Voronoi diagram generator: Fortune’s sweep line algorithm with the whole
obstacle points [24].

4.1. Benchmark Experimental Results

We conduct simulation experiments in indoor (130 m × 100 m), tunnel (330 m × 250 m),
and forest (150 m × 150 m) areas [29]. These scenarios include indoor and outdoor, sparse
and dense, and different ranges and topological structures. We input the map size in DB
and prune all Voronoi diagrams by our algorithm in Section 2. Then, we only record the
time costs of DB and Fortune. The perception range is approximately 20 m, and the grid
size is 0.2 m × 0.2 m in the perception data update.

In the simulated experiments, we use TARE to explore the whole environment.
Figure 7a shows topological maps of the three methods in the indoor scenario. DB and
Fortune have almost the same maps as ours. To quantify the efficiency and ability of envi-
ronment representation, we record the time cost in each frame in Figure 7b, the total length
of all edges, and the total number of vertices as the explored areas grow in Figure 7c,d.
The results indicate that we have the lowest time cost in most frames and the shortest
length. Our results have flat surfaces and sometimes decrease as the travel distance grows
in Figure 7c,d, because an increasing number of redundant vertices are pruned when the
metric map tends to be completely enclosed.

We also compare methods quantitatively in larger and outdoor environments, as
shown in Figure 8. Note that compared with the indoor environment, these two envi-
ronments have many more branches and more irregular obstacles. All the benchmarked
methods are able to generate maps that approximately cover the entire environment with-
out a time limit. The maps constructed by TARE and FAR have many redundant edges and
vertices, especially in the unstructured forest with visibility graph-based FAR, while TARE
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has insufficient sampling in some corners for the time limitation, as shown in Figure 7a.
Our method prunes the invalid edges and obtains the near-centerline of adjacent regions,
and thus, we obtain more comprehensible and lightweight maps.

Figure 7. Benchmark comparison of the proposed method, TARE, FAR, Fortune, and DB in an indoor
space. (a) The resulting map and a partially enlarged drawing of the two intersections. (b) The time
cost of constructing the map in a single frame over the exploration time duration, and (c,d) the total
number of vertices and the total length of all edges.

Figure 8. Resulting maps. (a) In the tunnel, and (b) in the forest.
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Table 1 denotes the average time cost of the five methods. Fortune’s algorithm is the
most efficient in generating a pure Voronoi diagram, but without generating incrementally,
it costs more and more time in global layer graph construction. DB must know the scene’s
size to establish a grid map and costs more time when facing a larger environment, such as
a tunnel. Our method is slightly influenced by the number of obstacles in the environment,
so the average time cost increases in the forest and tunnel. The average time cost of our
method in all scenarios decreases by 30% compared to DB, 37% compared to TARE, and is
much shorter than that of the other methods.

Table 1. Average time cost.

Scenario Fortune DB TARE FAR Ours

indoor (ms) 169.48 11.73 18.16 32.51 9.86
tunnel (ms) 3826.27 26.56 25.13 43.87 13.20
forest (ms) 1214.45 13.59 15.30 706.06 13.70

average (ms) 1376.8 17.30 19.53 260.81 12.25

Tables 2 and 3 present the simulation results in map metrics. Although the forest area
is smaller than the tunnel, many more obstacles lead to additional vertices. The proposed
method establishes a more compact connection than the other methods with fewer vertices
in Table 2. The other point we can see is that our maps’ total length is over several orders of
magnitude shorter than the other methods’ in Table 3, especially in the complex forest. The
result indicates the strength of our framework in generating compact topological maps.

Table 2. Total vertices of maps.

Scenario TARE FAR Ours

indoor 1737 301 267
tunnel 5641 928 781
forest 3513 4427 2801

Table 3. Total length of maps.

Scenario TARE FAR Ours

indoor (km) 7.12 8.65 0.96
tunnel (km) 26.28 50.45 5.23
forest (km) 13.83 213.871 4.83

4.2. Physical Experimental Results

To further validate the proposed method, we conduct field experiments in residential
areas (100 m × 100 m), and the trees on both sides of the road give some posed drifts.
The experimental environment and associated results are displayed in Figure 9. The total
length of the topological map is 0.67 km, and there are 147 vertices in total. Furthermore,
we ignore people, moving cars, and bicyclists in the perception data for the completeness
of the map. Figure 10 displays the routing results using our maps with random starting
and ending points. The average time cost in A* path searching at 470 iterations is 0.55 ms,
which is more efficient than the algorithm in metric maps, such as A*, RRT, and BIT* [17]. The
above experiments demonstrate the capability of our method in complex real-world scenarios.
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Figure 9. A topological map and a metric map in the real world. the A, B and C are labeled areas.
A is a superimposed point cloud at a road intersection; B and C are images with ignored objects from
perception data.

Figure 10. Path-searching results with A*. (a) The yellow paths that start from the red circle to the
green circle, and the goal in the right diagram is out of the road. (b) The path-searching time cost in
random tests.

5. Conclusions

In this paper, we propose a compact and efficient topological mapping method based
on the obstacle points from LiDAR. First, the sweep line algorithm is used to generate
a Voronoi diagram from the obstacle information in the environment. Then, to obtain
a more compact map, we use a pruning strategy to delete redundant vertices and edges
in the graph. Furthermore, to keep it efficient when working in large-scale scenarios, we
propose a new incremental updating method for Voronoi diagrams based on the property
of the largest empty circle to accurately update the changed regions and their boundaries.
Our method is evaluated against state-of-the-art methods in simulation environments, and
the results show that our method generates a much more compact topological map while
consuming the lowest average computation. The real-world tests also demonstrate the
competence of our method. In the future, we will further extend the method on remote
sensing images from UAVs.
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