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Abstract: As combat missions become increasingly complex in both space and time, cross-regional
joint operations (CRJO) is becoming an overwhelming trend in modern air warfare. How to allocate
resources and missions prior to the operation becomes a central issue to improve the combat efficiency.
In this paper, we focus on the cooperative mission planning of multiple heterogeneous unmanned
aerial vehicles (UAVs) in a CRJO. A multi-objective optimization problem is presented with the aim
of minimizing the makespan while maximizing the value expectation obtained. Moreover, it is not
mandatory for each UAV to return exactly to the base which it takes off. Furthermore, in addition to
the constraints commonly found in UAV mission assignment problems, the ammunition inventory at
each base is also taken into account. To solve such a problem, we developed an improved genetic
algorithm (IGA) with a novel chromosome encoding format. It can determine the number of attacks
on a given target based on the expectations obtained, rather than being predetermined. Specifically,
an efficient logic-based unlocking mechanism is designed for the crossover and mutation operations
in the algorithm. Simulation results show that the developed IGA can efficiently solve the considered
problem. Through numerical experimental comparisons, the algorithm proposed in this work is
superior to other existing IGA-like algorithms in terms of computational efficiency.

Keywords: heterogeneous UAVs; cross-regional joint operation; task assignment; multi-objective
optimization; ammunition inventory; improved genetic algorithm

1. Introduction

Due to the advantages of powerful execution and low risk to human life, UAVs have
been widely used for various military purposes such as reconnaissance, precision strike,
surveillance, communication relay, decoy, etc. [1]. Compared with a single UAV, UAVs
with different capacities can achieve more complicated mission goals through coopera-
tion. Nowadays, there is a growing consensus that mission planning, which is generally
composed of task assignment and path planning, should be taken as the core technique to
improve the combat efficiency [2,3].

The task assignment problem is essentially a nondeterministic polynomial hard (NP-
hard) problem [4], which suggests that the scale of the problem severely impacts the
solving process. The multi-UAV task assignment problem can generally be modeled as a
mixed-integer linear programming (MILP), and commonly used models include vehicle
routing problem (VRP) [5], multiple traveling salesman problem (MTSP) [6], multiple
processors resource allocation (MPRA) [7], etc. Complicated constraints are embedded in
the models to give an accurate description of the mission. The exhaustive enumerations
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of MILP and the tree search method lead to prohibitive computational complexity when
handling large and complex missions [8,9]. Instead, due to the powerful optimality-
seeking ability and extraordinary computational stability, swarm intelligence algorithms
(SIAs) have become the mainstream. Commonly used SIAs in these fields include particle
swarm optimization (PSO) [10], genetic algorithm (GA) [11,12], ant colony optimization
(ACO) [13,14], reactive tabu search algorithm [15] and their variations. In order to improve
the solving performance, many studies combine multiple SIAs to construct novel compound
methods [16,17]. In addition to the centralized algorithms mentioned above, distributed
task assignment methods such as contract net [18], auction methods [19] are also popular
for their advantages in real-time implementation.

When the factors considered are different, the model of the task assignment problem
and the corresponding algorithm are different. These factors may include the types of
UAVs, the types of tasks, and the types of constraints, etc. For the multi-UAV collaborative
task assignment problem, Jia et al. [20] proposed the two-parent genetic algorithm based
on the given coding scheme and a sequence number cross method. Considering the task
coupling constraints, the resource constraints and the strict task precedence constraint
comprehensively, Ye et al. [21] established a cooperative multiple task assignment model
to minimize the makespan, and an adaptive genetic algorithm is developed to address the
problem (note that makespan is often used in scheduling problems, where it represents
the total execution time of UAV tasks). Taking the benefits of UAVs, the time required to
execute tasks and the task load into account, Yang et al. [22] proposed a hybrid task allo-
cation method for the multi-UAV cooperative task allocation, where the quantum genetic
algorithm, the grouping optimization strategy and the simulated annealing criterion are
considered in the proposed method. Zhen et al. [23] proposed an intelligent self-organized
algorithm to solve the cooperative task planning problem, which the maneuverability con-
straints, the collision avoidance constraints, the threat avoidance constraints and the range
constraints are considered. Environmental uncertainty also affects models and algorithms.
Bertuccelli et al. [24] studied the real-time multi-UAV task assignment in dynamic and
uncertain environment, and analyzed task assignment for heterogeneous air vehicles using
a guaranteed conflict-free assignment algorithm. Considering the stochastic velocities of
UAVs, Jia et al. [25] studied the cooperative multiple task assignment problem, which is
formulated as a two-stage stochastic programming model, and proposed an improved
genetic algorithm. A task assignment problem that many criteria values essential to task
assignment were random or fuzzy was studied in the literature [26], and a novel approach
based on stochastic multicriteria acceptability analysis method was proposed in this study.
There are many other related studies on the consideration of uncertain factors in the task
assignment of multiple UAVs [27–30], which will not be described in detail here.

It should be noted that general crossover and mutation operations in SIAs are likely to
generate chromosome with constraint violation, which results in the deadlock (or “lock”
for short) phenomenon. Each algorithm has its mechanism to fix these infeasible solu-
tions, known as the unlocking process. During the implementation, a large portion of
computational time is consumed by the unlocking process. For example, unlocking process
is achieved by keeping swapping two columns of the chromosome randomly until all
constraints are satisfied in [31]. It results in an unacceptable computational burden as the
problem scale increases. Hence, developing efficient unlock mechanisms is significantly
beneficial for improving the computational efficiency.

Considering the complexity in the both spatial and time domain of modern air warfare,
CRJOs are frequently executed to cover the battlefield with a vast range. It may require
heterogeneous UAVs distributed at different bases to constitute a fleet or a swarm to achieve
certain mission goals cooperatively. For example, aiming to attack an island, the carrier-based
combat UAVs on the sea and the bomber UAVs at home should cooperate, where the former
tries to win the air superiority and the latter executes bombing missions. However, task as-
signment problems under the multi-base scenario are rarely seen in previous research. Hence,
in this paper, we address the cooperative task assignment for multiple heterogeneous UAVs in
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CRJOs by an IGA. First, the task assignment problem is formulated into a multi-objective MILP.
In the developed mathematical model, heterogeneous UAVs set off from different airports
and they are not required to return exactly to the airport they depart. Three types of tasks
(i.e., classification, attack, and verification) are expected to be executed sequentially on each
target. Each target is prescribed with a fixed value, and it allows multiple attacks on a certain
target. Two contradictory objectives, i.e., minimization of execution time and maximization
of obtained value expectation are set. Practical constraints such as maximum ammunition
load, time constraints, and so on are imposed. In addition, the ammunition inventory of each
airport, which is rarely seen in the existing literature, is also taken into consideration. To solve
the problem, an IGA is developed. It deals with various constraints in the formulated problem
through a unique encoding of chromosomes and specifically designed resource constraint
sets (RCSs). Special crossover and mutation operations can adaptively adjust the number of
attacks on the target according to the fitness function. Furthermore, the logic-based unlocking
method greatly reduces the time consumption of unlocking process and effectively improves
the efficiency of the algorithm.

