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Abstract: Dealing with the trade-off challenge between computation speed and path quality has been
a high-priority research area in the robotic path planning field during the last few years. Obtaining a
shorter optimized path requires additional processing since iterative algorithms are adopted to keep
enhancing the final optimized path. Therefore, it is a challenging problem to obtain an optimized path
in a real-time manner. However, this trade-off problem becomes more challenging when planning a
path for an Unmanned Aerial Vehicle (UAV) system since they operate in 3D environments. A 3D map
will naturally have more data to be processed compared to a 2D map and thus, processing becomes
more expensive and time-consuming. This paper proposes a new 3D path planning technique named
the Sobel Potential Field (SPF) technique to deal effectively with the swiftness-quality trade-off. The
rationale of the proposed SPF technique is to minimize the processing of potential field methods.
Instead of applying the potential field analysis on the whole 3D map which could be a very expensive
operation, the proposed SPF technique will tend to focus on obstacle areas. This is done by adopting
the Sobel edge detection technique to detect the 3D edges of obstacles. These edges will be the sources
of the repulsive forces while the goal point will be emitting an attractive force. Next, a proposed
objective function models the strength of the attractive and repulsive forces differently to have
various influences on each point on the map. This objective function is then optimized using Particle
Swarm Optimization (PSO) to find an obstacle-free path to the destination. Finally, the PSO-based
path is optimized further by finding linear shortcuts in the path. Testbed experimental results have
proven the effectiveness of the proposed SPF technique and showed superior performance over other
meta-heuristic optimization techniques, as well as popular path planning techniques such as A*
and PRM.

Keywords: path planning; objective function; sobel; edge detection; UAV

1. Introduction

The utilization of Unmanned Aerial Vehicles (UAVs) has witnessed a growing interest
within the last few years due to the significant advancements in the primary robotic fields
including computer science, control theory, and mechanical engineering. Today, UAVs are
involved to perform critical tasks in several vivid fields including fire fighting, delivery
services, and geographic mapping [1–5]. The criticality of the UAV tasks has triggered
the need to achieve these operations with high precision and accuracy levels. Therefore,
optimizing the performance of UAV systems has become a top research area in the last few
years [6–8].
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Path planning is a fundamental process required by a UAV system to autonomously
achieve the assigned objectives. Path planning is the process of finding a feasible obstacle-
free path to the desired destination. This is a more basic process than trajectory planning
where more states such as velocity and acceleration are addressed. However, even though
the final objective of a path planning scheme is to calculate an obstacle-free path to the
goal point, there are some other aspects that determines the efficiency of a path planning
scheme: the path length, the execution speed, and the smoothness of the path.

Naturally, there can be several free-obstacle paths between the starting point and
the goal point. The shortest path algorithms are the path planning techniques that aim
to find the optimum path in terms of the path length. A famous example of a shortest
path algorithm is Dijkstra’s algorithm invented by Edsger Dijkstra in 1956. It is a common
practice for a shortest path algorithm to follow an iterative behavior in order to obtain the
shortest route. For example, for some scenarios when using a meta-heuristic algorithm, the
more iterations executed, the shorter and the smoother the obtained path [9]. However, this
fact revealed a trade-off problem between the path length and the execution time required
to obtain the shortest path.

On the other hand, real-time path planning algorithms focus on the execution time
more than the length of the path. Executing a path in a real-time manner regardless of the
length of the path can still be a useful process for some scenarios. For example, the execution
time aspect is more important for an Unmanned Combat Aerial Vehicle (UCAV) operating
in the enemy’s territories [10]. Any obstacle-free path can be followed to immediately
escape from a surface-to-air missile. However, the obstacle-free path should be generated
in real-time to be able to act and move as soon as possible to prevent colliding with the
surface-to-air missile.

For most robotic applications, both aspects, the execution time and the path length are
critical aspects, and neglecting to improve the performance of the path planning scheme
in any of the two aspects can lead to enormous problems. Shortest path algorithms suffer
from the increased complexity which raises the computational time required to find the
optimal path [11,12]. Thus, a well-known trade-off challenge between the execution speed
and the path quality has arisen. This trade-off problem has been studied recently in several
papers proposing novel path planning schemes that can efficiently deal with this trade-off
problem [13–16].

The quality-swiftness trade-off problem becomes more challenging to UAV systems
compared to ground mobile robots. Since a UAV operates in a 3D environment rather than
the 2D workspace of a ground mobile robot, the additional dimension causes extra processes
to be performed in order to find the optimum path. For example, for the sampling-based
techniques, the additional dimension will increase the number of samples to be scattered
in the configuration space. Similarly, the grid will be extended from the 2D workspace
into the 3D workspace, and thus, more points need to be processed. Therefore, 3D path
planning algorithms have been a top research topic in the last few years where several
recent proposals have aimed to overcome the quality-swiftness trade-off challenge in the
3D environment [17,18].

This paper proposes a new responsive 3D path planning system named the Sobel
Potential Field (SPF). The proposed path planning system adopts the idea of attractive and
repulsive forces [19]. To speed up the processing, the proposed SPF technique assigns the
edges of the 3D obstacles with repulsive forces, while the goal point will be the source of
the attractive force affecting each point on the map. The attractive and repulsive forces
are modeled differently. The attractive force should be sensed all over the map while the
repulsive force emitted by the edges should have various strengths based on the location
from the obstacle. Thus, a new objective function is derived to correctly model the strength
of each force at any location on the map. The attractive force is modeled using Euclidean
distance to have a strength that changes linearly with respect to distance from the goal.
However, the repulsive force is modeled using the well-known Coulomb’s law. By using
Coulomb’s law, the energy of the repulsive force will be very strong near the obstacle, but it
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will decay exponentially when moving away from the obstacle. After deriving the objective
function, the Particle Swarm Optimization (PSO) technique will be responsible to obtain an
obstacle-free path by finding the optimum points in a series of searches starting from the
starting point up to the goal point. Finally, the quality of the PSO-based path is enhanced
by finding linear shortcuts in the path. The proposed SPF technique is a global offline path
planning technique. The phrase “real-time” is referring to the fast execution speed of the
algorithm and does not mean that the proposed SPF technique is an online path planning
technique. Thus, the proposed SPF technique is concerned with static obstacles and not
dynamic obstacles.

The rest of the paper is organized as follows. Section 2 presents a brief literature review
on path planning techniques. Section 3 describes the proposed SPF path planning system.
Section 4 presents experimental results and comparative discussions. Final conclusions are
presented in Section 5.

2. Related Work

In general, path planning techniques can be classified into four main classes: sampling-
based algorithms, grid-based algorithms, artificial potential field algorithms, and machine
learning algorithms. The sampling-based algorithms place a number of samples N in
random positions in the obstacle-free areas of the map. Any two samples are connected
together if the two following conditions are satisfied:

1. The line between the two samples does not intersect with an obstacle.
2. The distance between the two samples is less than a pre-defined maximum distance D.

