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Abstract: Feedback linearization-based controllers are widely exploited in stabilizing a tilt rotor (eight
or twelve inputs); each degree of freedom (six degrees of freedom in total) is manipulated individually
to track the desired trajectory, since no singular decoupling matrix is introduced while applying this
method. The conventional quadrotor (four inputs), on the other hand, is an under-actuated MIMO
system that can directly track four independent degrees of freedom at most. Common selections of
these outputs can be yaw–position and attitude–altitude. It is reported that no singularity is found in
the decoupling matrix while applying feedback linearization in the yaw–position-tracking problem.
However, in this research, we argue the existence of the ignored singular zone within the range of
interest, which can cause the failure in the controller design. This paper visualizes this noninvertible
area and details the process of deduction for the first time. An attempt (switch controller) to avert the
singular problem is later discussed with the verification by simulation in Simulink and MATLAB. All
the results are sketched in the roll–pitch diagram.

Keywords: feedback linearization; quadrotor; singularity; underactuated system; MIMO

1. Introduction

With the higher demands on the performance of the conventional quadrotor (four
inputs) in trajectory tracking, the effects of the controllers based on the linearization at
the equilibrium state are reduced. Several nonlinear controllers have been developed to
stabilize the quadrotor. References [1–5] applied feedback linearization equipped with a PID
controller. References [6–9] employed the backstepping method, which guarantees stability
using the Lyapunov criteria. References [10–13] developed a sliding mode controller.
References [14–17] utilized MPC.

Among these controllers, the feedback linearization method is relatively special, since
it transfers the original nonlinear system into a linear one compatible with the linear
controllers. With the development of the concept of the tilt rotor [18–20] in the last decade,
feedback linearization [4,18,20–22] and sliding mode control [13,23] have reclaimed their
high popularity.

Although feedback linearization yields convenience in designing the exterior loop
controller, several problems may hinder its application. One requirement is that the control
signal and the state variable should not activate the constraints; hitting the input saturation
or non-negative constraint are strictly prohibited in the exchange to hold the relevant stabil-
ity criteria. To meet this requirement, References [24–27] put forward Reference Governor.

Another potential issue is the singular decoupling matrix; a singular matrix can block
the application of the feedback linearization, though some methods, e.g., PCH [28], dynamic
approximation [29], etc., are put forward to avert this issue.

Interestingly, the singular decoupling matrix does not universally exist in the dynamics
of a quadrotor or tilt rotor. The conclusion can differ from the choices of the independent
outputs directly tracked, even for the same type of tilt rotor or quadrotor.
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It was proved in Reference [19] that feedback linearization produces no singular
decoupling matrix for tilt rotors (eight inputs) if all the degrees of freedom (six) are tracked
independently. Notice that this solution can cause a state drift phenomenon [30].

For the same dynamics (eight-input tilt rotor), Reference [31] points out that feedback
linearization is hindered by a singular decoupling matrix at several specific attitudes, if
only four degrees of freedom (attitude and altitude) are controlled independently. These
attitudes are calculated and visualized in Reference [31].

As for the conventional quadrotor, the number of inputs (six) is less than the number
of degrees of freedom (four). Based on this, four degrees of freedom, at most, can be tracked
independently for a quadrotor. The typical choices of these degrees of freedom can are
yaw–position and attitude–altitude.

In feedback linearization, attitude–altitude (φ, θ,ψ, and z) are the independent track-
ing variables, and the conventional quadrotor introduces no singular decoupling matrix;
the delta matrix in Reference [32] is strictly a full rank within the range of interest.

The other choices of independent variables are yaw (ψ) and position (x, y, and z)
combinations. By applying two integrators as the input signal, Reference [1] showed their
results in a simulation with the conclusion that the singularity does not exist once the
attitude is in the zone of interest. That is: φ∈(−π/2,π/2) and θ∈(−π/2,π/2).

On the contrary, we will report the extra singular zone ignored by previous research
in feedback linearization by selecting yaw–position (ψ, x, y, and z) as the independent
controlled variables in this paper.

It is worth mentioning that Reference [33] tried feedback linearization of the quadrotor
dynamics based on yaw–position and seemed to successfully avert the noninvertible
problem. While the fundamental reason for its success was an estimation of the dynamics,
a linearization at the equilibrium–attitude was applied before the feedback linearization
process. This approach, however, lost the essence of the dynamic inversion. As tested in
Reference [34], this approximation is only applicable to the controllers within a specific
range of attitude.