To the best of our knowledge, this is the first paper to address the problem of multi-
heterogeneous UAV mission assignment with multiple airports and munitions inventory con-
straints. The main contributions of this paper can be summarized as follows: (i) a novel IGA
with a special encoding format and genetic operations is developed to solve the problem; (ii) an
efficient logic-based unlocking mechanism is designed by using RCS; and (iii) the number of
attacks on the target can be determined by the IGA without the need of prior setting.

The remainder of the paper is organized as follows. Section 2 describes the multi-airport
task assignment problem. Section 3 establishes the corresponding MILP model. An IGA to
solve the problem is developed in Section 4 and then validated in Section 5. Finally, Section
6 concludes the paper.

2. Problem Description

Suppose that NT detected targets with known positions in the battlefield. Let

T := {T1, T2, · · · , TNT}

denote the set of targets. Target Tk is assigned with a value ValueTk . For a target, a series
of sub-tasks need to be performed on it until the desired goal is reached. Each target
contains 3 types of tasks, that is, classification task, attack task and verification task. Let k
represent the task type, k = 1, 2, 3, respectively, represent classification task, attack task and
verification task. In particular, let k = 0 represents that the UAV returns to the airport. In
addition, Nk represents the number of task types, thus, Nk = 4.

For simplicity of description, the classification, attack and verification tasks are abbrevi-
ated as C, A, V, respectively. Let STj be the task set of target Tj,

STj := {C, A1, A2, · · · , A
N j

A
, V}, j = 1, 2, · · · , NT ,

where N j
A is the number of attack tasks of target Tj, which depends on the value of the

target Tj. In this paper, the values of N j
A, j = 1, 2, · · · , NT are quantities to be optimized

rather than being prescribed. Since multiple airports are considered, we suppose that

P := {P1, P2, · · · , PNP}

denote the set of airports, where Pm, m = 1, 2, · · · , NP is the m-th airport.
According to the actual situation, for the same target, classification, attack and verifi-

cation tasks should be executed sequentially. Let tTj
C , tTj

Al
(l = 1, 2, · · · , N j

A), tTj
V denote the

execution time of the task C, Al , V of target Tj, respectively. Then, we have,

tTj
C < tTj

A , t̂Tj
A < tTj

V , j = 1, 2, · · · , NT ,
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where tTj
A := min{tTj

Al
|l = 1, 2, · · · , N j

A}, t̂Tj
A := max{tTj

Al
|l = 1, 2, · · · , N j

A}.
Three types of UAVs, i.e., surveillance UAV, combat UAV and munition UAV cooperate

to conduct the CRJO. Among them, surveillance UAVs can perform the classification and
verification tasks, combat UAVs can perform all types of tasks, and munition UAVs can
only perform the attack task. Let

U := {U1, U2, · · · , UNU}

denote the set of UAVs, where Ui is the i-th UAV. The tasks assigned to a certain UAV
constitute the task set of the UAV. Each UAV loads ammunition at the airport and then
takes off to perform its tasks. Suppose that the task set of UAV Ui is

MUi := {TUi
1 , TUi

2 , · · · , TUi
NUi
},

where TUi
n , n = 1, 2, · · · , NUi is the n-th task of UAV Ui. Each UAV completes the tasks one

by one in the order of task assignment. Let tUi
n (n = 1, 2, · · · , NUi ) denote the execution

time of the n-th task of UAV Ui. Then, we have,

tUi
1 < tUi

2 < · · · < tUi
n < · · · < tUi

NUi
,, i = 1, 2, · · · , NU .

There is the possibility, in practical situations, that a UAV does not completely destroy
a target by one attack. In this paper, we assume that each UAV has different success proba-
bilities when attacking different targets. Let the probability of target Tj (j = 1, 2, · · · , NT)
being destroyed by UAV Ui (i = 1, 2, · · · , NU) is written as PSi,j. We only consider the
success probability of the attack task.In addition, for the cross-regional joint operations
problem, we also make the following assumptions:

1. To reduce the complexity of the problem, the environment considered is a two-
dimensional plane;

2. UAVs all fly at different altitudes, and there will be no collision even if the trajectories
overlap;

3. The success rate in performing classification and verification tasks is 100%.

For the above problem description and assumptions, Figure 1 shows an example of
cross-regional joint operations for 2 airports, 2 targets and 3 UAVs. Among them, U1, U2
and U3 are the survival UAV, munition UAV and combat UAV, respectively.

Figure 1. An illustration of cross-regional joint operations.
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3. Mathematical Model
3.1. Map Discretization

The connected digraph is introduced for map discretization. The locations of targets
and airports, and the values of heading angles are involved in the information of the
vertices. A UAV can approach or leave an airport or a target with different orientations. In
order to facilitate the calculation, the continuous heading angle is discretized. The heading
angle is discretized by using the form of equal division, and the set of discretized heading
angles is

Ψ = {ψi|ψi =
2πi
Nψ

, i = 0, 1, · · · , Nψ − 1},

where Nψ represents the number of possible heading angles.
Based on the above description, the set of vertices is

V =
{

P1, P2, · · · , Pl , · · · , PNP , T1, T2, · · · , Tj, · · · , TNT

}
,

where l = 1, 2, · · · , NP, j = 1, 2, · · · , NT . Let NV is the number of vertices. Obviously, one
has NV = NP + NT . The set of edges is

E = {(Vi, Vj)|Vi, Vj ∈ V, i, j = 0, 1, · · · , NV , i 6= j},

where Vi is the i-th element of V. Then, the connected digraph is given as

CG = {V, E}.

3.2. Objective Function

In the task assignment problem model, there are two parts are considered in the
objective function. These two parts are the makespan and the expectation of value obtained,
and the details are given as follows.

(1) The makespan

When evaluating a task assignment plan, minimizing the makespan is the primal
indicator. The makespan depends on the maximum completion time among all UAVs, and
it can be expressed as

J1 = max
u∈U
{

Nk

∑
k=1

NV

∑
i=1

NV

∑
j=1

Nψ−1

∑̂
j=0

Nψ−1

∑̂
i=0

Xu,k
((vi ,ψî),(vj ,ψĵ))

· du
((vi ,ψî),(vj ,ψĵ))

/Velocityu}, (1)

where Xu,k
((vi ,ψi),(vj ,ψj))

∈ {0, 1}, ∀vi, vj ∈ V, ∀ψî, ψĵ ∈ Ψ, u ∈ U is a binary decision variable.