It will be clear after connecting the samples that satisfy the above-mentioned condi-
tions that there is a pack of feasible paths to the destination. Finally, the shortest path is
selected among all of the feasible paths. The Probabilistic RoadMap algorithm (PRM) [20]
and the Rapidly-exploring Random Trees (RRT) [21] are examples of sampling-based path
planning techniques [22]. The Number of samples (N), and the maximum Distance (D) are
two critical parameters that have a direct influence on the performance of the sampling-
based schemes in terms of the swiftness-quality trade-off. For example, increasing the
number of samples increases the probability of finding the shortest path to the desired
destination. However, there will be more samples to be processed and thus, the execution
time is expected to rise.

In [23], a variant of the RRT* scheme named the RRT*N is proposed. The target of the
RRT*N scheme was to enhance the computational speed of the RRT scheme. The RRT*N
scheme was successfully extended to operate within a 3D environment and showed abilities
to work effectively with static and dynamic obstacles. The RRT*N algorithm adopted a
distribution function to optimally generate the samples where samples near the goal point
have a higher probability. Therefore, a tree is constructed on the line joining the robot to
the goal point. Experimental results have proven that the RRT*N algorithm was able to
obtain the final path three times faster than the RRT* algorithm.

The second category, the grid-based techniques, places a grid on the configuration
space [24,25]. Each point in the grid will be assigned a value calculated using a certain
algorithm in order to guide the robot to the destination. The grid resolution is a critical
parameter for a grid-based technique that affects the performance in terms of the swiftness-
quality trade-off. Increasing the grid resolution increases the probability to obtain the
optimum path. However, a high-resolution grid will contain a large number of points to be
processed, and therefore the execution speed is expected to increase. A*, D*, and D*-Lite
are all examples of grid-based algorithms [26–28].

The third class, the artificial potential field path planning algorithms, models the
robot as a charge point that is being influenced by an attractive force generated by the
goal point and repulsive forces generated from obstacles. The quick convergence is the
main advantage of the artificial potential field algorithms as they can obtain the final path
using fewer computations compared to the sampling-based algorithms and the grid-based
algorithms. However, since potential field algorithms include optimization steps, they
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suffer from producing local minima causing the robot to get trapped. In [29], an optimized
artificial potential field technique for multi-UAV systems is proposed. To operate within a
3D multi-UAV environment, the proposed algorithm adopted a distance factor and jump
methodology to overcome common issues such as unreachable targets. When the path
planning process is applied to a UAV, other UAVs are treated as dynamic obstacles to
developing collaborative planning. Moreover, a dynamic step adjustment technique was
utilized to overcome the jitter problem.

Finally, the fourth category is the machine-learning algorithms which can be subdi-
vided into Artificial Neural Networks (ANN) algorithms and meta-heuristic optimization
algorithms. Optimization algorithms have become an important tool in several engineer-
ing applications to obtain the “best” solution under a collection of preferred criteria or
constraints. Simply put, an optimization problem is concerned to obtain the maximum or
minimum value of an objective function by choosing input values from within a feasible
range. The optimization problem can be solved either by using an analytical method or by
a heuristic method when the optimization problem cannot be solved analytically. In [30],
a potential path planning system was proposed. The intent was to develop a model that
generates repulsive forces from obstacles that have variable non-linear strength based on
the distance. Therefore, the proposed system adopted the Gaussian distance to optimally
model the repulsive forces generated from obstacles. On the other hand, the goal distance
will generate a linear attractive force to guide the robot to the destination from any point
on the map.

This paper proposes a 3D path planning technique based on artificial potential field
concepts. The objective is to reduce the processing required to obtain an obstacle-free
path without affecting the quality of the path. The idea is to represent the obstacles
with only their edges and therefore, the repulsive forces will be generated only from the
edges detected by the Sobel edge detection algorithm. The modeling of the attractive and
repulsive forces is similar to [30]. However, since the UAV environment is 3D, Coulomb’s
law is adopted to model the repulsive force instead of the 2D Gaussian distance. After
deriving the objective function, the PSO algorithm is utilized to optimize the objective
function to find an obstacle-free path to the goal point. Finally, two optimization phases are
applied to the PSO-based path to shorten the path by finding possible linear shortcuts from
the starting point to the goal point.

3. The Proposed SPF Path Planning Technique

This section explains in detail the proposed SPF path planning technique. The main
objective of the proposed SPF technique is to overcome the challenging trade-off problem
between swiftness and path quality. Figure 1 shows a general block diagram of the proposed
SPF path planning system. First, the 3D map is sliced into 2D frames. Next, the Sobel edge
detection technique is utilized on each frame to find the borders of each obstacle. After that,
a novel objective function is derived to effectively model the attractive and repulsive forces
in the map. Finally, the final obstacle-free path is obtained by performing sequential PSO
searches from the starting point to the goal point.

It is worth noting that the proposed SPF technique is a global offline path planning
technique. Therefore, it is not concerned with the process of building the occupancy grid
and generating the 3D map of the environment. Similar to other offline path planning tech-
niques including A*, D*, and other techniques, the process of the proposed SPF technique
begins after building the map of the environment.



Drones 2022, 6, 163 5 of 23

Frame 1

Frame 2
Frame 3

Frame 1

Frame 2
Frame 3

Frame 1

Frame 2
Frame 3

Scene i

Frame 1

Frame 2
Frame 3

……….…
Frame 4

……….…
Frame N

Sobel Edge 
Detection

3D map
(Occupancy Grid)

Frame Slicing

Objective Function 
Formulation

1

2

3

PSO Region-By-
Region Search

4

The Initial Path Path Optimizer
5

The Final Path

Figure 1. A general block-diagram illustration of the proposed SPF path planning system.

3.1. Frame Slicing

The input data is a 3D map formatted in a 3D occupancy grid. Occupancy grids
P(x, y, z) represent a map of the environment as a set of binary random variables dis-
tributed spatially as equal-sized non-overlapping blocks representing the presence of an
obstacle at the location (x, y, z) in the environment. In a simpler form, an occupancy
grid is pixel-oriented 3D data, where 0s’ represent obstacles, while the 1s’ represent the
obstacle-free area in the 3D map or vice versa. The variables x,y, and z are the dimensions
of the map where x and y denote the width and the height of the map, while z denotes
the depth of the map. The first step of the proposed SPF path planning system is to
slice the input 3D map P(x, y, z) into its composing frames F1, F2, F3, F4, . . ., FN , where:
F1 = P(x, y, 1), F2 = P(x, y, 2), . . . , FN = P(x, y, N), where N is the last frame which equals
to the maximum value of z. For example, if the input map has a size of 100× 100× 500,
then N = 500.

3.2. Sobel Edge Detection

The next step is to apply the Sobel edge detection technique on each frame separately.
In digital images, an edge is a high-frequency component of an image since the gray-level
intensity values witness a rapid abrupt change across an edge area. For a binary occupancy
grid, where obstacle and obstacle-free areas are distinguished by two distinctive colors, an
edge represents a critical aspect of the map as it locates the boundary of the obstacles on
the map. In an occupancy grid, the edge of an obstacle is reflected in the discontinuity of
the black pixels in a certain direction.

