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Abstract: The use of drones in various applications has now increased, and their popularity among
the general public has increased. As a result, the possibility of their misuse and their unauthorized
intrusion into important places such as airports and power plants are increasing, threatening public
safety. For this reason, accurate and rapid recognition of their types is very important to prevent
their misuse and the security problems caused by unauthorized access to them. Performing this
operation in visible images is always associated with challenges, such as the small size of the drone,
confusion with birds, the presence of hidden areas, and crowded backgrounds. In this paper, a novel
and accurate technique with a change in the YOLOv4 network is presented to recognize four types of
drones (multirotors, fixed-wing, helicopters, and VTOLs) and to distinguish them from birds using
a set of 26,000 visible images. In this network, more precise and detailed semantic features were
extracted by changing the number of convolutional layers. The performance of the basic YOLOv4
network was also evaluated on the same dataset, and the proposed model performed better than
the basic network in solving the challenges. Compared to the basic YOLOv4 network, the proposed
model provides better performance in solving challenges. Additionally, it can perform automated
vision-based recognition with a loss of 0.58 in the training phase and 83% F1-score, 83% accuracy,
83% mean Average Precision (mAP), and 84% Intersection over Union (IoU) in the testing phase.
These results represent a slight improvement of 4% in these evaluation criteria over the YOLOv4
basic model.

Keywords: convolutional neural network CNN; YOLO deep learning; drone; UAV; drone detection;
drone recognition

1. Introduction

Drones are actively used in a variety of fields, including recreational, commercial,
security, crisis management, and mapping [1,2]. They are also used in combination with
other platforms such as satellites in resource management, agriculture, and environmental
protection [3–5]. However, the negligent and the malicious use of these flying vehicles
poses a great threat to public safety in sensitive areas such as government buildings, power
plants, and refineries [6,7]. For this reason, it is important to recognize drones to prevent
them from entering critical infrastructure or ensuring security in large locations such as
stadiums [8].

In this study, the recognition of four types of drones was investigated. Conventional
drone detection technologies include the use of various sensors such as radar (radio detec-
tion and ranging) [9], Lidar (Light Detection and Ranging) [10], acoustic [11], and thermal
sensors [12]. In these methods, first, the presence or the absence of the drone in the scene is
checked and then the drone type recognition process is performed [13,14]. However, the
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application of these types of sensors has always been associated with problems such as
higher costs and higher energy consumption [15]. In contrast, visible images do not have
these problems and are widely used for object recognition and semantic segmentation due
to their high resolution [16]. On the other hand, the use of visible images also introduces
problems such as light changes within the imagery, the presence of occluded areas, and a
crowded background, which necessitates the application of an efficient and comprehensive
method for recognition.

Recent advances in deep convolutional neural networks and the appearance of more
improved hardware make it possible to use visual information to recognize objects with
higher accuracy and speed [17]. Unlike conventional drone detection technologies, the
nature of deep learning networks is to perform drone recognition simultaneously. By
classifying inputs into several classes, these networks determine the presence, absence,
image location, and type of drone class [18]. Among neural networks, the convolutional
neural network (CNN) is one of the most important representatives of image recognition
and classification. In this network, the input data enters the convolutional layers. The
convolution operation is then performed using the network kernel to find similarities.
Finally, feature extraction is performed using the resulting feature map [19]. There are
different types of convolutional neural networks available such as R-CNN (Region-based
CNN) [20], SPPNet (Spatial Pyramid Pooling Network) [21], and Faster-RCNN [22]. In
these networks, due to the application of convolutional operations, more features are
extracted than in conventional object detection methods and better speed and accuracy
are achieved in recognizing objects. The extracted features are essentially descriptors of
objects, and as the number of these features increases, object recognition is performed with
higher accuracy. In these networks, the proposed regions are first defined using region
proposal networks (RPNs) [23]. Then, convolutional filters are applied to these regions,
and the extracted features are obtained as the result of the convolutional operation [22].
In other deep learning methods such as SSD (Single Shot MultiBox Detector) [24] and
YOLO [25], the image is generally explored, which results in higher accuracy and speed
in object recognition as compared to the basic methods [25]. The reason for the higher
speed in these methods is the architecture is simpler than in region-based methods. The
YOLO network is a method for detecting and for recognizing an object based on CNNs.
The YOLO network predicts bounding box coordinates and class probabilities for these
boxes, considering the whole image. The fourth edition of the YOLO Network is the
YOLOv4 Deep Learning Network, which performs better than previous versions in terms
of speed and accuracy [26]. However, the YOLOv4 deep learning network may not be able
to overcome some challenges, such as the small size of the drone in different images [16].
In this study, this network could not recognize the drone in some of the challenging images.
These challenges include confusing some drones with birds due to their small size, and the
presence of drones in crowded backgrounds and hidden areas. Therefore, the YOLOv4
deep learning network was modified to better overcome the challenges of recognizing
flying drones. The change in the architecture of this network is the main innovation in this
article. Also, 4 types of multirotors, fixed-wings, helicopters, and VTOLs (Vertical Take-Off
and Landing) were recognized. Given the need to recognize each type of UAV in different
applications, the study of this topic can be considered as another innovation of this paper.

1.1. Challenges in Drone Recognition

Drone recognition is always fraught with challenges. Some of the important challenges
in this regard are discussed.