Notice that the number of selected independent controlled variables in a quadrotor
can be less than three; Reference [35] used a cascade control structure with three controlled
variables for each layer to control all six variables. The singularity problem is also avoided
in this way. However, these choices are beyond the scope of this research.

There are sophisticated works focusing on singularity avoidance, escape, and pen-
etration in gyro systems [36,37]. While designing a sophisticated controller to escape
the singular zone for our system is not the primary objective of this research, the main
focus of this research is to provide sound proof of the existence of the singular zone in
quadrotor yaw–position feedback linearization. A potential solution, a preliminary attempt,
specifically, to avert this reported singular zone is put forward after deducing the singular
zone later in this paper; a switch control strategy attempts to cancel the effect of this zone,
achieving stability within a particular attitude zone.

The remainder of this paper is organized as follows. In Section 2, previous works on
the dynamics and feedback linearization applied to a quadrotor are introduced. Section 3
deduces the ignored singular area within the zone of interest. This noninvertible zone is
visualized in Section 4. A potential approach to avoid this singular zone is put forward
and simulated in Section 5. Finally, there are the conclusions and further discussions in
Section 6.

2. Dynamics and Feedback Linearization in UAV Control

This section briefs the feedback linearization control in Reference [1]. The details in
deducing the dynamics can be seen in Reference [1].

The input vector is given by

[u1 u2 u3 u4]
T (1)
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where u1 is the total thrust generated by four propellers, u2 is the difference of thrust
between the left rotor and the right rotor, u3 is the difference of thrust between the front
rotor and the back rotor, and u4 is the difference of torque between the two clockwise-
turning rotors and the two counterclockwise-turning rotors.

As introduced in Reference [1], the virtual inputs are

[u1 u2 u3 u4]
T (2)

where
u1 =

.
ξ, (3)

ξ =
.
ζ, (4)

ζ = u1, (5)

u2 = u2, (6)

u3 = u3, (7)

u4 = u4. (8)

The dynamics of the quadrotor are then written as

.
x = f(x) +

4

∑
i=1

gi(x)·ui (9)

where x is the augmented state vector,

x =
[
x, y, z,ψ, θ,φ,

.
x,

.
y,

.
z, ζ, ξ, p, q, r

]T, (10)

where x, y, and z are the positions with respect to the earth frame; ψ, θ, and φ are the yaw
angle, pitch angle, and roll angle, respectively, and p, q, and r are the angular velocities
along the body-fixed x-axis, y-axis, and z-axis, respectively.

gi(x) is defined as

g1(x) = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]T, (11)

g2(x) =
[

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
d
Ix

, 0, 0
]T

, (12)

g3(x) =
[

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
d
Iy

, 0
]T

, (13)

g4(x) =
[

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
d
Iz

]T
, (14)

where d is the length of each arm, and Ix, Iy, and Iz are the rotational inertia along the
body-fixed x-axis, y-axis, and z-axis, respectively.

f(x) is defined as
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f(x) =



.
x
.
y
.
z

sφ
cθ ·q + cφ

cθ ·r
cφ·q− sφ·r

p + sφ·tθ·q + cφ·tθ·r
g7

1·ζ
g8

1·ζ
g9

1·ζ+ g
ξ

0
Iy−Iz

Ix
·q·r

Iz−Ix
Iy
·p·r

Ix−Iy
Iz
·p·q



(15)

where sΛ, cΛ, and tΛ represent sin(Λ), cos(Λ), and tan(Λ), respectively, g is the gravita-
tional acceleration, and g7

1, g8
1, and g9

1 are defined as

g7
1 = − 1

m ·(cφ·cψ·sθ+ sφ·sψ)
, − 1

m ·A1,
(16)

g8
1 = − 1

m ·(cφ·sψ·sθ− sφ·cψ)
, − 1

m ·A2,
(17)

g9
1 = − 1

m ·cθ·cφ
, − 1

m ·A3
(18)

where m is the mass of the quadrotor, and A1 = cφ·cψ·sθ+ sφ·sψ, A2 = cφ·sψ·sθ− sφ·cψ,
and A3 = cθ·cφ.