Sobel detector is an orthogonal gradient operator. Let f (x, y) be a continuous function,
the gradient at (x, y) is expressed as a vector:

∆ f (x, y) = [Gx Gy]
T = [

∂ f
∂x

∂ f
∂y

] (1)

The magnitude and angle of the gradient vector are:

mag(∆ f ) = |∆ f(2)| = [G2
x G2

y ]
1
2 (2)

angle(x, y) = tan−1 Gy

Gx
(3)

Theoretically, the partial derivatives of Equation (1) should be calculated for every
pixel in the image. However, for a discrete digital image, convolution is used instead. The
input image is convolved with two small templates that inherit the properties of horizontal
and vertical edges. The templates are scanned through the entire image, and when there is
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a match between the mask and the area under the mask, the convolution output will be
maximized. The following are the masks utilized to find edges:

Sx =

−1 −2 −1
0 0 0
1 2 1

, Sy =

−1 0 1
−2 0 2
−1 0 1

 (4)

These masks are going to be convolved with the input image f (x, y) to find edge locations:

c1(x, y) =
1

∑
m=−1

1

∑
n=−1

Sx(m, n) f (x + m, y + n) (5)

c2(x, y) =
1

∑
m=−1

1

∑
n=−1

Sy(m, n) f (x + m, y + n) (6)

c(x, y) = c2
1(x, y) + c2

2(x, y) (7)

Finally, edge points are found in c by tracing high values. This can be done using a
proper threshold value. Figure 2 shows the output of the sobel operator on a slice of a 3D
map. More information about Sobel edge detection technique can be found in [31].

Sobel Edge Detection

Figure 2. The sobel edge detection algorithm is applied to a slice of the 3D map.

3.3. Objective Function Formulation

The goal of a path planning system is to obtain an obstacle-free path to the desired
destination. The proposed SPF path planning system mimics the physical phenomenon
of the electric potential field where some attractive and repulsive forces are present in the
environment. The UAV should move away from obstacles and therefore, the proposed
SPF technique suggests that obstacles should be the source of the repulsive forces on the
map. On the other hand, the UAV should always be heading towards the goal point and
therefore, the goal point should emit attractive forces on the map.

The attractive and repulsive forces must be modeled differently. To be able to reach
the desired destination from any point on the map, the attractive force emitted from the
goal point should be sensed everywhere on the map. Therefore, the attractive force emitted
by the goal point will act as the UAV guider to the desired destination from any point on
the map. On the other hand, the strength of the emitted repulsive forces from obstacles
should be a function of the distance from the obstacle. The UAV should receive a very
strong repulsive force from a certain obstacle when being very close to the obstacle, while
the strength of the repulsive force should decay while moving away from the obstacle. That
is since a far-away obstacle does not pose a threat to the UAV.
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To efficiently model the effects of the repulsive and attractive forces in a 3D map, the
proposed SPF path planning system develops an objective function M(x, y, z) over each
pixel located at (x, y, z) on the map. The objective function is designed so that the goal
point will be the global minimum point on the map, while locations containing the edges
of the obstacles will have high values. Therefore, by minimizing the objective function of
M(x, y, z) over sequential non-overlapping areas, the UAV will be able to navigate to the
desired destination without colliding with an obstacle.

The proposed SPF path planning system adopts the 3D Euclidean distance to model
the attractive force emitted by the goal point. The Euclidean distance is chosen since the
strength of the attractive force emitted by the goal point should be linearly related to the
distance. The election of the Euclidean distance will enable the attractive force to be sensed
strongly all over the 3D map. Therefore, the UAV will always have an active guider to the
desired destination.

On the other hand, the strength of the repulsive forces generated by obstacles should
be very strong around obstacles but should decay after some distance. Therefore, the
proposed SPF path planning strategy models the repulsive forces similarly to Coulomb’s
law. This is done by treating the UAV as a unit test charge in an electrical potential field
caused by obstacles. Based on Coulomb’s law, the strength of the electric field is inversely
proportional to the square of the distance from the charge causing the field. This fact makes
it suitable to adopt Coulomb’s law to model the repulsive forces produced by obstacles.

The objective function can be generally formulated as:

M(x, y, z) = A1D(x, y, z) + A2

n

∑
k=1

Rk(x, y, z) (8)

where D(x, y, z) is the 3D Euclidean distance between the point (x, y, z) and the desired
destination, while Rk(x, y, z) represents the strength of the repulsive force emitted by the
obstacle k at the location (x, y, z), n is the total number of obstacles. Finally, A1 and A2 are
tuning parameters.

The 3D Euclidean distance D(x, y, z) is defined as:

D(x, y, z) =
√
(x− xg)2 + (y− yg)2 + (z− zg)2 (9)

where xg, yg, and zg are the x, y, and z coordinates of the desired destination point.
The repulsive force Rk(x, y, z) emitted by the obstacle k is defined as:

Rk(x, y, z) =
m

∑
j=1

1
r2 =

m

∑
j=1

1
(x− xo)2 + (y− yo)2 + (z− zo)2 (10)

where m is the total number of edge points of the obstacle k, r is the 3D Euclidean distance
from the point (x, y, z) to the obstacle edge. The points xo, yo, and zo are the x, y, and z
coordinates of the jth edge point of the obstacle k.

Combining Equations (9) and (10), the final objective function is derived:

M(x, y, z) =
√
(x− xg)2 + (y− yg)2 + (z− zg)2

+
m

∑
j=1

1
(x− xo)2 + (y− yo)2 + (z− zo)2

(11)

Figure 3 illustrates in a 3D plot, the implementation of the objective function derived
in Equation (11).
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Figure 3. A slice of the 3D map shows the implementation of the objective function derived in
Equation (11). The shown 3D map is built from the 2D map shown in Figure 2. The objective function
was successful in developing strong repulsive forces in the areas containing the obstacles and the
areas surrounding the obstacles.

3.4. The Initial Waypoint Generator: The PSO Region-by-Region Search

To obtain the waypoints, the Particle Swarm Optimization technique (PSO) is adopted
to minimize the objective function derived in Equation (11). However, optimizing the
objective function will return a single global minimum value which is the goal point. A
feasible path is a set of sequential points. Therefore, the proposed SPF technique suggests
performing several sequential searchers which start at the starting point and end at the
goal point.

The PSO region-by-region search adopted by the proposed SPF scheme begins by
performing a search for the minimum value around the starting point within a 3D area.
Next, the new search area will be centralized around the newly founded optimum value.
The search area keeps moving until the goal point is found to be located in the updated
search area. Figure 4 shows an illustration of the procedure utilized to obtain the initial path.

1
2 3 4 5

6

7

8

9

10

Figure 4. Illustrating The 3D region-by-region search algorithm used to generate the initial waypoints.
The blue circle is the starting point and the red star is the goal point. The black dots are the optimum
solutions founded by the PSO technique in each 3D search region. The black cube represents a
3D obstacle.

3.5. Path Optimizer

The path produced by the PSO sequential searches is not an optimal path. The path is
optimized by using a shortening algorithm. The main objective of the shortening algorithm
is to look for any possible obstacle-free linear shortcut between any two points in the
path. The optimizing process is done in two phases. The first phase tries to find any
possible shortcuts on the path obtained by the PSO search. The second phase tries to find
the shortcuts on the path produced by the first phase. The output of the second phase is
composed of sequential linear paths which can contain sharp turns. Such paths can cause
difficulties for controllers. It is not a trivial task to track a path with sharp turns. Therefore,
the quality of the path is further enhanced by smoothing the path using cubic interpolation.
The path obtained by the second phase consists of discrete points. By interpolating these
points using cubic interpolation, the path is guaranteed to be as smooth as enough to be
easily tracked by the controller. The smoothed path will be adjacent to the obstacle-free
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path obtained by the second phase. However, there is a small probability that the smoothed
path will pass through an obstacle area. In such a case, the smoothed path will be ignored
and the final SPF path will be the output of the second phase.