1.1.1. Confusion of Drones and Birds

Due to the physical characteristics of drones, they can easily be confused with birds in
human eyes. This problem is more challenging when using drones in maritime areas due to
the presence of more birds. The similarity between drones and birds and their distinction
from each other is shown in Figure 1.
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1.1.2. Crowded Background

As it appears from Figure 2, the presence of drones in areas with crowded backgrounds
and similar environments has made them more difficult to recognize due to the inability to
isolate the background. A crowded background refers to conditions such as the existence
of clouds, dust, fog, and fire in the sky.
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1.1.3. Small Drone Size

The small size of drones makes them difficult to see at longer distances and difficult
to quickly and accurately recognize, or they are possibly recognized as birds. Further-
more, the presence of a swarm of UAVs at different scales makes the recognition process
more challenging. Figure 3 illustrates some examples of the presence of small drones at
different scales.
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Drone recognition is always fraught with challenges. For this reason, it is necessary to
use a fast, accurate, robust, and efficient method to overcome the challenges and to correctly
recognize drones.

2. State of the Art Work

Recently, the use of drones has become increasingly popular, and they have been
applied to various scientific and commercial purposes in different fields of photogrammetry,
surveying, agriculture, natural disaster management, and so on [27]. There are different
types of drones, each used for a specific purpose; and, in terms of design technology,
application, and physical characteristics, they can be divided into four types: multirotor,
helicopter, VTOL, and fixed-wing [28–31]. They are also divided into two scenarios in terms
of operation manner in the environment. In the first scenario, drones operate individually,
while in the second scenario they fly in combination with others, which are normally known
as a swarm of UAVs [32–35].

Because of the enormous potential applications of each type of UAV in meeting the
needs of society, the possibility of their misuse has become a major concern for communities.
Over the past decade, much of the research has focused on finding efficient and accurate
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techniques for the recognition of different types of UAVs [12,17,36]. However, sometimes
drone recognition is difficult because they are normally flying in challenging environments.
Therefore, the recognition of UAVs requires advanced techniques that can recognize them
as they fly individually or in swarm mode.

3. Related Works

Due to the increasing development of deep neural networks in visual applications,
these networks are also used widely for the recognition of objects in visible images [36–38].
In 2019, Nalamati et al. used a collection of visible images to detect small drones and solve
their detection challenges. In this work, different CNN-based architectures were used, such
as SSD [22], Faster-RCNN with ResNet-101 [22], and Faster-RCNN [22] with Inceptionv2.
Based on the results, the R-CNN network with ResNet-101 performs the best in training
and testing [39]. In 2019, Unlu et al. used an independent drone detection system, using
the YOLOv3 Deep Learning Network. One of the advantages of this system is its cost-
effectiveness due to the limited need for GPU memory. This study can detect drones of
a small size and at a minimal distance, but it cannot recognize the types of drones [40].
In 2020, Mahdavi et al. detected a drone using a fisheye camera, and three methods of
classification were applied: convolutional neural network (CNN), support vector machine
(SVM), and nearest-neighbor. The results showed that CNN, SVM, and nearest-neighbor
have total accuracy of 95%, 88%, and 80%, respectively. Compared with other classifiers
with the same experimental conditions, the accuracy of the convolutional neural network
classifier was satisfactory. In this study, only the detection of drones without considering
their types and challenges has been investigated [41]. In 2020, Behera et al. detected and
classified drones in RGB images using the YOLOv3 network, and they achieved a mAP of
74% after 150 epochs. In this article, only drones were detected at various distances, and
the issue of drone recognition and its distinction from birds was not discussed [42]. In 2020
Shi et al. proposed a detection process of the low-altitude drone based on the YOLOv4 deep
learning network. They then compared the YOLOv4 detection result with the YOLOv3 and
the SSD networks. In this study, the YOLOv4 network performed better than the YOLOv3
and the SSD networks in detecting, recognizing, and identifying three types of drones in
terms of mAP and detection speed, achieving 89% mAP [43]. In 2021, Tan Wei Xun et al.
detected and tracked a drone using the YOLOv3 deep learning network. In their study, the
NVIDIA Jetson TX2 was used to detect drones in real-time. The results of this method show
that the proposed YOLOv3 network detects drones of three sizes: small, medium, and
large, with an average confidence score of 88% and a confidence score between 60% and
100% [44]. In 2021, Isaac-Medina et al. detected and tracked drones using a set of visible
and thermal images and four deep learning network architectures. In this paper, the deep
learning networks Faster RCNN, SSD, YOLOv3, and DETR (DEtection TRansformer) are
used. Based on the results, all the studied networks were able to detect a small drone at a
far distance. But the YOLOv3 deep learning network generally leads to better accuracy (up
to 0.986 mAP) and the RCNN network performed better in detecting small drones (up to
0.77 mAP) [45]. In 2021 Singha et al. developed an automatic drone detection system using
YOLOv4. They used a dataset of drones and birds to detect drones, and then evaluated
the model on two types of drone videos. The results obtained in this study for detecting
two types of multirotor drones are: mAP 74.36%, F1-score 0.79, recall 0.68, and precision
0.95 [46]. In 2021, Liu et al. examined three object detection methods, such as YOLOv3,
YOLOv4, RetinaNet, and FCOS (Fully Convolutional One-stage Object Detector) networks,
on visible image data. To get great accuracy in drone detection, the pruned YOLOv4 model
is used to build a sparser, flatter network. The application of the method has improved the
detection of small drones and high-speed drones. The pruned YOLOv4, with a pruning
rate of 0.8 and a 24-layer pruning, achieved a mAP of 90.5%, an accuracy of 22.8%, a recall
of 12.7%, and a processing speed of 60%. However, the challenges of crowded backgrounds,
hidden areas, and surveys of multiple drone types have not yet been addressed [16]. In
2022, Samadzadegan et al. detected and recognized drones using YOLOv4 Deep Networks
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in visible images [47]. This network can recognize multirotor and helicopters directly, and
it can differentiate between drones and birds with a mAP of 84%, an IoU of 81%, and
an accuracy of 83%. In this paper, the challenges related to recognition have been well
addressed, but this method is limited to detecting and to recognizing only two drone types,
such as multirotor and helicopter, and it has not detected other types [47].