If UAV Uu executes task type k from (vi, ψî) to (vj, ψĵ), then Xu,k
((vi ,ψî),(vj ,ψĵ))

= 1; otherwise,

Xu,k
((vi ,ψî),(vj ,ψĵ))

= 0. And du
((vi ,ψî),(vj ,ψĵ))

is the the distance of the Dubins path of UAV

Uu from (vj, ψĵ) to (vj, ψĵ). For more information about Dubins path, please refer to the
literature [32]. Velocityu represents the speed of UAV Uu.

(2) The expectation of the value obtained

Maximizing the expectation of the value obtained is another important indicator to
evaluate a task assignment scheme. Here, we try to minimize the opposite of the expectation
of the value obtained,

J2 = − ∑
u∈U

NV

∑
l=1

NV

∑
j=1

Nψ−1

∑̂
j=0

Nψ−1

∑̂
i=0

(Xu,2
((vi ,ψî),(vj ,ψĵ))

·ValueTj · PSu,j). (2)

This is a multi-objective optimization problem. The objective function we expect is
the weighted sum of J1 and J2. The orders of magnitude of two objectives can be of large
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difference, and direct weighted sum is meaningless. In this paper, the standard values
standard1 and standard2 are taken to make J1 and J2 dimensionless. The specific form is
given as follows,

min J = α · J1/standard1 + β · J2/standard2, (3)

where α, β are the weights that satisfy α + β = 1.

Remark 1. How to select the standard value in the algorithm is described in detail in Section 4.4.2
of this article. For some reasons, the fitness function in the actual calculation cannot directly take
the objective function, but requires operations such as translation. Related details are also provided
in Section 4.4.2.

3.3. Constraints

Based on the actual situation and the multi-airport situation, the following constraints
need to be considered in the task assignment problem.

(1) The task requirement constraint.

Multi-UAV cooperative constraints are common constraints in the UAV task assignment
problem. Based on the above description, UAVs are required to perform all tasks in
coordination, that is, each task will be assigned to one UAV to perform. The mathematical
representation of this constraint is given as follows,

NU

∑
u=1

Nk

∑
k=1

NV

∑
i=1

Nψ−1

∑̂
i=0

Nψ−1

∑̂
j=0

Xu,k
((vi ,ψî),(Tt ,ψĵ))

= NTt , t = 1, 2, · · · , NT . (4)

NTt represents the number of tasks that target t needs to perform. In some cases NTt may
be 0, such as the ammunition is insufficient or the target value is not high enough.

(2) The ammunition load constraints.

Due to various reasons, the amount of ammunition carried by the UAV is limited, so
the number of attack tasks of the UAV cannot exceed its ammunition load. This constraint
can be modeled as follows,

NV

∑
i=1

NV

∑
j=1

Nψ−1

∑̂
i=0

Nψ−1

∑̂
j=0

Xu,2
((vi ,ψî),(vj ,ψĵ))

≤ na
u, ∀u ∈ U, (5)

where na
u represents the ammunition capacity of UAV Uu. In addition, in order to reduce

the risk of attack task and increase the value expectation, we often stipulate that the same
UAV will only attack the same target once.

(3) The time constraints.

In this article, each target contains three types of tasks. Based on the above description,
these three types of tasks for the same target must be completed in order.

tTt
C < tTt

A < tTt
V , t = 1, 2, · · · , NT . (6)

When hitting the same target multiple times, tTt
A is not just an element. It will be a set

TTt
A = {tTt

A1
, . . . , tTt

An
}. Under this circumstance, we only need to ensure that the following

formula holds.

tTt
C < min(TTt

A ) and max(TTt
A ) < tTt

V , t = 1, 2, · · · , NT . (7)
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(4) The UAVs recycling constraints.

In the actual battlefield, UAVs that have completed their tasks need to return to the
airport. There are multiple airports considered in this paper, such as aircraft carrier for-
mations and island bases. Therefore, for the multi-airport problem, any UAV that departs
from any airport needs to return to any airport in the end. The mathematical representation
of this constraint is given as follows,

NP

∑
n=1

Nk

∑
k=1

NT Nψ

∑
j=1

Nψ−1

∑
l=0

Xu,k
((Pn ,ψPn ),(vj ,ψl))

+
NP

∑
n=1

Nk

∑
k=1

NT Nψ

∑
j=1

Nψ−1

∑
l=0

Xu,k
((vj ,ψl),(Pn ,ψPn ))

= 2, ∀u ∈ U.

(8)

(5) The multi-airport ammunition constraints.

In the multi-airport problem, the number of ammunition at each airport is limited, so
the task assignment problem involves the multi-airport ammunition constraint. Therefore,
the number of tasks performed by UAVs at each airport cannot exceed the total number of
ammunition at that airport. That is,

NV

∑
i=1

NV

∑
j=1

Nψ−1

∑̂
i=0

Nψ−1

∑̂
j=0

Xu,2
((vi ,ψî),(vj ,ψĵ))

≤ na
p, u ∈ Pp (9)

where na
p, p = 1, 2, · · · , NP represents the number of ammunition of the p-th airport.

3.4. Formulation of the Optimization Problem

Based on the above description, the model of the task assignment problem involving
multiple airports is described as follows,

minJ = α · J1/standard1 + β · J2/standard2

s.t.
NU

∑
u=1

Nk

∑
k=1

NV

∑
i=1

Nψ−1

∑̂
i=0

Nψ−1

∑̂
j=0

Xu,k
((vi ,ψî),(Tt ,ψĵ))

= NTt , t = 1, 2, · · · , NT ,

NV

∑
i=1

NV

∑
j=1

Nψ−1

∑̂
i=0

Nψ−1

∑̂
j=0

Xu,2
((vi ,ψî),(vj ,ψĵ))

≤ na
u, ∀u ∈ U,

tTt
C < tTt

A < tTt
V , t = 1, 2, · · · , NT ,

NP

∑
n=1

Nk

∑
k=1

NT Nψ

∑
j=1

Nψ−1

∑
l=0

Xu,k
((Pn ,ψPn ),(vj ,ψl))

+
NP

∑
n=1

Nk

∑
k=1

NT Nψ

∑
j=1

Nψ−1

∑
l=0

Xu,k
((vj ,ψl),(Pn ,ψPn ))

= 2, ∀u ∈ U,

NV

∑
i=1

NV

∑
j=1

Nψ−1

∑̂
i=0

Nψ−1

∑̂
j=0

Xu,2
((vi ,ψî),(vj ,ψĵ))

≤ na
p, u ∈ Pp,

Xu,k
((vi ,ψi),(vj ,ψj))

∈ {0, 1}, ∀vi, vj ∈ V, ∀ψî, ψĵ ∈ Ψ, ∀u ∈ U.