4. Experimental Results

In this section, the performance of the proposed SPF path planning system will
be examined against the swiftness-quality trade-off. Moreover, the trackability of the
proposed path will be tested experimentally. Section 4.1 presents the setup used for the
experiments. Section 4.2 conducts comprehensive experiments to evaluate the proposed
SPF path planning system against the swiftness-quality trade-off. A discussion on the
parameters of A1 and A2 and their role in solving potential field problems is presented in
Section 4.3. Finally, Section 4.4 shows the experiments conducted to test the smoothness
and the trackability degree of the proposed SPF path planning system. Figures 5 and 6
show the Parrot quadcopter system and the experimental setup block diagram, respectively.
Figures 7 and 8 show visually the different maps that were used in the experiments. Figure 9
shows the final path generated by the proposed SPF path planning scheme on the different
maps. The maps were developed manually by creating an empty 3D occupancy grid and
then filling the positions of the obstacles in the grid that reflect the physical environment.
The dimensions of the maps are shown in pixels for generalization purposes. In our
experiments, each pixel corresponds to 0.01 m.

4.1. Experimental Setup

The experiments were performed in an indoor environment using the parrot mambo
system shown in Figure 5. The specifications of the parrot mambo drone including the
processing power and the available sensors are shown in Table 1.

Figure 5. The UAV system used in the experiment (Parrot Mambo).

Table 1. The technical specifications of the Parrot Mambo drone.

Item Specification

Processor 800 MHz ARM Cortex A9

Connection Bluetooth Low Energy (BLE)

Sensors

3 axes accelerometer and gyroscope

Ultrasound sensor

Pressure sensor

Vertical camera 60 FPS 480 × 640, 300 K pixels

Dimensions 0.18 × 0.18 m (with hull)

Weight 0.063 kg (with hull)
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Figure 6 shows a block diagram which explains the setup used for the experiments.
Based on Figure 6, the proposed SPF path planning technique is first executed on an external
station with an Intel Xeon E3-1545M v5 processor at 2.90 GHz, and a RAM capacity of 32 GB.
The external station is equipped with the Simulink Support Package for Mambo drone
which contains the necessary tools to debug and deploy the code into the micro-controller
of the drone wirelessly using Bluetooth Low Energy (BLE) technology. Figure 6 shows that
the control code is based on a feedback control system. The controller receives an error
signal e between the desired path calculated by the proposed SPF path planning technique
xd, yd, zd and generates the required torque commands τ which will be sent to the motors
in order to be able to track the desired path.

MATLAB 
(The proposed SPF planner)

SIMULINK SUPPORT FOR 
PARROT MAMBO

𝒙𝒅, 𝒚𝒅, 𝒛𝒅

External Station

Desired path

Controller Motors

Sensors+
-

𝒆

𝝉

𝒙𝒓, 𝒚𝒓, 𝒛𝒓

Parrot MamboBLE
C code

Figure 6. The experimental setup.

4.2. Swiftness-Quality Trade-Off Analysis

This subsection evaluates the behavior of the proposed SPF path planning technique
against the swiftness-quality trade-off problem. Section 4.2.1 compares the proposed SPF
technique with well-known path planning techniques such as 3D-A* and 3D-PRM tech-
niques. The proposed SPF technique is compared with other potential field techniques
in Section 4.2.2. Section 4.2.3 compares the proposed SPF which uses PRM as an opti-
mization tool with another meta-heuristic optimization technique which is the Genetic
Algorithm (GA). Finally, Section 4.2.4 examines the effect of the population parameter on
the performance of the proposed SPF path planning technique.

4.2.1. Comparison against 3D-A* and 3D-PRM

Table 2 shows comparative results on the performance of the proposed SPF path
planning technique against two well-known and widely used path planning techniques,
the A* and the PRM techniques. The comparison examines the performance of the three
techniques in terms of the path length and the execution time.

Table 2 clearly shows the superior performance of the proposed SPF path planning
technique over well-known path planning algorithms such as A* and PRM in terms of
the time required to obtain the obstacle-free path. It is clear from Table 2 that the large
improvement in the swiftness attribute did not significantly affect the path length, which
proves the ability of the proposed SPF technique to overcome the traditional trade-off
between swiftness and path length. The proposed SPF has achieved high improvement per-
centages reaching up to 445.33% which corresponds to a record of “5.45×” faster execution.
This record has been achieved when applying the proposed SPF technique in map 1 when
having a search block dimension length of 15% of the dimension of the map. The interesting
fact about this 445.33% improvement is that it was able to achieve equivalent path lengths to
A* and PRM. According to Table 2, the proposed SPF path planning technique is executed
in 0.75 s producing a path length of 1.73 m, while A* and PRM have executed in 2.87 s
and 4.09 s producing paths of 1.71 m and 1.69 m respectively. The increase in the path
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length is less than 0.025% which is not comparable to the improvement in the processing
time (445.33%).

Map 1 – Top View Map 1 – Side View

Map 2 – Top View Map 2 – Side View

Map 3 – Top View Map 3 – Side View

Map 4 – Top View Map 4 – Side View

Figure 7. Showing Map 1, Map 2, Map 3, and Map 4.
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Map 5 – Top View Map 5 – Side View

Map 6 – Top View Map 6 – Side View

Map 7 – Top View Map 7 – Side View

Figure 8. Showing Map 5, Map 6, and Map 7.
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Map 1 Map 2

Map 3 Map 4

Map 5 Map 6

Map 7

Figure 9. The final path produced by the proposed SPF scheme on different 3D maps.
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Table 2. Comparing the performance of the proposed technique against two well-known path
planning algorithms the 3D-A* [26] and 3D-PRM [20]. The block size column shows a percentage of
the dimension of the search block with reference to the dimension of the map.