In this study, to achieve higher accuracy in solving the challenges of drone type
recognition in visible images, a modified YOLOv4 network is proposed. Drone recognition
challenges include the drone’s far distance from the camera, a crowded background,
unpredictable movements, and the drone’s resemblance to birds. As an independent
approach, the proposed modified YOLOv4 deep learning network architecture is capable
of recognizing birds and four types of drones: multirotors, fixed-wings, helicopters, and
VTOLs. To show the improved results of the new model, its performance is also compared
with the base YOLOv4 network.

4. Methodology

In this study, a modified network based on the latest version of the YOLO network
is proposed. The steps to recognize bird species and four different types of drones are
presented in Figure 4. In the first step, the input data was prepared to be ready to enter the
proposed network. In the second step, the model was trained to recognize the drones, and
the weight file obtained for the testing phase was generated. In the third step, the network
was tested to observe how it worked; and, in the last step, the proposed deep learning
network was evaluated using evaluation metrics.
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4.1. Input Preparation

Drones are generally divided into four categories: multirotors, fixed-wings, VTOLs,
and helicopters. Multirotors are mainly developed in different structures such as octorotor,
octo coax wide, hexarotor, and quadrotor. The fixed-wing drone can also be one of the types
of fixed wing, plane a-tail, and standard plane, and the VTOL drones are the combination
of both the previous versions, including four types of standard VTOL, VTOL duo tailsitter,
VTOL quad tailsitter, and plane a-tail. Because of the similarity of the behavior of birds at
long distances, this group of datasets belongs to the fifth category of network input data.
The schematic drawings of each drone are presented in Figure 5. Thus, in this study, the
data was labeled into a total of five classes and prepared for the training phase.
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One strategy for preparing input data is to draw a rectangular bounding box around
the object. In this study, the polygon sketch was used to label the drone dataset. Then,
the best rectangle containing the object was fitted to the polygon. As shown in Figure 6,
drawing the best rectangular bounding box around the drone results in the accurate
extraction of the pixels containing the object.
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Finally, the bounding box central coordinates, the class number, and its width and its
height are normalized in the range of [0, 1], and they are introduced to the next step in the
proposed method.

4.2. Train the Networks

The YOLOv4 Deep Learning Network is selected as the drone vs. bird recognition
network because of its advantages in this area. In addition, this network was modified to
improve the performance of the basic network and to better address challenges.

4.2.1. YOLOv4 Deep Learning Network Architecture

According to Figure 7, the YOLOv4 network consists of four main parts: the input
of the network, backbone (feature map extractor), neck (feature map collector), and head
(results of recognition).
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The backbone is responsible for extracting the feature map from the previously entered
data [26]. In the implemented model, a Darknet53-based network, CSP Darkent-53 [49],
is used to extract the feature. CSPDarknet53 enhances the learning process of CNN. The
CSPDarknet53 overhead integration pyramid section is connected to improve the receiver
field and to differentiate very important context features. Extracting better features leads
to increasing the accuracy of detecting drones, recognizing their type, and differentiating
them from birds. In the structure of the YOLOv4 network, there are several convolution
layers after the backbone. In convolution layers, internal multiplication and feature ex-
traction operations are performed using the obtained feature maps. In this network, a
3 × 3 convolutional layer is used after the backbone layer to extract more detailed and
accurate features using the Mish activity function. The reason for using the Mish activ-
ity function is that this function also considers negative values, solving the problem of
overfitting with precise regulatory effects.

The neck receives the feature map created in the backbone stage. This helps to add
a layer between the backbone and the head. It consists of a modified Spatial Pyramid
Pooling(SPP) and a modified Path Aggregation Network(PAN), both of which are used to
gather information to improve accuracy [21,50]. Spatial Pyramid Pooling is an integration
layer that removes the constraint of the fixed size of the network input. This layer consists
of three pooling, with sizes 256-d, 4 × 256-d, 16 × 256-d, and (Figure 8). The SPP layer
receives the feature map created from the previous convolution layer. It combines features
and produces fixed-length outputs, it then connects to fully connected layers, and then
enters the improved PAN network. This network is used to aggregate parameters for
different detector surfaces instead of feature pyramid networks (FPNs) to detect the object
used in YOLOv3.
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The head part is used to classify and to locate the predicted boxes of the proposed
network. At this level, the probabilities and the bounding box coordinates (x, y, height, and
width) are given. This part uses the YOLOv3 deep learning network architecture, so the
output is a tensor containing bounding box coordinates and class probabilities [51].