The four independent controlled variables (y1, y2, y3, and y4) are selected as
y1
y2
y3
y4

 =


x
y
z
ψ

. (19)

To apply the feedback linearization, Reference [1] calculated the higher derivative of
the controlled variables and received

y1
(4)

y2
(4)

y3
(4)

..
y4

 =


x(4)

y(4)

z(4)
..
ψ


= Ma(x) + ∆(x)·


u1
u2
u3
u4


(20)

where both Ma(x) and ∆(x) are a 4 × 4 matrix of state (10).
Once ∆(x) is invertible, the feedback linearization can be further applied. It was concluded

in Reference [1] that ∆(x) is always invertible given thatφ∈(−π/2,π/2), θ∈(−π/2,π/2), ζ 6= 0.
However, based on our deductions, this condition does not hold within the entire

space above. The additional requirement for ∆(x) and its proof are given in the next section.
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3. Invertibility Analysis
3.1. Necessary and Sufficient Condition to Be Invertible

∆(x) is invertible within the region φ∈(−π/2,π/2), θ∈(−π/2,π/2), ζ 6= 0 if and only if

− 1 + cos2 θ· cos2φ− cos2 θ· cosφ· sinφ 6= 0. (21)

3.2. Proof of The Invertible Condition

This section details the process of deduction for receiving Equation (21).
The necessary and sufficient condition for receiving an invertible ∆(x) is∣∣∣P4×4·∆(x)·Q4×4

∣∣∣ 6= 0, (P and Q are invertible). (22)

Before finding P and Q, we start with calculating ∆(x) analytically in Equation (16).
Firstly, y1

(4), y2
(4), y3

(4), and
..
y4 are to be calculated.

y1
(4) is calculated as follows:

..
y1 = − 1

m
·A1·ζ, (23)

y1
(3) = − 1

m
·

.
A1·ζ−

1
m
·A1·ξ, (24)

y1
(4) = − 1

m
·

..
A1·ζ−

2
m
·

.
A1·ξ−

1
m
·A1·u1. (25)

y2
(4) and y3

(4) are deduced in a similar way:

y2
(4) = − 1

m
·

..
A2·ζ−

2
m
·

.
A2·ξ−

1
m
·A2·u1, (26)

y3
(4) = − 1

m
·

..
A3·ζ−

2
m
·

.
A3·ξ−

1
m
·A3·u1. (27)

..
y4 is deduced in Equation (28):

..
ψ =

(
sφ
cθ ·q + cφ

cθ ·r
)′

= A4(φ, θ, p, q, r) + sφ
cθ ·

d
Iy
·u3 +

cφ
cθ ·

d
Iz
·u4

(28)

where A4(φ, θ, p, q, r) are the remaining terms without containing u3 or u4.
Notice that A1, A2, and A3 are the functions of (ψ, θ, and φ). Thus,

.
A1,

.
A2, and

.
A3

are the functions of the state x in Equation (10), containing no u1, u2, or u3. Conse-
quently, the terms −2/m·

.
Ai·ξ in Equations (25)–(27) do not contribute to the coefficients of

u1, u2, and u3.
On the other hand,

..
A1,

..
A2, and

..
A3 are calculated by differentiating the state x in

Equation (10), which generates u1, u2, and u3. Notice the forms of Equations (25)–(28);
calculating

..
A1,

..
A2, and

..
A3 is necessary to receive the coefficients of u1, u2, and u3. In the

following, we found the terms containing u1, u2, and u3 in
..
A1,

..
A2, and

..
A3.

We start with finding
..
A1.

Firstly,
.

A1 is calculated as

.
A1 = −sψ·sθ·cφ·

.
ψ+ cψ·cθ·cφ·

.
θ− cψ·sθ·sφ·

.
φ+ cψ·sφ·

.
ψ+ sψ·cφ·

.
φ. (29)

Substituting
.
ψ,

.
θ, and

.
ϕ in Equation (9), we receive

.
A1 = M1·

(
sφ
cθ
·q +

cφ
cθ
·r
)
+ N1·(p + sφ·tθ·q + cφ·tθ·r) + O1·(cφ·q− sφ·r) (30)
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where M1, N1, and O1 are defined as

M1 = cψ·sφ− sψ·sθ·sφ, (31)

N1 = sψ·cφ− cψ·sθ·sφ, (32)