(10)

4. An IGA with Flexible Unlock Mechanism
4.1. Chromosome Encoding

According to the above description, in order to make the genetic algorithm suitable for
solving the multi-airport task assignment problem, the algorithm needs to be modified.
The modified chromosome coding is given in this section.
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4.1.1. Encoding Format

In the original genetic algorithm, each chromosome represents a feasible solution.
Similarly, this method is also used in the improved algorithm. We know that although the
task assignment problem is an NP-hard problem, it is essentially to find the corresponding
relationship between tasks and UAVs and the sequence of these corresponding relationships.
Therefore, each given plan contains two aspects: 1. the corresponding relationship between
UAVs and tasks; 2. the order in which UAVs perform tasks. Based on this idea, the
following chromosome fragment can be constructed.

Figure 2 is a chromosome fragment, and the third row represents the number of the UAV.
Figure 2 represents the plan of UAV U1 in the chromosome. A complete plan is executed by
multiple UAVs collaboratively, so a complete chromosome contains several fragments similar
to Figure 1. In addition, in each fragment, the first and second rows are the task number and
task type, respectively. The information in the first three rows forms the above-mentioned
corresponding relationship between UAVs and tasks. The order of tasks corresponding to
the chromosome from left to right is the order of execution of tasks. Because the distance
is calculated by using the Dubins path, the information in Dubins path is added to the
chromosome. The fourth row is the angle when the UAV approaches the target. The fifth and
sixth rows are the angles of the UAV when it leaves and returns to the airport. In addition, the
background of multiple airports also makes the chromosome need to include the necessary
airport information. The seventh row is the number of the airport where the UAV returns,
and the eighth row is the number of the airport where the UAV departs, and the ninth row is
the location of the UAV in the airport. For example, in Figure 2, the eighth and ninth rows
in the chromosome indicate that UAV U1 is at position 1 of airport 1. If UAV U2 is also at
Airport 1, then the values of the eighth and ninth rows corresponding to the UAV U2 are 1
and 2, respectively. This agreement is to facilitate program calculations. Figure 3 is a complete
chromosome,which consists of several fragments illustrated in Figure 2.

Figure 2. Chromosome fragment.

Figure 3. Chromosome.

4.1.2. Initialization Strategy

Because the CRJO problem contains many constraints, there are many infeasible solu-
tions in our randomly generated chromosomes, and a large number of infeasible solutions
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will affect the speed of algorithm convergence. Therefore, in the process of generating
chromosomes, we must avoid some infeasible solutions. A resource constraint set is defined
in the algorithm of this paper, which is generated according to the ammunition reserves
owned by the airport and the docked UAVs, and represents the capabilities of each airport.
Figure 4 shows the process of assigning task k to execute the UAV in the encoding of
chromosomes. The advantage of assigning tasks through resource constraint set encoding
is that the resulting chromosomes satisfy resource constraints. Therefore, the resource
constraint set needs to be used in the subsequent cross-mutation process.

Figure 4. Chromosome initialization process.

Figure 4 completes the coding of lines 1–3 of the initial chromosome, various head-
ing angles in lines 4–6 are randomly given, and the airport information in lines 7–9 is
initially determined. The chromosomes in Figure 3 are obtained by arranging the generated
chromosomes according to the UAV number. Since this article considers the situation of
ammunition scarcity, first, we need to judge the size of na

e = max{airport total ammunition,
sum of all UAV loads} and NT . If the ammunition is sufficient, assign the UAV to the task
of the NT targets, otherwise, select na

e targets by roulette according to the target value, and
assign the UAV to perform their tasks.

4.2. Crossover Operator

The crossover operator is an important part of the genetic algorithm. In essence, the
crossover operation is to exchange the information of the two chromosomes. This paper,
it is to exchange the correspondence between the tasks in the two schemes and the UAV.
First, this paper uses the roulette algorithm to select two good parents according to the
fitness function value. Second, a single-point crossover method is used to randomly select
a point from parent 1 as the crossover starting point. All information from the beginning to
the end of parent 1 is exchanged with the corresponding information of parent 2. Since the
attack task will involve resource constraints, the crossover of attack information is different
from that of classification evaluation.

Furthermore, under the background assumptions of this paper, the number of attacks
against the target is no longer deterministic. In the initial process of chromosomes, the
number of attacks on the target is 1, but in the subsequent calculation, the algorithm
will determine the number of attacks on the target by itself according to the value of the
fitness function. Therefore, this will lead to the phenomenon of crossover operation of
chromosomes of different sizes during the crossover process, and changes in chromosome
dimensions may also occur during the crossover process. The crossover method in this
paper takes the dimension of the first chromosome as a reference, so different dimensions
and changes in dimensions will not affect the crossover operation.

4.2.1. Crossover of Attack Genes

This section gives the specific operation of single-point crossover of attack genes. Since
the attack task involves ammunition constraints, the crossover operation of attack genes
will be divided into two cases by discussing whether the attackable UAV set is empty or
not. Because the crossover process involves the crossover of chromosomes of different
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dimensions, the set of attackable UAVs corresponding to one chromosome may be empty,
while the other is not. In this case, the chromosome corresponding to the empty set is
defined as parent 1. As long as the attackable UAV set of parent 1 is empty, the attackable
UAV set is considered empty (the attackable UAV set corresponding to another chromosome
may not be empty at this time). We call the constraint that the same target can only be
attacked once by the same UAV as constraint A. A detailed description of the single-point
crossover of the attack gene is as follows.

• Attackable set is not empty.

If the attackable set is not empty, then the tasks information remain unchanged, and
the exchange of the information of the two chromosomes is achieved by exchanging
the information of the UAVs performing the attack tasks in the two chromosomes. The
specific steps are shown in Algorithm 1, In addition, Table 1 is a notation description of the
algorithm in this section.

A simple example is given to assist readers in understanding the operation flow of the
crossover operation when the set of attackable UAVs is not empty. In this example, there
are 2 airports, 3 UAVs, and 2 targets. First, two parents are obtained through the roulette
algorithm, as shown in the following figure.

Table 1. Parameters in the Crossover Algorithm.

Notation Explanation

chromosomei Chromosome of parent i.
attackableUAVi The set of attackable UAVs for parent i.
detectableUAVi The set of detectable UAVs for parent i.