Bag-of-specials and bag-of-freebies are techniques used in the YOLOv4 algorithm
to increase accuracy during and after training [26]. Bag-of-freebies helps to improve
recognition during training, without increasing the inference time. This feature uses
techniques such as data augmentation and drop blocks. Bag-of-freebies uses CutMin, data
augmentation, and DropBlock techniques to increase and to regularize the data. It also uses
techniques, such as grid sensitivity elimination, CIoU-loss, CmBN, self-adversarial training,
and use of several anchors for one ground truth in detection techniques. Bag-of-specials
are techniques that slightly increase the inference time and change the architecture. This
feature uses methods such as non-maximum suppression, multi-input residual connections,
and cross-stage partial connections (CSP) in the backbone. Additionally, in detection, it
uses SPP-block, PAN-path aggregation, mish activation, SAM-block, and DIoU-NMS. Both
technologies and their features are useful for training and testing the networks [26].

This network is not suitable for various applications, such as recognition of small
objects and objects in cluttered backgrounds and hidden areas. Therefore, in this article, the
YOLOv4 network architecture was modified to increase the accuracy of drone recognition
and to improve the performance of the model to overcome challenges, which is one of the
innovations in this article.

4.2.2. The Modified YOLOv4 Deep Learning Network Architecture

In the modified YOLOv4 network, according to Figure 9, three convolutional layers
were added to the basic YOLOv4 network architecture after the backbone. Convolutional
layers are useful for extracting features from images because these layers deal with spatial
redundancy by weight sharing. The addition of these three layers makes the extracted
features more exclusive and informative, and it reduces redundancy. This is primarily due
to the repeated cascaded convolutions and to information compression by subsampling
layers. By reducing redundancy, the network displays a compressed feature about the
content of the image. Consequently, by increasing the depth of the network’s convolutional
layers, more accurate semantic features are extracted, recognition accuracy is increased,
and overcoming existing challenges is facilitated [52,53].
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In addition, two large-scale convolutional layers were added to the head. In this
part, a convolutional layer with a size of 3 × 3 and another with a size of 1 × 1 was used.
This 1 × 1 convolutional layer reduced the final depth as well as the volume of network
computation. This change balances the modified network to recognize large and small
long-range targets.
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The implemented network can recognize drones better than the basic YOLOv4 network
at long distances with small sizes and against crowded backgrounds and hidden areas. This
powerful object recognition model uses a single GPU to provide accurate object recognition.
For training these two networks, 70% of the entire dataset was used. The two networks
were trained under the same conditions, i.e., with the same data set, the same training
parameters, and the same number of iterations. Once the model implementation and
training phase are complete, the testing and evaluation phase of the network begins based
on the selected evaluation metrics.

4.3. Test the Networks

After completing the network training, the network testing process began with 30%
of the whole dataset. This stage was to select the best bounding box with the object and
to evaluate the network’s performance in recognizing drones and birds. The proposed
learning network defines a bounding box around the detected drones. Since the drones in
the dataset have different sizes and shapes, the proposed model creates multiple bounding
boxes to recognize them. However, to select the most suitable bounding box out of the
others, the non-maximum suppression (NMS) algorithm must be used [54]. This algorithm
was used to remove bounding boxes with lower confidence scores and to select the best
drone and bird box. As it appears from Figure 10, the green box is the best box that contains
a drone, the other two bounding boxes also cover part of the drone, and they are candidates
for drone recognition. In this algorithm, the bounding box with the highest confidence
score is selected first and then the boxes with higher overlap with the selected box are
removed. This process is continued until no representative boxes contain the drone. The
same process is performed for the bird and, finally, the best bounding box is selected.
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The steps for performing the non-maximum suppression (NMS) algorithm can be
summarized as follows:

• Select the predicted bounding box with the highest confidence level;
• Calculate IoU (the intersection and overlap of the selected box and other boxes)

(Equation (1));

IoU =
Area of Overlap
Area of Union

(1)

• Remove boxes with an overlap of more than the default IoU threshold of 7% with the
selected box;

• Repeat steps 1–3.

In Figure 11, the above algorithm was run twice, and the green boxes were selected as
the final bounding boxes containing the drone and the bird.
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4.4. Evaluation Metrics

To better understand how the proposed model works, the model was evaluated using
mAP, IoU, accuracy, recall, F1-score, and precision.

The mAP is one of the most important evaluation metrics. In this paper, mAP was
used as an evaluation metric to recognize drones and birds. It can be claimed that mAP is
responsible for comparing the predicted bounding boxes by the network with the ground
truth box [19].

The other important parameter that is the key to obtaining recall, F1-score, and preci-
sion measures is the confusion matrix. Computing confusion matrix can provide valuable
information on the performance of the modified model and the presence of various er-
rors [19]. Therefore, the values of recall, F1-score, and precision can be calculated from the
confusion matrix using the values true negative (TN), false negative (FN), true positive
(TP), and false positive (FP). The structure of the confusion matrix is illustrated in Figure 11.