Map Technique Block Length (m) Time (s)
Proposed Is Faster X Times than

3D-A* 3D-PRM

1

3D-A* - 1.71 2.87 - -
3D-PRM - 1.69 4.09 - -

15% 1.73 0.75 3.83× 5.45×
Proposed 10% 1.72 1.01 2.84× 4.05×

5% 1.85 1.60 1.79× 2.56×

2

3D-A - 1.64 2.55 - -
3D-PRM - 1.85 3.83 - -

15% 1.89 1.32 1.93× 2.90×
Proposed 10% 1.96 1.64 1.55× 2.34×

5% 1.98 2.95 −1.16× 1.30×

3

3D-A - 1.60 2.34 - -
3D-PRM - 1.89 3.89 - -

15% 2.02 1.61 1.45× 2.42×
Proposed 10% 2.04 2.30 1.02× 1.70×

5% 1.74 5.20 −2.22× −1.34×

4

3D-A - 1.61 3.17 - -
3D-PRM - 1.47 4.43 - -

15% 1.52 0.82 3.87× 5.40×
Proposed 10% 1.54 0.99 3.2× 4.47×

5% 1.52 1.67 1.90× 2.66×

5

3D-A - 1.58 1.69 - -
3D-PRM - 1.67 3.93 - -

15% 1.90 0.84 2.01× 4.68×
Proposed 10% 1.60 1.21 1.40× 3.25×

5% 1.60 1.89 −1.12× 2.08×

6

3D-A - 1.85 5.65 - -
3D-PRM - 1.70 3.47 - -

15% 1.98 1.20 4.71× 2.89×
Proposed 10% 1.93 1.73 3.27× 2.01×

5% 1.94 2.95 1.92× 1.18×

7

3D-A - 1.58 2.76 - -
3D-PRM - 1.59 3.94 - -

15% 1.86 1.00 2.76× 3.94×
Proposed 10% 1.84 1.34 2.06× 2.94×

5% 1.76 2.52 1.10× 1.56×

Another noticeable fact from Table 2 is that the proposed SPF technique was always
able to achieve faster execution than A* and PRM for all maps. The interesting unexpected
result is that even though the proposed SPF technique has outperformed the A* and PRM
techniques in terms of the execution speed, the proposed SPF technique has also achieved
shorter paths than the competitive techniques in some scenarios. For example, when testing
with map 4, the proposed SPF technique has achieved a path length of 1.52 m compared to
1.60 m for A*. These results were achieved while having an improvement percentage in
the processing time reached a rate of 5.40×.
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The superior performance of the proposed SPF technique in terms of the computational
speed can be attributed to the potential field idea and the PSO optimization technique. The
processing required by a potential field algorithm is lower compared to the search process
required by a graph-base technique such as the A*, or a sampling-based technique such as
PRM. Simply put, the potential field algorithm only requires an objective function to be
optimized on the map. Moreover, it is widely known that the PSO optimization technique
is a fast-converging technique as will be proven in Section 4.2.3. Therefore, optimizing a
fast-execution objective function using a fast optimization function will produce an overall
fast path planning system as in the proposed SPF technique. On the other hand, the
advancement in the quality of the path produced by the proposed SPF technique can be
attributed to the optimization phases. The optimization phases find linear shortcuts in the
path obtained by the PSO and thus, it is expected that the length of the final path of the
proposed SPF technique will be acceptable.

The search block size is a critical parameter that affects the performance of the proposed
SPF technique. From Table 2, the size of the search block has affected both, the computational
time and the path lengths. Based on Table 2, decreasing the block size increases the computa-
tional time. The reason is that by using smaller block sizes, more searches are needed until the
search block reaches the goal point. However, choosing a small block size can in some cases
enhance the final path. The reason is that searching within smaller blocks is more accurate
and the path can be obtained more precisely than larger blocks.

The experiments shown in Table 2 and Figure 9 have fixed starting point and goal
point. These experiments have used extreme cases where the starting point is at one edge
of the map, and the goal point is at the opposing edge. This means that the path will pass
through the whole map which ensures the credibility of the results. However, it is also
valuable to check the performance of the proposed SPF technique when using different
starting points and goal points. Table 3 shows a comparative analysis between the proposed
SPF technique and the techniques of 3D-A* and 3D-PRM using various starting points and
goal points. Similar to the results obtained in Table 2, the results shown in Table 3 support
the claims of the superior performance of the proposed SPF technique in terms of the
execution speed. Even though the main concern of the proposed SPF technique is to obtain
fast-executable pats, the results shown in Table 3 have even shown that the proposed SPF
technique can obtain reduced path lengths compared to 3D-A* and 3d-PRM techniques.

Table 3. Comparing the performance of the proposed technique against 3D-A* [26] and 3D-PRM [20]
techniques when changing the start and goal points. Length is in meters while the execution time is
computed in seconds.

Map (Start Point), (Goal Point)
Proposed SPF 3D-A* 3D-PRM

Length Time Length Time Length Time

3
(10,10,10), (50,50,50) 0.73 1.61 0.76 1.69 0.79 3.18

(75,75,75), (30,30,10) 0.91 1.46 0.98 1.62 0.91 3.44

(40,30,15), (5,5,70) 1.11 0.74 0.81 3.07 1.07 3.17

6
(10,10,10), (50,50,50) 0.79 1.27 0.76 1.66 0.85 3.38

(75,75,75), (30,30,10) 0.96 1.22 1.01 1.52 1.03 3.28

(40,30,15), (5,5,70) 1.09 1.35 0.80 2.43 1.16 3.34

7
(10,10,10), (50,50,50) 0.70 1.08 0.88 3.19 0.86 3.68

(75,75,75), (30,30,10) 1.05 1.16 1.04 1.68 1.00 3.90

(40,30,15), (5,5,70) 0.78 1.05 0.79 2.41 1.05 3.64

4.2.2. Comparison with Potential Field Techniques

This section compares the performance of the proposed SPF technique against 1st-order
and 2nd-order potential field techniques. Table 4 shows a comparison between the proposed
SPF technique and the potential field methods. Although the proposed SPF technique can
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be considered as a potential field technique, the results in Table 4 have shown improved
results over the 1st-order and 2nd-order potential field techniques. The general reason
for these advanced results is that the proposed SPF technique is also equipped with other
techniques that enhance the overall performance of the technique. For example, it is clear
from Table 4 that the proposed SPF technique was able to achieve shorter path lengths
compared to 1st-order and 2nd-order potential field techniques for all maps. The reduced
path length produced by the proposed SPF technique compared to potential field methods
is attributed to the path optimizer phase described in Section 3.5. For example, the proposed
SPF technique was able to achieve a path length of 1.74 m compared to 2.75 m and 2.92 m
achieved by the 1st-order and 2nd-order potential field techniques when using map 3.

Table 4. Comparing the performance of the proposed SPF technique against 1st-order and 2nd-order
potential field. The block size column shows a percentage of the dimension of the search block with
reference to the dimension of the map.