Hni The set of heading angles of parent i.
Tt0 In chromosome 1, the cross column target is marked as Tt0 .

Uu0
In chromosome 1, the UAV performing the cross-column
task is denoted as Uu0

.

CA1
In Chromosome 1, except for Tt0 , the other targets that were
attacked were executed.

CA2 {Tt0 }

CB1
In chromosome 2, except for the target of the attack task executed
by Uu0 , other targets are executed the attack task.

CB2 In Chromosome 2, the target of the attack mission executed by Uu0 .
CI1 Intersection of CA1 and CB2.
CI2 Intersection of CA2 and CB1.

As shown in the Figure 5, the orange column in parent 1 is the column for single-point
crossover operation, and the UAV performing the attack task in this column is U2. The
attack resource constraint set of parent 1 is attackableUAV1 = {1, 2, 3}, it means U1, U2, U3
that can also perform attack tasks under the task assignment plan of parent 1. The columns
of attack tasks in Parent 2 is marked in green in the Figure 5, and it is represented by a set
as attack2 = {1, 2}. The attack resource constraint set of parent 2 can also be expressed as
attackableUAV2 = {1, 2, 3}. Remove 2 from attackableUAV1 = {1, 2, 3}, and then take
the intersection with attack2, which is expressed as I = attackableUAV1/{2} ∩ attack2 =
{1}. Because 1 is in attackableUAV2, so the number in the red position of parent 1 can be
exchanged with the number in the blue position of parent 2 in the Figure 5.

After swapping the UAVs of the crossed columns of the two chromosomes, it is also
necessary to swap the approach angle and other information, and finally get the result
shown in the Figure 6. This is the process of single-point crossover operation of attack
genes when resources are sufficient.
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Algorithm 1 Crossover operations where the attackable set is not empty
Input:
chromosome1 = c1, attackableUAV1 = aA1,
chromosome2 = c2, attackableUAV2 = aA2
Output:
c1, aA1, c2, aA2

1: Find out all the attack tasks of c2, marked as attack2.
2: Remove the UAV number a of the exchange line of c1 from aA1. In addition, let

I = aA1 ∩ attack2.
3: if I 6= 0 then
4: Randomly select an element b from I.
5: while b does not satisfy constraintA do
6: Randomly select an element b from I.
7: if a is not in aA2 or a does not satisfy constraintA then
8: Randomly select an element c from aA2.
9: a = c

10: Change b into the cross column of c1, and change a into the corresponding column
of c2.

11: Update aA1 and aA2.
12: return c1, aA1, c2, aA2

Initial parent1 Initial parent2

Figure 5. The initial chromosome when the attackable set is not empty.

Parent 1 Parent 2

Figure 6. Result when the attackable set is not empty.

• Attackable set is empty.

When the attackable set is empty, then all the ammunition are allocated, so the operation
of changing the UAV cannot be performed. According to the previous description, the
nature of crossover operation is to exchange the corresponding relationship between the
targets and the UAVs in the two chromosomes. Therefore, when the attack set is empty, the
UAVs that perform the attack task can be fixed, and the targets being attacked in the two
parents can be exchanged.

Table 1 is a notation description of the algorithm in this section. If CI1 is not an empty
set, when the crossover operation is performed on chromosome 1 and chromosome 2,
chromosome 1 can refer to the information of chromosome 2 for internal exchange. Internal
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exchange is a random selection of an element of CI1, which is a target that the UAV Uu0

did not perform on chromosome 1, but according to the definition of the set, this target is
chromosome 2 The target of the attack mission performed by Uu0 . Exchange this target
with the target executed by Uu0 in chromosome 1, so as to indirectly achieve the purpose
of exchanging information with chromosome 2. Similarly, if CI2 is not an empty set,
chromosome 2 can also refer to the information of chromosome 1 for internal exchange. We
refer to the restriction of internal exchange as Constraint B.

The specific steps are shown in Algorithm 2.

Algorithm 2 Crossover operations where the attack set is empty
Input:
chromosome1 = c1, chromosome2 = c2,
Output:
c1, c2

1: Calculate CA1,CA2,CB1,CB2 according to c1, c2.
2: if CB2 6= ∅ then
3: Calculate CI1,CI2.
4: Complete = 0
5: while Complete = 0 do
6: if CI1 6= ∅ and CI1 6= ∅ then
7: Randomly select an element a from CI1, elect an element b from CI2.
8: if a, b satisfies constraintB then
9: c1 and c2 are exchanged internally accordingly.

10: Complete = 1
11: else
12: Remove the corresponding elements from CI1,CI2.
13: if CI1 6= ∅ and CI2 = ∅ then
14: Randomly select an element a from CI1.
15: if a satisfies constraintB then
16: c1 exchanges internally.
17: Replace c1 cross column elements into c2, and adjust c2.
18: Complete = 1
19: else
20: Remove a from CI1.
21: if CI1 = ∅ and CI2 6= ∅ then
22: Randomly select an element b from C2.
23: Traverse CB2 if c2 can be exchanged internally, record f lag = 1;
24: if f lag = 1 then
25: c2 exchanges internally.
26: Replace c2 cross column elements into c1, and adjust c1.
27: Complete = 1
28: else
29: Remove the corresponding elements from CI2.
30: if CI1 = ∅ and CI2 = ∅ then
31: Replace c2 cross column elements into c1, and adjust c1.
32: Replace c1 cross column elements into c2, and adjust c2.
33: Complete = 1
34: return c1, c2
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In order to facilitate readers to understand the above-mentioned crossover process, take
the situation that resources are insufficient as an example to illustrate how the crossover
operation is performed. The example contains 2 airports, 4 targets, 3 UAVs, and each
airport has 1 ammunition. The two parents are given as follows:

The orange column of parent 1 in the Figure 7 is the column where parent 1 performs
single-point crossover operation, and the target number that needs to be changed is marked
in red. Obviously, CA1 = {1}, CA2 = {3}, CB1 = {2}, CB2 = {1}, CI1 = {1}, CI2 = ∅.
The UAV that performs the attack task in the crossed column of parent 1 is U2. In parent
2, we also use orange to mark the column that U2 performs the attack task, and the target
number is marked in blue. As shown in the Figure 7, there is only one column for U2 to
execute the attack, so this column can only be used as the crossed column of parent 2. If there
are multiple columns of U2 to perform the attack task in Parent 2, it is necessary to use the
information of CI1, CI2 to select the crossed columns according to the algorithm steps. In
this example, CI1 = {1} is not empty, so first determine whether parent 1 can be exchanged
internally. We mark the column in parent 1 that performs attack tasks on target 1 in green, and
the target is marked in blue. We found that the numbers in the red block and the blue block in
parent 1 can still satisfy the constraints after being exchanged, so parent 1 can be exchanged
internally. Since CI2 is an empty set, the number 3 can only be exchanged into the blue block
of parent 2 to replace the previous number 1. After this treatment, there are no attack tasks of
target 1 in parent 2, so the classification task and verification task (the gray column in parent
2) are meaningless, so they need to be deleted in the subsequent operations.