The IoU shows the connection between the ground truth bounding box and the
predicted bounding box. If the intersection value of these bounding boxes is above the
default threshold value of 0.7, the classification is performed correctly (TP, true positive).
On the other hand, if the IoU value is below 0.7, it is misdiagnosed (FP, false positive), and if
these bounding boxes do not overlap with each other, it is considered a false negative (FN).

Precision means the percentage of positive predictions among predicted classes deter-
mined to be positive [19]. Precision, F1-score, and recall metrics are calculated separately
for each class of multirotor, helicopter, fixed-wing, VTOL, and bird.

The recall value shows the percentage of positive predictions among all data in the
positive class. The F1-score is the mean of values for accuracy and precision, and it can
indicate the validity of the classification process. This metric works well for imbalanced
data because it takes into account the FN and the FP values [19].

Another metric examined in this study is the overall accuracy of the model [19]. This
metric shows the performance of the model in recognizing drones and birds.

5. Experiments and Results

To assess the performance of proposed networks in recognizing drones and distin-
guishing them from birds, the steps of implementing the YOLOv4 deep learning network
and the proposed modified network are presented in this section. Moreover, the types
of the applied dataset, the network evaluation over different types of images, and the
recognition challenges are discussed.

5.1. Data Preparation

To begin the training phase, a set of 26,000 visible images were first prepared that
included various bird species and four types of drones such as multirotors, helicopters,
fixed-wing, and VTOLs (examples are shown in Figure 12). The use of these four drone
types in the collected dataset is another innovation of this study. Public images and videos
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were used to create the dataset. Approximately 70% of these images were used for training
and 30% for testing the network. In both phases, the number of images used is the same
in each class. To prepare these images, first, a polygon around the target was determined.
This task was handled using an efficient and useful Computer Vision Annotation Tool
(CVAT) and the input images were categorized into five classes. Based on these boxes,
the best rectangles containing the drone were then selected and passed to the network.
In this dataset, multirotors are classified in the first class, helicopters in the second class,
fixed-wing aircraft in the third class, VTOL in the fourth class, and birds in the fifth class.
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5.2. Model Implementation and Training Results

The modified YOLOv4 network and the basic YOLOv4 network were trained using an
Nvidia GeForce MX450 Graphics Processing Unit (GPU) hardware with 30,000 iterations.
To train these two networks, the settings in the configuration file were changed as follows:

• The input image size was set to 160 × 160;
• The subdivision and the batch parameters were changed to 1 and 64, respectively

(these settings were made to avoid errors due to lack of memory);
• The learning rate was changed to 0.0005;
• The step parameter was changed to 24,000 and 27,000, (with 80% and 90% of the

number of iterations, respectively);
• The size of the filter in three convolutional layers near the YOLO layers was changed

to 30 according to the number of classes.

The basic network used for training is the widely used Darknet Framework [55].
Depending on the hardware used, a CUDA (Compute Unified Device Architecture) Toolkit
version 10.0, CUDNN (CUDA Deep Neural Network library) version 8.2, Visual Studio
2017, and OpenCV version 4.0.1 are used. During the training, a graph of the number of
iterations and loss was plotted as shown in Figure 13. After 30 k iterations (about 3–4 days),
the modified implemented method and the basic YOLOv4 model achieved a loss of 0.58
and 0.68, respectively. The obtained values show that the detection loss of the proposed
network was lower than that of the basic network, indicating the better performance of the
proposed model in the training stage.
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5.3. Evaluation of the YOLOv4 and Modified YOLOv4 Models

The modified YOLOv4 and the basic YOLOv4 networks were precisely evaluated us-
ing accuracy, mAP, recall, precision, and F1-score in recognizing the drones. Tables 1 and 2
show the evaluation result of the proposed model and the basic YOLOv4 network. Accord-
ingly, the performance of both models was compared with the same dataset, with an IoU
default threshold of 0.07 and the same number of iterations. The recognition performance
of the modified model was performed in five classes: multi-rotor, helicopter, fixed-wing,
VTOL, and birds; and, the evaluation metrics of precision, recall, F1-score, accuracy, mAP,
and IoU were increased. These results indicate the better performance of the modified
model than the basic YOLOv4 model. In this network, the accuracy was 0.83%, the mAP
was 83%, and the IoU was 84%, which was 4% better than the basic model.

Table 1. Evaluation results of the basic and Modified YOLOv4 networks.

Dataset Model Num of
Images

Precision
%

Recall
%

F1-Score
%

Bird
YOLOv4

1570
81 87 84

Modified YOLOv4 87 90 89

Fixed Wing YOLOv4
1570

88 70 78
Modified YOLOv4 88 77 82

Helicopter YOLOv4
1570

81 73 77
Modified YOLOv4 88 73 80

Multirotor
YOLOv4

1570
77 90 83

Modified YOLOv4 79 90 84

VTOL
YOLOv4

1570
72 77 74

Modified YOLOv4 74 83 78

Total
YOLOv4

7850
80 79 79

Modified YOLOv4 83 83 83

Table 2. Total evaluation results of the basic and Modified YOLOv4 networks.