Map Technique Block Length (m) Time (s)
Proposed Is Faster X Times than

1st Order 2nd Order

1

1st order - 1.72 1.05 - -

2nd order - 1.81 1.11 - -

15% 1.73 0.75 1.40× 1.48×
Proposed 10% 1.72 1.01 1.04× 1.10×

5% 1.85 1.60 −1.52× −1.44×

2

1st order - 1.98 1.87 - -

2nd order - 2.03 2.19 - -

15% 1.89 1.32 1.41× 1.66×
Proposed 10% 1.96 1.64 1.14× 1.33×

5% 1.98 2.95 −1.58× 1.35×

3

1st order - 2.75 3.96 - -

2nd order - 2.92 3.72 - -

15% 2.02 1.61 2.46× 2.31×
Proposed 10% 2.04 2.30 1.72× 1.62×

5% 1.74 5.20 −1.31× −1.40×

4

1st order - 1.67 1.05 - -

2nd order - 1.82 1.31 - -

15% 1.52 0.82 1.28× 1.60×
Proposed 10% 1.54 0.99 1.06× 1.32×

5% 1.52 1.67 −1.59× −1.27×

5

1st order - 1.74 1.08 - -

2nd order - 1.80 1.15 - -

15% 1.90 0.84 1.29× 1.37×
Proposed 10% 1.60 1.21 −1.12× −1.05×

5% 1.60 1.89 −1.75× −1.64×

6

1st order - 2.41 3.02 - -

2nd order - 2.19 2.60 - -

15% 1.98 1.20 2.52× 2.17×
Proposed 10% 1.93 1.73 1.75× 1.50×

5% 1.94 2.95 1.02× −1.13×

7

1st order - 2.18 2.23 - -

2nd order - 2.23 2.41 - -

15% 1.86 1.00 2.23× 2.41×
Proposed 10% 1.84 1.34 1.66× 1.80×

5% 1.76 2.52 −1.13× −1.05×
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Potential field techniques are known for their fast execution. Therefore, based on
Table 4, the 1st-order and 2nd-order potential field techniques were able to generate the
obstacle-free path in a short time. However, the proposed SPF technique was still able to
execute in a shorter time compared to 1st-order and 2nd-order potential field techniques.
For all maps, the path produced when planning with a block size of 15% is always computed
faster than the 1st-order and the 2nd-order potential field techniques. For example, the
proposed SPF technique was able to execute within 1.61 s compared to 3.96 s and 3.72 s for
1st-order and 2nd-order potential field techniques which makes the proposed SPF faster by
rates of 2.46× and 2.31× respectively. The reason for the superior execution speed of the
proposed SPF technique is attributed to two factors: adopting the PSO technique which is
known for its fast execution. The second factor is attributed to the process of confining the
emitting of the repulsive forces to be only from the edges of the obstacles. Therefore, the
execution processes will be reduced compared to potential field techniques which result in
faster execution speeds.

4.2.3. Comparison with GA

This subsection compares the proposed SPF path planning technique against the
Genetic Algorithm optimization technique. The proposed SPF path planning technique
adopts the PSO optimization strategy. The goal of this section is to prove the superior
performance of the PSO technique over other meta-heuristic optimization techniques
such as GA. Table 5 shows comparative results on the performance of the proposed SPF
technique adopting PSO against adopting the GA algorithm in terms of the path length
and the execution time.

It is clear from Table 5 that the PSO algorithm can converge quicker and obtain the
optimum obstacle-free path in a shorter time than GA. All cases have shown superior
performance of the proposed PSO-based SPF technique compared to the GA technique. It
is widely known in the literature that the PSO optimization algorithm has the ability to
converge quicker than other heuristic optimization methods [30]. The reason is that the
PSO algorithm has no crossover and mutation operations such as the GA method and thus,
the convergence can occur by the particle speed. Only the best particle can exchange the
information with other particles, which increases the convergence speed [30].

The path lengths of both the proposed SPF and the GA algorithms are almost identical
based on the results of Table 5. However, in some cases, even though the proposed
technique (PSO) was able to execute within a shorter period of time, the proposed PSO has
achieved a shorter path than GA. This fact can conclude that the proposed PSO-based SPF
algorithm was able to surpass another meta-heuristic optimization algorithm which is the
GA algorithm and can successfully challenge the trade-off problem between path length
and the swiftness attributes.

Table 5. Comparing the performance of the proposed SPF technique against the meta-heuristic
technique the Genetic Algorithm. The block size column shows a percentage of the dimension of the
search block with reference to the dimension of the map.

Map Technique Block Length (m) Time (s)

1

15% 1.81 3.73

GA 10% 1.76 5.04

5% 1.76 9.73

15% 1.73 0.75

PSO (Proposed) 10% 1.72 1.01

5% 1.85 1.60
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Table 5. Cont.

Map Technique Block Length (m) Time (s)

2

15% 1.92 8.80

GA 10% 1.96 12.31

5% 1.98 23.97

15% 1.89 1.32

PSO (Proposed) 10% 1.96 1.64

5% 1.98 2.95

3

15% 2.02 12.79

GA 10% 2.04 56.3

5% 1.74 44.30

15% 2.02 1.61

PSO (Proposed) 10% 2.04 2.30

5% 1.74 5.20

4

15% 1.52 3.67

GA 10% 1.54 5.18

5% 1.52 9.95

15% 1.52 0.82

PSO (Proposed) 10% 1.54 0.99

5% 1.52 1.67

5

15% 1.60 3.67

GA 10% 1.65 4.98

5% 1.65 10.09

15% 1.90 0.84

PSO (Proposed) 10% 1.60 1.21

5% 1.60 1.89

4.2.4. The Effect of the PSO Population

In this section, the effect of tuning the PSO population parameter on the computation
speed and on the path length is investigated. Figure 10 presents a graph that represents the
different results obtained when tuning the PSO population parameter. Figure 10a shows
the effect on the computation speed, while Figure 10b shows the effect on the path length.
Based on Figure 10a, a population size of around 5 gave the best result. Decreasing the
population size to a value below 5 increases the computational time required to calculate
the obstacle-free path. That is because searching for the optimum value with an insufficient
number of particles (population) will naturally take more time than searching with a
sufficient number of particles. However, increasing the population to higher than 15 gives
an inverse effect, as the computational time increases. The reason for the time increase when
choosing a high population value is that each extra particle requires additional processing
and therefore, the computational time increases with the increase of the number of particles.

On the other hand, Figure 10b clearly shows that tuning the PSO population parameter
does not affect the path length. Based on Figure 10b, tuning the population parameter in
the range [1–40] did not change the path length obtained by the proposed SPF technique.
The reason is that regardless of the number of the particles, there is a strong probability
that these particles will converge to the same optimum value, especially since the search
area is not large (15% block size is the maximum). Within such a small area, having a small
number of particles will affect the time needed to find the optimum value, not the optimal
value itself.
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Figure 10. The effect of tuning the PSO population parameter on the (a) processing speed,
(b) path length.

4.3. Solving Potential Field Problems Using A1 and A2 Parameters

The purpose of the tuning parameters of A1 and A2 presented in Equation (8) is to
control the strength of the attractive force and the repulsive forces. These parameters were
added to the objective function for generalization purposes. By default, A1 and A2 are
not used (A1 = 1 and A2 = 1). However, the A2 parameter can be thought of as a safety
parameter. By increasing the value of A2, the repulsive force becomes stronger. Therefore,
the robot will keep a safety distance from obstacles. However, increasing A2 parameter to a
very high value will make the repulsive force too stiff even that the robot will not be able to
move due to the strong repulsive forces from all directions. Since the repulsive force is a
function of distance from an obstacle, the acceptable range of A2 depends on the size of the
map. For the maps used in this paper, a value higher than 3 is not recommended and can
cause the proposed SPF technique to fail.

Figure 11 illustrates the effect of tuning the A1 and A2 parameters on the performance
of the proposed SPF technique. For illustration purposes, the proposed SPF technique is
implemented on a 2D map. It is clear from Figure 11a that even though the map contains
areas that have the potential to cause a trap, the proposed planner is able to find a path to
the goal point. The reason is attributed to the force modeling technique adopted by the
proposed SPF technique. The repulsive forces are modeled using Coulomb’s law. Thus,
the energy of the repulsive force will be very strong near the obstacle, but it will decay
exponentially when moving away from the obstacle. This strong decay in the repulsive
force will reduce the probability of causing a local trap even in a semi-closed area. Another
well-known problem of a potential field path planning technique is the narrow passage
problem. A potential field planner cannot plan a path through a narrow passage caused by
two parallel obstacles due to the repulsive forces from the adjacent obstacles. However,
based on Figure 11a, the proposed SPF planner is able to find the obstacle-free path even
with several narrow passages. The reason for success here is attributed to the Euclidean
force emitted by the goal point. Even if the goal point is located inside a semi-closed area
where a narrow passage problem can occur, the attractive force from the goal will pull the
robot through the narrow passage.