O1 = cψ·cθ·cφ. (33)

Further, we calculated the terms containing (
.
p,

.
q,

.
r) in

..
A1 based on the result of

.
A1 in

Equation (30). The sum of the terms containing
.
p,

.
q, and

.
r, which generate u2, u3, and u4,

respectively, in
..
A1 is illustrated as

RA1 = N1·
.
p+

(
M1·

sφ
cθ

+ N1·sφ·tθ+ O1·cφ
)
· .q+

(
M1·

cφ
cθ

+ N1·cφ·tθ−O1·sφ
)
· .r. (34)

As a result, the coefficient of u1 in Equation (25) is −1/m·A1. The coefficient of u2 in
Equation (25) confirmed by Equation (34) is−ζ/m·N1· dIx

. The coefficient of u3 in Equation (25)
confirmed by Equation (34) is−ζ/m·(M1·sφ/cθ+N1·sφ·tθ+O1·cφ)·d/Iy. The coefficient of
u4 in Equation (25) confirmed by Equation (34) is−ζ/m·(M1·cφ/cθ+N1·cφ·tθ−O1·sφ)·d/Iz.
So far, we have received the results of the coefficients of u1, u2, u3, and u4 in y1

(4).
A similar procedure is conducted to calculate the coefficients of u1, u2, u3, and u4 in

y2
(4) in Equation (26). It starts with finding

.
A2 = M2·

(
sφ
cθ
·q +

cφ
cθ
·r
)
+ N2·(p + sφ·tθ·q + cφ·tθ·r) + O2·(cφ·q− sφ·r) (35)

where M2, N2, and O2 are defined as

M2 = sψ·sφ+ cψ·sθ·sφ, (36)

N2 = −cψ·cφ− sψ·sθ·sφ, (37)

O2 = sψ·cθ·cφ. (38)

Further, we calculated the terms containing (
.
p,

.
q,

.
r) in

..
A2 based on the result of

.
A2 in

Equation (35). The sum of the terms containing
.
p,

.
q, and

.
r, which generate u2, u3, and u4,

respectively, in
..
A2 is

RA2 = N2·
.
p+

(
M2·

sφ
cθ

+ N2·sφ·tθ+ O2·cφ
)
· .q+

(
M2·

cφ
cθ

+ N2·cφ·tθ−O2·sφ
)
· .r. (39)

As a result, the coefficient of u1 in Equation (26) is −1/m·A2. The coefficient of u2 in
Equation (26) confirmed by Equation (39) is−ζ/m·N2·d/Ix. The coefficient of u3 in Equation (26)
confirmed by Equation (39) is−ζ/m·(M2·sφ/cθ+N2·sφ·tθ+O2·cφ)·d/Iy. The coefficient of
u4 in Equation (26) confirmed by Equation (39) is−ζ/m·(M2·cφ/cθ+N2·cφ·tθ−O2·sφ)·d/Iz.

A similar procedure is conducted to calculate the coefficients of u1, u2, u3, and u4 in
y3

(4) in Formula (27).
As a result, the coefficient of u1 in Equation (27) is −1/m·A3. The coefficient of u2 in

Equation (27) is−ζ/m·N3·d/Ix. The coefficient of u3 in Equation (27) is−ζ/m·(N3·sφ·tθ+O3·cφ)·
d/Iy. The coefficient of u4 in Equation (27) is−ζ/m·(N3·cφ·tθ−O3·sφ)·d/Iz. N3 and O3 are de-
fined as

N3 = −cθ·sφ, (40)

O3 = −sθ·cφ. (41)

As for the coefficients of u1, u2, u3, and u4 in
..
y4, we can find them in Equation (28). As

a result, the coefficient of u1 in Equation (28) is 0. The coefficient of u2 in Equation (28) is 0.
The coefficient of u3 in Equation (28) is sφ/cθ·d/Iy. The coefficient of u4 in Equation (28)
is cφ/cθ·d/Iz.
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So far, we have found all the coefficients of u1, u2, u3, and u4 in y1
(4), y2

(4), y3
(4), and

..
y4.