Dataset Model Num of
Images

Accuracy
%

mAP
%

IoU
%

Total
YOLOv4

7850
79 79 80

Modified YOLOv4 83 83 84

The comparison of precision, recall, F1-score, and total mAP in all five classes in
the two implemented models are graphically presented in Figure 14. The precision was
improved in four classes (multirotor, helicopter, VTOL, and bird) and unchanged in the
fixed-wing class. In general, these results show the improvement of model performance in
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the proposed network. By comparing the recall according to Figure 15, its improvement is
observed in three classes, and there is no change in the other two classes. This means that
the ability and the performance of the second model in recognition were improved. As it
appears from Figure 16, the F1-score increased compared to the basic model of YOLOv4,
and this also shows the better performance of the modified YOLOv4 network.
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Figure 17 shows the results of drone recognition in the basic YOLOv4 network and
Figure 18 shows these results with the modified YOLOv4 network. A comparison of the
results of the two networks shows an improvement in the accuracy of the bounding boxes
and the class probabilities in the modified network. On the other hand, the recognition
of four types of multirotor (octorotor, octo coax wide, hexarotor, and quadrotor), three
types of fixed-wing (flying wing, plane a-tail, and standard plane), four types of VTOLs
(standard VTOL, VTOL duo tailsitter, VTOL quad tailsitter, and plane a-tail), one type of
helicopter, and their discrimination from birds were improved in the proposed model.
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5.4. Addressing the Challenges in the Modified YOLOv4 Model

In this study, the YOLOv4 network was modified to improve the recognition results of
four types of drones and to differentiate them from birds concerning existing challenges,
such as the smaller size of the drones, crowded backgrounds, loss of scalability, and
similarity with birds. Figure 19 shows the performance of both the basic and the modified
models in overcoming the challenges.
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The first challenge is to recognize the drone and to distinguish it from the bird; the
basic model is unable to recognize the bird in some samples and the class probability values
are lower than for the modified model. The modified YOLOv4 model can recognize drones
and distinguish them from birds by extracting smaller and more accurate features, and it
has demonstrated this ability in the evaluated samples (Figure 19). The second challenge
studied is the presence of drones in a crowded background, where the modified model
can recognize targets with a high prediction probability. In some cases, the base model
is unable to recognize the drone or it has a lower probability than the modified model.
The third challenge is the small size of the drones and their placement at long ranges,
where the modified model performs better than the base model. The modified model can
accurately recognize all small drones in the test images. This ability is due to the use of
more convolutional layers at the head of the network. The change in network structure does
not remarkably affect the execution time of the network training algorithm. The training of
the proposed network takes approximately 3 h longer than that of the first network. Finally,
the challenge of the detectability swarm of UAVs at different scales is investigated. In this
challenge, the base model is unable to recognize drones in the images in some cases, and it
generally has lower class probability than the modified model.

Figure 20 illustrates several samples of different drone types in crowded environ-
ments with lighting conditions and different weather. As the results show, the modified
YOLOv4 network is capable of recognizing different drone types under complex and
challenging conditions.
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Figure 20. Several samples of drone recognition in different light and weather conditions and against
a crowded background. (a) YOLOv4. (b) Modified YOLOv4.

6. Discussion

The evaluation metric examined in this study is confusion matrix, IoU, mAP, accuracy,
precision, recall, and F1-score. The values obtained from these criteria in the modified
network are as follows: 79% precision, 84% F1-score, and 90% recall for the multirotor;
88% precision, 82% F1-score, and 77% recall for the fixed-wing; 88% precision, 80% F1-
score, and 73% recall for the helicopter; 74% precision, 78% F1-score, and 83% recall
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for VTOL; and 87% precision, 89% F1-score, and 90% recall for the bird. Based on the
basic YOLOv4 network results, it can be said that the proposed network had an average
improvement of 3.4% in precision, 3.2% in the recall, and 3.4% in F1-score values. The
overall accuracy, indicating the correct classification of the input data set into five classes,
was also investigated. This criterion increased by 4% in the modified network compared
to the basic network. The mAP also increased by 4% in the modified network compared
to the basic YOLOv4 network. This rate indicates an improvement in the classification of
the proposed model in the five classes. Finally, the IoU metric was used to calculate the
overlap value of the predicted bounding box with the ground truth bounding box. This
metric also increased by 4% in the modified network, indicating the higher accuracy of the
predicted bounding box.

In recent years, the use of artificial intelligence and deep learning methods has
become one of the most popular and useful methods in object recognition. In 2021,
Tan Wei Xun et al. detected and tracked a drone using the YOLOv3. The results of this
method show that the proposed YOLOv3 network detects drones of different sizes with
a confidence level between 60 and 100% [44]; also this year, drone detection and tracking
were performed by Isaac-Medina et al. using a set of visible and thermal images and
four deep learning network architectures, including RCNN, SSD, YOLOv3, and DETR.
According to the results of this study, it can be said that the YOLOv3 deep learning network
performs better than the other models [45]. One of the problems with these studies was
the inability to detect small drones over long distances. In addition, an automatic drone
detection system using YOLOv4 was developed by Singha et al. In this system, a collection
of drone-vs-bird images were used to detect the drone and its evaluation was tested using
a video dataset. The results of this work include the high accuracy of the YOLOv4 net-
work [46]. One of the limitations of this study was the lack of recognition of the different
types of drones and the lack of challenging images. Moreover, Liu et al. applied three
object detection methods, such as YOLOv3, YOLOv4, RetinaNet, and FCOS networks on
the drone dataset. To build a scattered, flat network and to get great accuracy in drone
detection, the pruned YOLOv4 model was used, which improved the accuracy of drone
detection at high speed. However, the study did not address the challenges of crowded
background images, hidden areas, and the distance of the drone from the camera [16].
Additionally in 2022, Samadzadegan et al. recognized two types of drones (multirotors and
helicopters) and birds using the YOLOv4 deep learning network. However, this paper did
not recognize two other drone types such as VTOL and fixed-wing drones, which could be
more dangerous than the previous two types. In addition, a rectangular bounding box was
used in the data preparation, which resulted in the input of additional information and
reduced the accuracy of recognition [47].