However, the path generated in Figure 11a does not have a safety margin. The path
passes nearby an obstacle. As explained earlier, a higher value of A2 parameter can give a
safety margin. However, the attempt to increase the A2 parameter has failed as shown in
Figure 11b. Increasing the A2 parameter has caused a difference in the potential field values
within the open areas compared to the narrow passage area. The narrow passage area now
has a higher potential field value than the open area. Thus, the UAV will not be able to enter
the narrow passage area. A solution to this problem is presented in Figure 11c. To force the
planner to enter the narrow passage area, the Euclidean force (attractive force) from the
goal point should be strengthened. This can be achieved by increasing the A1 parameter
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as can be concluded from Equation (8). The Euclidean force is simply the distance from
the goal point. By strengthening the Euclidean force, the areas that are far away from the
goal point will have high potential field values. Based on Figure 11c, the open area next to
the starting point has now a higher potential field value compared to the narrow passage
area. Thus, the planner is “pushed” to enter the narrow passage area, and therefore, the
proposed planner is able to obtain the path through the narrow passage area.

𝐴1 = 1
𝐴2 = 1

𝐴1 = 1
𝐴2 = 3

𝐴1 = 2
𝐴2 = 3

(𝑎) (𝑏) (𝑐)

Figure 11. The effect of tuning the A1 and A2 parameters. The star denotes the goal point.

4.4. The Tracking Performance: Smoothness Test

Finally, the trackability of the paths generated by the proposed SPF path planning
algorithm is tested using a basic Proportional-Integral-Derivative (PID) controller. The goal
of this experiment is to prove that the proposed SPF technique can produce paths which are
smooth enough to be traced with good accuracy even when using simple PID controller.

Figure 12 illustrates the tracking performance of the proposed SPF path planning
technique. It is clear from Figure 12 that the path produced by the proposed scheme is
traceable with good tracking performance. The tracking errors in the x, y, and z planes
approach zero. The reason for the smoothness of the paths produced by the proposed SPF
technique is attributed to the optimization phases. The output of the second optimization
phase is simply a path consisting of a few sequential linear paths, which can be controlled
easily by any basic controller.
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Figure 12. Cont.



Drones 2022, 6, 163 21 of 23

0 5 10 15 20 25
Time (seconds)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Y
 (

m
et

er
s)

Real
Desired

0 5 10 15 20 25
Time (seconds)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

E
rr

or
-Y

 (
m

et
er

s)
0 5 10 15 20 25

Time (seconds)

0.5

1

1.5

Z
 (

m
et

er
s)

Real
Desired

0 5 10 15 20 25
Time (seconds)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

E
rr

or
-Z

 (
m

et
er

s)

Figure 12. The tracking performance of the proposed path planning scheme.

5. Conclusions

A new responsive path planning technique named Sobel Potential Field (SPF) was
proposed for UAV systems. The objective of the proposed SPF technique was to effectively
deal with the swiftness-quality trade-off problem of path planning algorithms. The main
idea was to reduce the processing required by potential field techniques by focusing on
obstacle areas instead of the whole 3D map. This is done by developing a 3D potential
field caused by the edges of the obstacles detected by the Sobel edge detection algorithm.
The attractive force will be generated by the goal point affecting each point on the map,
while the edges of obstacles will be the source of repulsive forces affecting areas around
obstacles. This has led to derive an objective function composed of a Euclidean distance
and Coulomb’s law. The objective function is then optimized using PSO and a proposed
optimization algorithm to find the best obstacle-free path to the destination. Experimental
results concluded that the proposed SPF path planning algorithm can obtain the obstacle-
free path quicker than other meta-heuristic optimization methods such as the GA algorithm,
and even over popular path planning techniques such as A* and PRM, while producing a
path with an equivalent or shorter length. Future work will focus on adapting the proposed
SPF technique to operate with robotic manipulators and to deal effectively with the effects
of the kinematics coupling of manipulators.

Author Contributions: Conceptualization, R.F.; Methodology, R.F. and M.B. (Mohammed Baziyad);
Software, M.B. (Mohammed Baziyad); Validation, M.B. (Mohammed Baziyad) and R.F.; Formal Anal-
ysis, R.F. and T.R.; Investigation, M.B. (Mohammed Baziyad); Resources, M.B. (Mohammed Baziyad)
and T.R.; Writing—Original Draft Preparation, R.F. and M.B. (Mohammed Baziyad); Writing—Review
& Editing, M.B. (Mohammed Baziyad), R.F., T.R., I.K. and M.B. (Maamar Bettayeb); Visualization,
M.B. (Mohammed Baziyad); Supervision, T.R., I.K. and M.B. (Maamar Bettayeb). All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Drones 2022, 6, 163 22 of 23

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chatziparaschis, D.; Lagoudakis, M.G.; Partsinevelos, P. Aerial and ground robot collaboration for autonomous mapping in

search and rescue missions. Drones 2020, 4, 79. [CrossRef]
2. Wahab, I.; Hall, O.; Jirström, M. Remote sensing of yields: Application of uav imagery-derived ndvi for estimating maize vigor

and yields in complex farming systems in sub-saharan africa. Drones 2018, 2, 28. [CrossRef]
3. Arroyo-Mora, J.P.; Kalacska, M.; Inamdar, D.; Soffer, R.; Lucanus, O.; Gorman, J.; Naprstek, T.; Schaaf, E.S.; Ifimov, G.;

Elmer, K.; et al. Implementation of a UAV–hyperspectral pushbroom imager for ecological monitoring. Drones 2019, 3, 12.
[CrossRef]

4. Zefri, Y.; ElKettani, A.; Sebari, I.; Ait Lamallam, S. Thermal infrared and visual inspection of photovoltaic installations by UAV
photogrammetry—Application case: Morocco. Drones 2018, 2, 41. [CrossRef]

5. Larrinaga, A.R.; Brotons, L. Greenness indices from a low-cost UAV imagery as tools for monitoring post-fire forest recovery.
Drones 2019, 3, 6. [CrossRef]

6. Li, X.; Tan, J.; Liu, A.; Vijayakumar, P.; Kumar, N.; Alazab, M. A novel UAV-enabled data collection scheme for intelligent
transportation system through UAV speed control. IEEE Trans. Intell. Transp. Syst. 2020, 22, 2100–2110. [CrossRef]

7. Chen, D.; Qi, Q.; Zhuang, Z.; Wang, J.; Liao, J.; Han, Z. Mean field deep reinforcement learning for fair and efficient UAV control.
IEEE Internet Things J. 2020, 8, 813–828. [CrossRef]

8. Yang, K.; Yang, G.Y.; Fu, S.I.H. Research of control system for plant protection UAV based on Pixhawk. Procedia Comput. Sci. 2020,
166, 371–375. [CrossRef]

9. Hulett, D.T. Schedule risk analysis simplified. PM Netw. 1996, 10, 23–30.
10. Zhang, Y.; Chen, J.; Shen, L. Real-time trajectory planning for UCAV air-to-surface attack using inverse dynamics optimization

method and receding horizon control. Chin. J. Aeronaut. 2013, 26, 1038–1056. [CrossRef]
11. Madkour, A.; Aref, W.G.; Rehman, F.U.; Rahman, M.A.; Basalamah, S. A survey of shortest-path algorithms. arXiv 2017,

arXiv:1705.02044.
12. Polychronopoulos, G.H.; Tsitsiklis, J.N. Stochastic shortest path problems with recourse. Netw. Int. J. 1996, 27, 133–143. [CrossRef]
13. Baziyad, M.; Nassif, A.B.; Rabie, T.; Fareh, R. Comparative Study on the Performance of Heuristic Optimization Techniques in

Robotic Path Planning. In Proceedings of the 2019 3rd International Conference on Advances in Artificial Intelligence, Istanbul,
Turkey, 26–28 October 2019; pp. 157–161.