Thus, the decoupling matrix (delta matrix), ∆(x), in Equation (20) is found. That is

∆(x) =


∆11 ∆12 ∆13 ∆14
∆21 ∆22 ∆23 ∆24
∆31 ∆32 ∆33 ∆34
∆41 ∆42 ∆43 ∆44

 (42)

where
∆11 = − 1

m
·A1,

∆21 = − 1
m
·A2,

∆31 = − 1
m
·A3,

∆41 = 0,

∆12 = − ζ
m
·N1·

d
Ix

,

∆22 = − ζ
m
·N2·

d
Ix

,

∆32 = − ζ
m
·N3·

d
Ix

,

∆42 = 0,

∆13 = − ζ
m
·
(

M1·
sφ
cθ

+ N1·sφ·tθ+ O1·cφ
)
· d
Iy

,

∆23 = − ζ
m
·
(

M2·
sφ
cθ

+ N2·sφ·tθ+ O2·cφ
)
· d
Iy

,

∆33 = − ζ
m
·(N3·sφ·tθ+ O3·cφ)·

d
Iy

,

∆43 =
sφ
cθ
· d
Iy

,

∆14 = − ζ
m
·
(

M1·
cφ
cθ

+ N1·cφ·tθ−O1·sφ
)
· d
Iz

,

∆24 = − ζ
m
·
(

M2·
cφ
cθ

+ N2·cφ·tθ−O2·sφ
)
· d
Iz

,

∆34 = − ζ
m
·(N3·cφ·tθ−O3·sφ)·

d
Iz

,

∆44 =
cφ
cθ
· d
Iz

.

It can be concluded from this that ζ should be nonzero if we expect the delta matrix to
be a full rank.

The next step is to find a proper invertible matrix P4×4 and Q4×4 in Equation (22).
This step is designed to simplify the delta matrix to the form that we can calculate the
determinant based on easily.

Notice that

P4×4·∆(x)·Q4×4 =


D11 sψ·cφ cψ 0
D21 −cψ·cφ sψ 0

0 sφ sθ 0
0 0 0 1

 (43)
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where
D11 = cψ·sθ·cφ− cψ·sθ·sφ+ sψ·sφ+ sψ·cφ,

D21 = sψ·sθ·cφ− sψ·sθ·sφ− cψ·sφ− cψ·cφ,

P = P1·P2·P3,

P1 =


1 0 0 0
0 1 0 0
0 0 −cθ 0
0 0 0 1

,

P2 =


1 0 0 sφ·sψ·cθ
0 1 0 sφ·sψ·cθ
0 0 1 −sφ·sθ
0 0 0 1

,

P3 =


1 0 0 ζ

m ·cθ
0 1 0 ζ

m ·cθ
0 0 1 ζ

m ·cθ
0 0 0 − ζ

m ·cθ

,

Q = Q1·Q2·Q3,

Q1 =


−m 0 0 0

0 −m·Ix
ζ·d 0 0

0 0 −m·Iy
ζ·d 0

0 0 0 −m·Iz
ζ·d

,

Q2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 − sφ

cφ 1

,

Q3 =


1 0 0 0
1 1 0 0
0 sθ·sφ

cθ
1

cθ 0
0 0 0 1

cφ

.

Further, ∣∣∣P4×4·∆(x)·Q4×4
∣∣∣ = −1 + cos2 θ· cos2φ− cos2 θ· cosφ· sinφ. (44)

Thus, ∆(x) is invertible if and only if the right side of Equation (44) is nonzero, which
is exactly Equation (21). This completes the proof.

4. Visualize The Singular Zone

The singular space is determined by∣∣∣P4×4·∆(x)·Q4×4
∣∣∣ = −1 + cos2 θ· cos2φ− cos2 θ· cosφ· sinφ. (45)

This space is defined by φ and θ, which are not controlled independently; the in-
dependently controlled variables selected in Equation (19) do not include the roll and
pitch. Consequently, avoiding the singular space defined in Equation (45) can be not
straightforward or even not feasible for some trajectories.

We visualize the singular space by defining the “determinant surface”:

S(θ,φ) = −1 + cos2 θ· cos2φ− cos2 θ· cosφ· sinφ. (46)
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We plot S(θ,φ) in Figure 1 (3D) and Figure 2 (contour plot).
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Figure 3 plots the singular curve, given S(θ,φ) = 0, where the attitudes on the curve
introduce the singular decoupling matrix. Clearly, there exists a singular region within the
space of interest, φ ∈ (−π/2,π/2), θ ∈ (−π/2,π/2).