Previous studies have focused on drone detection, and a small number of these studies
have examined the recognition of different types of drones. Moreover, the challenges
of drone recognition, such as the small size of the drone, crowded background, hidden
areas, and confusion with birds, have not been comprehensively addressed in these studies.
Therefore, it can be said that the unauthorized presence of drones in challenging envi-
ronments and their inaccurate recognition in sensitive infrastructures is still one of the
most important problems in ensuring public safety. The main goal of this research is to
recognize four types of drones and to differentiate them from birds at far distances despite
challenges, such as the small size of the drone, a crowded background, and the presence of
hidden areas.

In this study, the YOLOv4 network was modified to improve drone recognition
challenges. A set of visible images with different types of drones and birds in different
environments at near and far distances were collected to recognize four types of drones
and to differentiate them from birds. Two convolutional layers were added to the head of
the YOLOv4 to solve the challenges of small drone recognition. For example, in Figure 20
there are examples of small drones that the basic model was unable to recognize in some
cases. However, the modified model recognized them; and, in other cases they operated
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with less accuracy than the modified network. This result shows the improvement of the
current network compared to the basic network for recognizing small drones. Furthermore,
to increase the accuracy of feature extraction and precise recognition of drones and birds,
three convolutional layers were added after the backbone layer. Adding these layers to the
architecture of the basic YOLOv4 network did not change the training time of the network,
and it took only a few hours longer than training the basic network. By applying these
changes in the network architecture and using extensive datasets, the proposed method
was able to recognize all drone types and bird species in challenging environments. In
Figure 19, rows (a), (b), and (d) provide examples of difficult images and swarms of UAVs,
all of which have higher recognition accuracy in the modified network than in the basic
network. Figure 20 also contains other challenging examples where the proposed network
performs better.

7. Conclusions

As has been noted, UAV recognition in various situations is a complex process; the
usual methods and even conventional deep learning network methods do not work well in
some cases. In this study, the basic YOLOv4 network was used to recognize drone types
and to differentiate them from bird species. To increase recognition accuracy and to better
address existing challenges, a novel and modified model of this network was proposed. To
train, test, and evaluate these two networks, a collection of 26,000 visible image datasets
including four types of UAVs (multirotor, fixed-wing, helicopter, and VTOL) and birds
were collected. The comparison of these two models was done using mAP, confusion
matrix, IoU, precision, accuracy, F1-score, and recall evaluation metrics. With the modified
YOLOv4 model, we achieved 84% IoU, 83% mAPs, and 83% accuracy, which is better than
the basic model, and it solved the challenges well. In the future, real-time identification
with onboard systems can be studied in addition to drone recognition. Background removal
algorithms can also be used to make labeling input data easier and faster. In addition to the
multirotor types used, Tri-rotors can also be used to complete the dataset. Additionally,
other deep learning networks can be used to compare their results with the results of this
modified network.
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30. Kotarski, D.; Piljek, P.; Pranjić, M.; Grlj, C.G.; Kasać, J. A Modular Multirotor Unmanned Aerial Vehicle Design Approach for
Development of an Engineering Education Platform. Sensors 2021, 21, 2737. [CrossRef] [PubMed]

31. Cai, G.; Chen, B.M.; Lee, T.H.; Lum, K.Y. Comprehensive nonlinear modeling of an unmanned-aerial-vehicle helicopter. In
Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, HI, USA, 18–21 August 2008.

32. Qin, B.; Zhang, D.; Tang, S.; Wang, M. Distributed Grouping Cooperative Dynamic Task Assignment Method of UAV Swarm.
Appl. Sci. 2022, 12, 2865. [CrossRef]

http://doi.org/10.1109/TVT.2019.2893615
http://doi.org/10.1016/j.iot.2020.100218
http://doi.org/10.1016/j.trpro.2017.12.184
http://doi.org/10.3390/s21103374
http://doi.org/10.3390/s21082737
http://www.ncbi.nlm.nih.gov/pubmed/33924495
http://doi.org/10.3390/app12062865


Drones 2022, 6, 160 21 of 21

33. Shafiq, M.; Ali, Z.A.; Israr, A.; Alkhammash, E.H.; Hadjouni, M. A Multi-Colony Social Learning Approach for the Self-
Organization of a Swarm of UAVs. Drones 2022, 6, 104. [CrossRef]

34. Ali, Z.A.; Han, Z.; Masood, R.J. Collective Motion and Self-Organization of a Swarm of UAVs: A Cluster-Based Architecture.
Sensors 2021, 21, 3820. [CrossRef]

35. Xu, C.; Zhang, K.; Jiang, Y.; Niu, S.; Yang, T.; Song, H. Communication Aware UAV Swarm Surveillance Based on Hierarchical
Architecture. Drones 2021, 5, 33. [CrossRef]

36. Li, Y. Research and application of deep learning in image recognition. In Proceedings of the 2022 IEEE 2nd International
Conference on Power, Electronics and Computer Applications (ICPECA), Shenyang, China, 21–23 January 2022; IEEE: Piscataway,
NJ, USA, 2022.