Initial parent 1 Initial parent 2

Figure 7. The initial chromosome when the attackable set is empty.

The result obtained after the two chromosomes are crossed is shown in the Figure 8. The
target 1 and target 3 in parent 1 are interchanged. Change the previous target 1 in parent 2
to target 3, because there was no attack task of target 3 in the previous chromosome, so after
adding the attack task of target 3, the classification task and verification task of target 3 are
need to be added, such as the red columns in parent 2. The above process completes the
single-point crossover operation for the attack task in the case of insufficient resources.

Parent 1 Parent 2

Figure 8. Result when the attackable set is empty.
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4.2.2. Crossover Operations of the Classification Genes and the Verification Genes and the
Heading Angles

Because the ammunition constraints do not need to be considered in the classification
and verification tasks, so their crossover method is simple. The crossover operation is
similar to the simplified version of the crossover operation where the attackable set is not
empty. The specific steps are shown in Algorithm 3.

Algorithm 3 Crossover operator for classification and verification tasks
Input:
chromosome1 = c1, detectableUAV1 = dA1,
chromosome2 = c2, detectableUAV2 = dA2
Output:
c1, dA1, c2, dA2

1: Find all UAVs that perform classification and verification tasks in c2, marked as detect2.
2: Remove the UAV number a of the exchange line of c1 from dA1. In addition, let

I = dA1 ∩ detect2.
3: if I 6= ∅ then
4: Randomly select an element b from I.
5: Change b into the cross column of c1, and change a into the corresponding column

of c2.
6: Update dA1 and dA2.
7: return c1, dA1, c2, dA2

In addition, in the fifth step of the crossover operation, the initial and final heading
angles of the two chromosomes need to be exchanged.The specific steps are shown in
Algorithm 4.

Algorithm 4 The heading angle crossover operator
Input:
chromosome1 = c1, chromosome2 = c2
Output:
c1, c2

1: Count the number of heading angles of c1 and c2 and record them as Hn1 and Hn2,
respectively.

2: Hnmin = min{| Hn1 |, | Hn2 |}.
3: R = random(0, Hnmin).
4: Exchange the first R heading angles of c1 and c2.
5: return c1, c2

The above is all about performing crossover operations on a pair of chromosomes.

4.3. Mutation Operator

In this paper, mutation operation can not only prevent the algorithm from falling into
a local optimum, but also change the dimension of chromosomes by adding or deleting
attack tasks for a certain target. The mutation operation mainly consists of two parts. The
probability PMi of the occurrence of a given mutation. When the generated random number
is less than PMi , perform related operations. First of all, to make the attack times of each
solution to the target not fixed, it is necessary to increase or decrease the attack times of a
certain target during the mutation process. Second, to avoid falling into a local optimum,
it is necessary to change the task sequence of the random UAVs in the scheme and the
various heading angles of the randomly selected UAVs.

We want to increase the number of attacks on high-value targets when each target
has value. In addition, we want to drop low value targets when ammo is limited. For
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the selection method of high-value targets, the value of the target is used as the standard,
and high-value targets are selected through roulette. In the case of insufficient resources,
repeated attacks on some high-value targets meant that some low-value targets had to be
abandoned. This paper takes the inverse of the target value and selects low-value targets
through the roulette method. The Algorithm 5 gives the algorithm flow for the first part of
the mutation.

We call the constraint A that the same UAV can only attack the same target once and

the total number of attacks
NA
∑

i=1
min{na

i ,
NUi
∑

j=1
na

j,i}. In addition, we call the attack task whose

resource constraint set can guarantee the increase of the corresponding target as constraint C.
In order to facilitate the readers to understand the above process, a simple example

is given here. The example contains 2 airports, 4 targets, 3 UAVs, and each airport has 1
ammunition. This example is used to illustrate how the algorithm can increase the number
of attacks on a certain target when resources are insufficient. The initial chromosome for
the mutation operation is given in Figure 9.

Figure 9. Initial chromosome for mutation operation.

Algorithm 5 Mutation operations
Input:
chromosome = c, attackableUAV = aA,
Output:
c, aA

1: f lag1 = 0
2: while f lag1 = 0 do
3: Roulette chooses a target a that increases the number of attacks.
4: if a satisfies constraintA. then
5: if a satisfies constraintC. then
6: Increase the number of attacks on a.
7: f lag1 = 1
8: else
9: f lag2 = 0

10: while f lag2 = 0 do
11: Copy c and aA as cc and aAc.
12: Delete an attack task of cc and update aAc.
13: if a and aAc satisfies constraintC. then
14: f lag2 = 1
15: c = cc,aA = aAc.
16: Increase the number of attacks on a.
17: f lag1 = 1
18: Update the heading angle of c.
19: return c, aA
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First, the roulette method is used to select the target that needs to be increased the
number of attacks. Since target 2 has the highest value, it has the greatest probability of
being selected. In this example, the target that needs to be increased the number of attacks
is also target 2. The second step of the algorithm needs to determine whether the target 2
can be attacked again. Although target 2 has been attacked once in the chromosome, there
are two UAVs that can perform the attack task, so in theory, target 2 can still be attacked
again. Because the current resource constraint set is empty, the target of some attack tasks
in the chromosome needs to be replaced with target 2. Because in the chromosome, except
for the orange column, only the green column is the attack task column. Therefore, replace
the value in the gray position in the Figure 9 with 2. When the value of the gray position is
changed to 2, the chromosome still satisfies the constraint, so this operation is reasonable.

After the replacement, the attack task of target 3 does not exist in the chromosome, so
the classification task and verification task of target 3 are meaningless (the column marked
in gray in the Figure 10). The original chromosome contains the classification task and
verification task for target 2, so there is no need to add the classification task and verification
task for target 2 after replacement.

Figure 10. Chromosome obtained after increasing the number of attacks on the target.

The Figure 11 is the final result of the mutation operation. The size of the chromosome
has been changed through the mutation operation.

Figure 11. Chromosome obtained by mutation operation.

4.4. Program Initialization

The content of chromosome initialization coding has been described in detail above. At
the same time, a very important part of program initialization is the calculation of fitness.
Many issues in fitness calculation will be discussed in this part.