To avoid touching the singular curve, the quadrotor is either outside the “circular”
area in Figure 3 or inside it throughout the entire flight. Crossing the “circular” area is
strictly prohibited, since it causes the noninvertible problem in the decoupling matrix.

However, this requirement can be too strict, since we can find in Figure 3 that
(θ,φ) = (0, 0) is on the singular curve, while the quadrotor is near this state during most
flights or even on it, e.g., while hovering.

It is worth mentioning that this result is not influenced by changing the definition
of the positive direction of the body-fixed frame; changing the positive direction of the
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body-fixed frame (e.g., Reference [38]) changes the signs in several rows in the delta matrix,
which has no influence on the rank of a matrix.
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5. Switch Controller

This section puts forward an approach attempting to avoid the above singular zone
by switching to another controller when the state is near the singular curve.

Though the previous analysis showed that yaw–position output-based feedback lin-
earization introduces a singular zone, attitude–altitude output-based (φ,θ,ψ,z) feedback
linearization does not (see Reference [32]). Inspired by this, we replace the control rule near
the singular area.

As illustrated in Figure 4, the attitude lies either within the purple zone or the yellow
zone during the entire flight based on the independent output choice (x, y, z,ψ). Crossing
the singular curve from the yellow zone to the purple zone is prohibited and vice versa.
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Figure 4. The independent output choice (x, y, z,ψ) introduces the singular curve.

To avoid touching the singular curve, we change the controller in some attitudes
(Figure 5). In the orange zone, we use another independent output choice (φ, θ,ψ, z) in the
feedback linearization, while the independent output choice for the rest of the attitude area
(yellow zone) remains unchanged (x, y, z,ψ). Based on this, the singular curve in Figure 4
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is eliminated in the entire attitude area. The attitude is allowed to change within the yellow
or orange areas or to cross from one to the other.
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Figure 5. The independent output choice in the orange area is (φ, θ,ψ, z). The independent output
choice in the yellow area is (x, y, z,ψ).

The attitude zone where the output (φ, θ,ψ, z) is chosen, the orange zone in Figure 5,
is determined by {

−0.5 6 θ 6 0.5
−π

2 6 φ 6 0.2
. (47)

The Simulink block is pictured in Figure 6, where the relevant parts are noted. The
parameters of the quadrotor in the simulator are specified in Appendix A (Table A1). The
adopted controllers are PD controllers for both the altitude–attitude-linearized system and
the position–yaw-linearized system. The design and the parameters of the PD controller
are demonstrated in Appendix B.
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The initial attitude (roll, pitch, and yaw) is set as: (φ0, θ0,ψ0) = (0.5, 0.5, 0).



Drones 2022, 6, 84 12 of 18

In the first experiment, the position reference and the attitude reference for two
controllers are marked in Figure 7. The altitude–attitude reference is set as (zr,φr, θr,ψr) =
(0, 0.01, 0, 0). The altitude reference and the yaw reference in the independent choice
(xr, yr, zr,ψr) are set as zr = ψr = 0, while xr and yr are specified in Appendix B.
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Figure 8. The attitude history of the experiment (results).

In the second experiment, the attitude is expected to be stabilized at
(
φ f , θ f

)
=

(0.5,−0.5). Thus, we set the references for both controllers in Figure 9. The altitude–
attitude reference is set as (zr,φr, θr,ψr) = (0,−0.5, 0.5, 0). The altitude reference and the
yaw reference in the independent choice (xr, yr, zr,ψr) are set as zr = ψr = 0.
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Figure 10 sketches the results of the attitude trajectory.
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Figure 10. The Simulink diagram for the modified controller equipped system.

The attitude witnesses several switches in controllers before finally becoming unstable.
Although the altitude–attitude control zone (orange zone) tries to let the attitude reach
(φf, θf) = (0.5,−0.5), the altitude–attitude controller is switched to the yaw–position
controller once the attitude escapes the orange zone. The yaw–position controller has no
effect on driving the attitude roll and pitch, φ and θ. Thus, the attitude in the yellow zone
can escape the area of interest, φ ∈ (−π/2,π/2), θ ∈ (−π/2,π/2), becoming unstable.
The relevant attitude signal history is plotted in Figure 11.
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6. Conclusions and Discussion

The decoupling matrix in feedback linearization is not always invertible in the entire
attitude zone for the yaw–position output combination. Thus, the relevant controller risks
encountering the singular decoupling matrix that causes the failure in controlling.