37. Pathak, A.R.; Pandey, M.; Rautaray, S. Application of deep learning for object detection. Procedia Comput. Sci. 2018, 132, 1706–1717.
[CrossRef]

38. Deng, L.; Yu, D. Deep Learning: Methods and Applications. In Foundations and Trends® in Signal Processing; Now Publishers Inc.:
Hanover, NH, USA, 2014; Volume 7, pp. 197–387.

39. Nalamati, M.; Kapoor, A.; Saqib, M.; Sharma, N.; Blumenstein, M. Drone Detection in Long-Range Surveillance Videos. In
Proceedings of the 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Taipei,
Taiwan, 18–21 September 2019; pp. 1–6.

40. Unlu, E.; Zenou, E.; Riviere, N.; Dupouy, P.-E. Dupouy Deep learning-based strategies for the detection and tracking of drones
using several cameras. IPSJ Trans. Comput. Vis. Appl. 2019, 11, 7. [CrossRef]

41. Mahdavi, F.; Rajabi, R. Drone Detection Using Convolutional Neural Networks. In Proceedings of the 2020 6th Iranian Conference
on Signal Processing and Intelligent Systems (ICSPIS), Mashhad, Iran, 23–24 December 2020; IEEE: Piscataway, NJ, USA, 2020.

42. Behera, D.K.; Raj, A.B. Drone detection and classification using deep learning. In Proceedings of the 2020 4th International
Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 13–15 May 2020; IEEE: Piscataway,
NJ, USA, 2020.

43. Shi, Q.; Li, J. Objects Detection of UAV for Anti-UAV Based on YOLOv4. In Proceedings of the 2020 IEEE 2nd International
Conference on Civil Aviation Safety and Information Technology (ICCASIT), Weihai, China, 14–16 October 2020; IEEE: Piscataway,
NJ, USA, 2020.

44. Xun, D.T.W.; Lim, Y.L.; Srigrarom, S. Drone detection using YOLOv3 with transfer learning on NVIDIA Jetson TX2. In Proceedings
of the 2021 2nd International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP), Bangkok,
Thailand, 20–22 January 2021; IEEE: Piscataway, NJ, USA, 2021.

45. Isaac-Medina, B.K.; Poyser, M.; Organisciak, D. Unmanned aerial vehicle visual detection and tracking using deep neural
networks: A performance benchmark. arXiv 2021, arXiv:2103.13933.

46. Singha, S.; Aydin, B. Automated Drone Detection Using YOLOv4. Drones 2021, 5, 95. [CrossRef]
47. Samadzadegan, F.; Javan, F.D.; Mahini, F.A.; Gholamshahi, M. Detection and Recognition of Drones Based on a Deep Convolu-

tional Neural Network Using Visible Imagery. Aerospace 2022, 9, 31. [CrossRef]
48. Roche, R. QGroundControl (QC). 2019. Available online: http://qgroundcontrol.com/ (accessed on 20 May 2022).
49. Wang, C.; Liao, H.M.; Wu, Y.; Chen, P.; Hsieh, J.; Yeh, I. CSPNet: A New Backbone that can Enhance Learning Capability of CNN.

In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle,
WA, USA, 14–19 June 2020.

50. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.

51. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
52. Ñanculef, R.; Radeva, P.; Balocco, S. Training Convolutional Nets to Detect Calcified Plaque in IVUS Sequences. In Intravascular

Ultrasound; Elsevier: Amsterdam, The Netherlands, 2020; pp. 141–158.
53. Wang, L.; Lee, C.-Y.; Tu, Z.; Lazebnik, S. Training deeper convolutional networks with deep supervision. arXiv 2015,

arXiv:1505.02496.
54. Hosang, J.; Benenson, R.; Schiele, B. Learning non-maximum suppression. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.
55. Redmon, J. Darknet: Open Source Neural Networks in C. 2013–2016. Available online: http://pjreddie.com/darknet/ (accessed

on 20 May 2022).

http://doi.org/10.3390/drones6050104
http://doi.org/10.3390/s21113820
http://doi.org/10.3390/drones5020033
http://doi.org/10.1016/j.procs.2018.05.144
http://doi.org/10.1186/s41074-019-0059-x
http://doi.org/10.3390/drones5030095
http://doi.org/10.3390/aerospace9010031
http://qgroundcontrol.com/
http://pjreddie.com/darknet/

	Introduction 
	Challenges in Drone Recognition 
	Confusion of Drones and Birds 
	Crowded Background 
	Small Drone Size 


	State of the Art Work 
	Related Works 
	Methodology 
	Input Preparation 
	Train the Networks 
	YOLOv4 Deep Learning Network Architecture 
	The Modified YOLOv4 Deep Learning Network Architecture 

	Test the Networks 
	Evaluation Metrics 

	Experiments and Results 
	Data Preparation 
	Model Implementation and Training Results 
	Evaluation of the YOLOv4 and Modified YOLOv4 Models 
	Addressing the Challenges in the Modified YOLOv4 Model 

	Discussion 
	Conclusions 
	References