4.4.1. Unlock

This article uses a logic-based unlocking method to deal with the deadlock issue. This
unlocking method can extract the program information contained in the chromosome,
and then logically determine whether it is locked and use corresponding strategies for
differentdeadlock scenarios.
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First, we define some set symbols as shown in Table 2. Through the previous ex-
planation of the structure of the chromosome, we know that a chromosome represents
a task assignment plan. Each UAV executes a part of the overall plan. We call the part
executed by UAV Ui as a sub-program (Subprogram) of the overall plan. Next, we define
the Subprogram task execution logic and four strategies.

Table 2. Parameters in the unlocking process.

Notation Explanation

Program Program set
Classified The set of targets that have performed the classification task
Classified_S The set of unfinished missions of the attack mission is in Classified
Attacked_N Number of target attacks
Can_V A set of targets that can perform classification tasks
Verified Status of investigation mission

Task execution logic: we traverse the program Program of the UAV Ui.
1. When encountering a reconnaissance task, we remove the task from the Subprogram,

and then add it to Classified and Classified_S.
2. When encountering an attack task, we judge whether the target number is in

Classified_S, if it is in it, execute the attack task, and remove the task from the Subprogram,
and update Attacked_N, add 1 to the number of attacks on the target. At this time, if the
number of attacks on the target is equal to the total number of attacks in the plan, the target
number is added to Can_V and removed from Classified_S.

3. When encountering an evaluation task, we judge whether the target is in Can_V, if
it is, we remove the task from the Subprogram, and add the target number to Verified.

Operation 1. Use task execution logic for each Subprogram in the overall program.
Operation 2. Traverse each Subprogram to find the reconnaissance task, and if found,

exchange the execution order with the first task of the current Subprogram, and use task
execution logic for the Subprogram of the exchange order.

Operation 3. Find the attack task of the first element in Classified_S, and if found,
exchange the execution order with the first task of the current Subprogram, and use the task
execution logic for the Subprogram of the exchange order and the subsequent Subprograms.

Operation 4. Traverse Can_V, Find the first attack mission of the target that did not
complete the attack mission. The found target exchanges the execution order with the first
task of the current sub-program. And use task execution logic for the sub-schemes of the
exchange sequence.

After defining the above four strategies, We combine them through the process in
Figure 12 to get a logic-based unlocking method.
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Program = ∅? Classified_S = ∅?
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Execution Operation 3
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Figure 12. Logic-based unlocking process.

4.4.2. Fitness Function and Initialization

In the program initialization process, we first calculate the optimal solution in the initial
population, and use J1 of this optimal solution as the initial value of standard1 and J2 as the
initial value of standard2. In the optimization process, J1 and J2 are constantly changing
and the magnitude of the change is not the same, which will actually change the fitness
function. In order to ensure that the actual meaning of the fitness function does not change
significantly during the iteration process, we need to iterate a certain number of times to
update the standard value. Every time the specified number of iterations is reached, the
standard value is replaced with J1 and J2 of the optimal solution of this generation.

Here is a special explanation that constantly changing the standard for dimensionless-
ness will not affect the optimization process. In other words, constantly changing the
dimensionless dividend standard can still ensure that the algorithm is moving towards
to the optimal direction. For example, we suppose a > b > c > d > e > f > 0. In the
first dimensionless process, we choose a as the standard, compare b

a , c
a , we can see that c

a is
smaller. Selecting c as the standard for the second time, comparing d

c , e
c , f

c , obviously f is
the smallest, when a is the dividend, f is also the smallest. After adding a minus sign to
all values, the maximum value of this group of numbers becomes − f . Taking f as the first
standard, through similar discussions, we can also know that updating standard will not
affect the optimization. In summary, the constant replacement of standard can still ensure
that the algorithm proceeds in the direction of optimization. Section 5.3 will discuss the
impact of the replacement frequency of standard on the two optimization indicators.

In the actual calculation process, the value of the fitness function of Formula (4) theoret-
ically should be [−1,1], and the roulette in the algorithm requires the value of the fitness
function to be of the same sign. So we shift the fitness function value by one unit and turn
it into a number between [0,2]. Finally, the fitness function will eventually become

F = α · J1/standard1 + β · J2/standard2. (11)

The overall process of initialization is shown in Figure 13.
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Figure 13. Initialization process.

5. Examples of Multi-Airport Task Assignment Problem
5.1. Value-Oriented Multi-Airport Task Assignment

In this section, we will give several multi-airport task assignment examples to test the
effectiveness of the algorithm in this paper.

Parameter updaterate is the update rate of Parameter standard. The meaning of the
parameter standard and how to take the value have been described in detail in Section 4.4.2.
In Table 3, updaterate = 5 means that standard is updated every 5 iterations.

Table 3. Parameters used in the IGA.

Parameter Variable Number

Population size population 100
Number of iterations Itermax 50
Elitism Number Ne 2
Crossover Number Ncr 66
Mutation Number Nm 32
Fitness function coefficient 1 α 0.2
Fitness function coefficient 2 β 0.8
update rate of standard updaterate 5

Table 4 shows the location of each airport, and the ammunition quantity of each airport
will be given in a specific calculation example.

For convenience, in this section we use the product of ω1i and ω2j to replace PSij in
Section 3.1, PSij = ω1i × ω2j 1 ≤ i ≤ NU 1 ≤ j ≤ NT . The variable ω1i represents the
execution capability of the UAV Ui, and the closer to 1, the higher the success rate of UAV
Ui executing the attack task. The variable ω2j represents the difficulty of the Tj, and the
closer to 1, the easier it is to complete the Tj. Through the above explanation, we know that
this substitution is reasonable.

This article considers heterogeneous UAVs, and there are three types considered in
this article. C represents a combat UAV, which can perform reconnaissance and attack
evaluation tasks, M represents an ammunition UAV that is specifically responsible for
attack tasks, and S represents a reconnaissance UAV, which can perform reconnaissance
and evaluation tasks.
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Table 4. Airport information.

Airport Number Position

1 [800,0]
2 [−2000,2000]
3 [−1000,5000]

The following calculation examples will use the data in the above Tables 3–6. If the
number of devices in the calculation example is less than the number in the table, the first
few data in the table will be taken. For example, 7 targets take the first 7 data of target
information. The following multi-airport calculation example contains 3 airports, 5 UAVs,
and 7 targets. The number of ammunition corresponding to the airport is {5, 2, 3}, and the
docking status of UAVs at each airport is A1 = {U1, U2}, A2 = {U3}, A3 = {U4, U5}.

The specific task assignment scheme obtained by the algorithm is shown in Table 7.

Table 5. UAV information.

UAV Number Type Speed (m/s) Max Ammunition Min Turning Radius (m) ω1 (Success Rate)

1 S 250 0 80 -
2 M 210 5 60 0.9
3 C 230 2 70 0.7
4 S 250 0 80 -
5 C 200 3 90 0.9

Table 6. Target information.