14. Fareh, R.; Rabie, T.; Grami, S.; Baziyad, M. A vision-based kinematic tracking control system using enhanced-prm for differential
wheeled mobile robot. Int. J. Robot. Autom. 2019, 34, 206–221. [CrossRef]

15. Fareh, R.; Baziyad, M.; Rahman, M.H.; Rabie, T.; Bettayeb, M. Investigating reduced path planning strategy for differential
wheeled mobile robot. Robotica 2020, 38, 235–255. [CrossRef]

16. Fareh, R.; Baziyad, M.; Rabie, T.; Bettayeb, M. Enhancing path quality of real-time path planning algorithms for mobile robots: A
sequential linear paths approach. IEEE Access 2020, 8, 167090–167104. [CrossRef]

17. Sun, Y.; Ran, X.; Zhang, G.; Xu, H.; Wang, X. AUV 3D path planning based on the improved hierarchical deep Q network. J. Mar.
Sci. Eng. 2020, 8, 145. [CrossRef]

18. Huang, Y.; Chen, J.; Wang, H.; Su, G. A method of 3D path planning for solar-powered UAV with fixed target and solar tracking.
Aerosp. Sci. Technol. 2019, 92, 831–838. [CrossRef]

19. Hwang, Y.K.; Ahuja, N. A potential field approach to path planning. IEEE Trans. Robot. Autom. 1992, 8, 23–32. [CrossRef]
20. Kavraki, L.E.; Svestka, P.; Latombe, J.C.; Overmars, M.H. Probabilistic roadmaps for path planning in high-dimensional

configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [CrossRef]
21. LaValle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning. 1998. Available online: http://msl.cs.illinois.

edu/~lavalle/papers/Lav98c.pdf (accessed on 24 June 2022).
22. Yang, L.; Qi, J.; Song, D.; Xiao, J.; Han, J.; Xia, Y. Survey of robot 3D path planning algorithms. J. Control Sci. Eng. 2016,

2016, 7426913. [CrossRef]
23. Mohammed, H.; Romdhane, L.; Jaradat, M.A. RRT* N: An efficient approach to path planning in 3D for Static and Dynamic

Environments. Adv. Robot. 2021, 35, 168–180. [CrossRef]
24. Bailey, J.P.; Nash, A.; Tovey, C.A.; Koenig, S. Path-length analysis for grid-based path planning. Artif. Intell. 2021, 301, 103560.

[CrossRef]
25. Panov, A.I.; Yakovlev, K.S.; Suvorov, R. Grid path planning with deep reinforcement learning: Preliminary results. Procedia

Comput. Sci. 2018, 123, 347–353. [CrossRef]
26. Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci.

Cybern. 1968, 4, 100–107. [CrossRef]
27. Stentz, A. Optimal and efficient path planning for partially known environments. In Intelligent Unmanned Ground Vehicles;

Springer: Berlin/Heidelberg, Germany, 1997; pp. 203–220.
28. Przybylski, M.; Putz, B. D* Extra Lite: A Dynamic A* with search-tree cutting and frontier-gap repairing. Int. J. Appl. Math.

Comput. Sci. 2017, 27, 273–290. [CrossRef]

http://doi.org/10.3390/drones4040079
http://dx.doi.org/10.3390/drones2030028
http://dx.doi.org/10.3390/drones3010012
http://dx.doi.org/10.3390/drones2040041
http://dx.doi.org/10.3390/drones3010006
http://dx.doi.org/10.1109/TITS.2020.3040557
http://dx.doi.org/10.1109/JIOT.2020.3008299
http://dx.doi.org/10.1016/j.procs.2020.02.082
http://dx.doi.org/10.1016/j.cja.2013.04.040
http://dx.doi.org/10.1002/(SICI)1097-0037(199603)27:2<133::AID-NET5>3.0.CO;2-L
http://dx.doi.org/10.2316/J.2019.206-0174
http://dx.doi.org/10.1017/S0263574719000572
http://dx.doi.org/10.1109/ACCESS.2020.3016525
http://dx.doi.org/10.3390/jmse8020145
http://dx.doi.org/10.1016/j.ast.2019.06.027
http://dx.doi.org/10.1109/70.127236
http://dx.doi.org/10.1109/70.508439
http://msl.cs.illinois.edu/~lavalle/papers/Lav98c.pdf
http://msl.cs.illinois.edu/~lavalle/papers/Lav98c.pdf
http://dx.doi.org/10.1155/2016/7426913
http://dx.doi.org/10.1080/01691864.2020.1850349
http://dx.doi.org/10.1016/j.artint.2021.103560
http://dx.doi.org/10.1016/j.procs.2018.01.054
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1515/amcs-2017-0020


Drones 2022, 6, 163 23 of 23

29. Kovács, B.; Szayer, G.; Tajti, F.; Burdelis, M.; Korondi, P. A novel potential field method for path planning of mobile robots by
adapting animal motion attributes. Robot. Auton. Syst. 2016, 82, 24–34. [CrossRef]

30. Baziyad, M.; Saad, M.; Fareh, R.; Rabie, T.; Kamel, I. Addressing Real-Time Demands for Robotic Path Planning Systems: A
Routing Protocol Approach. IEEE Access 2021, 9, 38132–38143. [CrossRef]

31. Nausheen, N.; Seal, A.; Khanna, P.; Halder, S. A FPGA based implementation of Sobel edge detection. Microprocess. Microsyst.
2018, 56, 84–91. [CrossRef]

http://dx.doi.org/10.1016/j.robot.2016.04.007
http://dx.doi.org/10.1109/ACCESS.2021.3058121
http://dx.doi.org/10.1016/j.micpro.2017.10.011

	Introduction
	Related Work
	The Proposed SPF Path Planning Technique
	Frame Slicing
	Sobel Edge Detection
	Objective Function Formulation
	The Initial Waypoint Generator:  The PSO Region-by-Region Search
	Path Optimizer

	Experimental Results
	Experimental Setup
	Swiftness-Quality Trade-Off Analysis
	Comparison against 3D-A* and 3D-PRM
	Comparison with Potential Field Techniques
	Comparison with GA
	The Effect of the PSO Population

	Solving Potential Field Problems Using A1 and A2 Parameters
	The Tracking Performance: Smoothness Test

	Conclusions
	References