The attitude causing the singularity in the decoupling matrix was presented analyti-
cally and visualized in this research.

Substituting part of the yaw–position-based feedback linearization with altitude–
attitude-based feedback linearization can avoid the noninvertible problem. The attitude is
finally stabilized within the region governed by the altitude–attitude controller. Attempts
in driving the attitude to a reference inside the region dominated by the yaw–position
controller can be unstable and was not realized in this research.

Figure 12 demonstrates the statue of this work compared with other research dis-
cussing the property of the decoupling matrix in the quadrotor while implementing the
exact linearization.
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There are still several questions worth exploring.
Although we report the singular problem in the decoupling matrix in the yaw–position

choice in the outputs, the properties of the decoupling matrices in several other combina-
tions of independent outputs are still waiting to be uncovered by research. Actually, there
are 15 (C4

6) combinations in total if we pick four outputs as the independent controlled
variables. The current research only explored two of them.

Moreover, the number of the combinations increase if we only pick three outputs [35]
as the independent controlled variables. There could be 20 (C3

6) cases in total, most of which
have not been given attention yet.

Discussing the whole picture of the property of the decoupling matrix for each case is
helpful for other researchers working on feedback linearization.
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Further, we did not successfully stabilize the attitude in the attitude zone governed by
the yaw–position controller while applying the exact feedback linearization. Designing a
control method that directly avoids this singular space is also a further step.
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Appendix A

The parameters of the quadrotor in our simulator are specified in the following table
(Table A1).

Table A1. The parameters of the quadrotor in the simulator.

Parameter Value

mass 0.429 kg
gravitational acceleration 9.8 m/s2

length of the arm 0.1785 m

moment of inertia of the body
 2.237568

2.985236
4.80374

·10−3 kg·m2

coefficient of the thrust 8.048× 10−4 N·s2/rad2

coefficient of the drag moment 8.048× 10−4 N·m·s2/rad2

Appendix B

The controllers designed to control the two linearized systems are detailed here.
The PD controllers are developed for the position–yaw-linearized system as

u1
u2
u3
u4

 = ∆(x)−1·




xd
(4)

yd
(4)

zd
(4)

..
ψd

−Ma(x)

 (A1)

where xd
(4), yd

(4), zd
(4), and

..
ψd are defined as


xd

(4)

yd
(4)

zd
(4)

..
ψd

 =


xr

(4)

yr
(4)

zr
(4)

..
ψr

+ k1·




..
xr..
yr..
zr
0

−


..
x
..
y
..
z
0


+ k2·




..
xr..
yr..
zr
0

−


..
x
..
y
..
z
0


+ k3·




.
xr.
yr.
zr.
ψr

−


.
x
.
y
.
z
.
ψ


+ k4·




xr
yr
zr
ψr

−


x
y
z
ψ


 (A2)

where

k1 =


10

10
10

0

, (A3)
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k2 =


20

20
20

0

, (A4)

k3 =


50

50
50

5

, (A5)

k4 =


500

500
500

5

, (A6)

xr, yr, zr, and ψr are the references.
xr and yr in the position references are set as 1− cos(t/20) and − sin(t/20), respec-

tively. This indicates that the quadrotor will follow a circle if it is stabilized by the domi-
nance of the position–yaw-linearized controller.

The remaining references (zr and ψr) are set according to the experiment and are
explained in Section 5.

The stability proof for linear systems applies here. It can be found if one substitutes
(A1)–(A6) into Equation (20). Being stable also requires the decoupling matrix to be
invertible, which is the main focus of this research.

As for the attitude–altitude-linearized controller, PD controllers also work with slight
changes (lower order). The PD controllers for the attitude–altitude-linearized system are

..
zd..
φd..
θd..
ψd

 =


..
zr..
φr..
θr..
ψr

+ kp1·




.
zr.
φr.
θr.
ψr

−


.
z
.
φ
.
θ
.
ψ


+ kp2·




zr
φr
θr
ψr

−


z
φ

θ

ψ


 (A7)

where

kp1 =


10

10
10

10

, (A8)

kp2 =


10

10
10

10

, (A9)

zr, φr, θr, and ψr are the references. They are set according to the experiment and are
specified in Section 5.
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