Target Number Position Initial Task Types Value ω2 (Difficulty of Execution)

1 [2200,4000] [C,A,V] 60 0.9
2 [3200,1700] [C,A,V] 90 0.6
3 [500,1200] [C,A,V] 80 0.7
4 [−300,−1800] [C,A,V] 53 0.98
5 [1100,2000] [C,A,V] 100 0.7
6 [1100,1000] [C,A,V] 70 0.8
7 [−500,1200] [C,A,V] 70 0.8
8 [−2000,4800] [C,A,V] 80 0.6
9 [−500,3200] [C,A,V] 56 0.92

Table 7. Task assignment result.

UAV Number UAV U1 UAV U2 UAV U3 UAV U4 UAV U5

{T1,V} {T1,A} {T5,C} {T1,C} {T4,A}
{T3,C} {T5,A} {T5,A} {T5,V} {T3,A}
{T4,V} {T7,A} {T4,C} {T7,C} {T6,A}
{T3,V} {T3,A} {T2,C} {T7,V}
{T6,C} {T2,A} {T2,A}
{T6,V} {T2,V}

The makespan: 88.62 s
Total number of tasks: 24
Runtime: 31.14 s

Figure 14 is a trajectory diagram corresponding to the above task assignment scheme.
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Figure 14. Task assignment and the path planning result.

The task types included in all the initial targets are {C, A, V}. In the calculation example,
the number of ammunition is greater than the number of targets, so the algorithm will
decide to strike certain targets multiple times based on factors such as the value and
distance of the target. We can find from the task assignment plan that the plan has two
attacks on targets 2, 3, and 5. It is easy to see that the value of these goals is higher than the
remaining goals. If the value is set appropriately, there may be more than two attacks on
a target. Under the value set of this calculation example, there will be no more than two
attacks on the same target.

In addition, the algorithm in this paper can also solve the situation of insufficient
ammunition. Table 8 lists the calculation results of various calculation examples.

Table 8. Algorithm Program.

Airport-UAV Effective
Ammunition Targets J1 J2 J Runtime (s)

Lack of
resources

A1 − {U1, U2}
A2 − {U3}

{1,1} 3 28.4092 87.8000 0.3999 4.4582

A1 − {U1, U2}
A2 − {U3, U4}

{2,1} 5 27.6828 150.4000 0.3995 7.0692

A1 − {U1, U2}
A2 − {U3}

A3 − {U4, U5}
{2,1,2} 7 47.7950 251.32 0.3999 13.1846

A1 − {U1, U2}
A2 − {U3}

A3 − {U4, U5}
{3,2,2} 9 60.9314 332.3504 0.3995 26.2494

Sufficient
resources

A1 − {U1, U2}
A2 − {U3}

{3,2} 3 55.1529 215.0 0.3989 6.9584

A1 − {U1, U2}
A2 − {U3, U4}

{5,3} 5 79.4810 356.3872 0.3992 16.3244

A1 − {U1, U2}
A2 − {U3}

A3 − {U4, U5}
{5,2,3} 7 89.7176 455.2938 0.3988 28.7234

A1 − {U1, U2}
A2 − {U3}

A3 − {U4, U5}
{5,3,4} 9 97.3252 460.8563 0.3979 44.0693
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5.2. Logic-Based Unlocking

The logic-based unlocking method in this article is much faster than the random
unlocking method. The following will use the data of some examples in Section 5.1 to
test and compare. In the case of multiple airports, the parameters are still consistent with
Table 3. We consider the situation of 2 airports with 3 UAVs and 3 targets, that is, the first
situation in Table 8 when the ammunition is sufficient. We let the program iterate ten times
to generate a new set of unlocked chromosomes with a population of 100. Calculate the
fitness function of the group of chromosomes through two different unlocking methods.
Since random unlocking is not stable, the time gap required each time will be large, so
each different unlocking method is used to calculate the fitness function of the group of
chromosomes 10 times, and the box plot drawn by the obtained data is shown in Figure 15.

Figure 15. Time comparison of unlocking methods.

We can see from the figure that the speed of logic-based unlocking is much faster than
the random exchange algorithm. In addition, when the scale becomes larger, the speed of
the random algorithm becomes slower and slower. In addition, from the excellent speed
of logic-based unlocking, we see the possibility of using this unlocking method to solve
larger-scale problems. Figure 16 shows the changing trend of the calculation time of the
algorithm based on the logic unlocking method for the task assignment of a single airport
with the change of the target number. Figure 17 is a trajectory diagram of 8 UAVs in a
single airport and 23 targets.

Figure 16. The runtime changes with the target number.
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Figure 17. The assignment result for 8 UAVs and 23 targets.

5.3. Influence of Parameters on Results

For the weight coefficient, β of the fitness function, the change of the indicator is not
unexpected. When β increases, the second indicator value expectation also increases, while
the negative value of the first indicator’s makespan decreases, as shown in Figure 18. This
shows that the weight does have the effect of controlling the size of the two indicators.

Figure 18. Indicator changes with β.

For the update rate of the standard value, Figure 19 is an image drawn by using
updaterate to change from 1 to 10, calculating 10 times for each parameter and averaging
the data. As can be seen from Figure 19, both indicators show an upward trend with the
increase of updaterate. We know that the smaller the indicator makespan, the better the
solution, and the larger the value expectation, the better the solution. When the update
is frequent, there will be a smaller makespan, and in fact, the value expectation will
subsequently become smaller in the process of continuously increasing the updaterate, but
overall it does not change much, and the difference between the maximum and minimum
values will not exceed 10. For a number of 2 orders of magnitude, this change is very
small. Therefore, when calculating, we try to choose a smaller updaterate to ensure that the
obtained makespan is better.
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Figure 19. Indicator changes with updaterate.

6. Conclusions

In this paper, the task assignment problem involving multiple airports is studied. We
construct a model for the task assignment problem, where two objectives (i.e., minimizing
the makespan of the plan and maximizing the expectation of obtained value) are considered.
In addition to the conventional constraints, two types of constraints (i.e., the UAVs recycling
constraints and the multi-airport ammunition constraints) are proposed based on the idea of
multiple airports. For solving the problem, an IGA with novel encoding format and genetic
operators is developed. We creatively introduce a mutation method that changes the size
of the chromosome, so that the algorithm adaptively selects the number of attacks based on
the target value. In addition, a specially designed logic-based unlocking mechanism greatly
improves computational efficiency. It makes the developed IGA a promising method to
solve large-scale UAV task assignment problems. Our future research direction is to deal
with obstacles and moving targets.
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