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Abstract: In a departure from the past, unmanned underwater vehicles (UUVs) and unmanned
surface vehicles (USVs) are increasingly needed for complementary cooperation in military, scientific,
and commercial applications, because this is more efficient than standalone operations. Information
sharing through acoustic underwater communication is vital for complementary cooperation between
USVs and UUVs. Normally, since USVs have advantages in terms of wide operational boundaries
compared to UUVs, they are efficient for tracking UUVs. In this paper, we suggest a UUV tracking
algorithm for a USV. The tracking algorithm’s development consists of three main software models:
an estimation based on an extended Kalman filter (EKF) with a navigation smoothing method, guid-
ance based on multimode guidance, and re-searching based on a pattern. In addition, the algorithm
provides a procedure for tracking UUVs in complex acoustic underwater communication environ-
ments. The tracking algorithm was tested in a simulated environment to check the performance of
each method, and implemented with a USV system to verify its validity and stability in sea trials.
The UUV tracking algorithm of the USV shows stable and efficient performance.

Keywords: tracking algorithm; unmanned underwater vehicle; unmanned surface vehicle;
complementary cooperation; acoustic underwater communication

1. Introduction

Until now, the operating concepts of unmanned surface vehicles (USVs) and un-
manned underwater vehicles (UUVs) have been individually researched by connecting
them to manned systems through a network to perform missions. In other words, USVs and
UUVs acquire controlled and measured information over remote communication with each
control center, and perform missions such as surface or underwater surveillance [1,2]. How-
ever, complementary cooperation between USVs and UUVs has recently been emphasized
due to extensions of their range of operation [3]. In this complementary cooperation, the
USV needs high performance (e.g., duration, velocity, payload, and navigation accuracy)
compared to the UUV [4,5].

Previous methods of tracking UUVs have been proposed [6–10]. For example, Petter
Norgren showed a tracking algorithm based on an estimated UUV position with acoustic
modem telemetry and a mission plan [7]. José Melo’s research presented an estimation
of a UUV’s position using two beacons over an acoustic underwater communication and
a continuous–discrete Kalman filter for the UUV motion [10]. However, these studies
are not sufficient for a complementary cooperation mission between a USV and UUV
based on acoustic underwater communication. In an underwater environment, sound
waves have been used for acoustic underwater communication. The sound waves have a
low-frequency bandwidth and a sound speed. Moreover, the sound waves cause a delay,
which spreads due to multipath reflections and frequency shifts as a result of the Doppler
effect [11–13]. These limitations induce a loss of acoustic underwater communication, and
cause long transmission times. In these situations, USVs need a tracking algorithm to follow
UUVs stably.
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This paper proposes a UUV tracking algorithm for a USV. This algorithm consists of
three main software models that estimate the UUV states based on an extended Kalman
filter (EKF) model with a navigation smoothing method, follow the UUV based on mul-
timode guidance, and re-search for the UUV using a specific pattern. The control input
of the EKF is modified by applying the navigation smoothing method in the acoustic
underwater communication environment. The multimode guidance has two guidance
modes to follow the UUV according to the distance between the UUV and the USV. In
addition, the multimode guidance has a control function to maintain an optimal distance
for acoustic underwater communication. The re-search model is designed to quickly find
the UUV in the event of a loss of acoustic underwater communication.

Each of the three main software models of the UUV tracking algorithm was studied
in a virtual simulation environment to reduce time and cost aspects. After finishing the
simulation tests, the UUV tracking algorithm was applied to a USV and tested to verify its
performance in a sea trial.

2. Algorithm Architecture

The application of this study was carried out in a USV called a U-Tracer, which is
designed to chase underwater targets using sound navigation and ranging (SONAR); it
was developed by the Agency for Defense Development (ADD), and is shown in Figure 1.
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Figure 1. USV (U-Tracer).

The UUV tracking algorithm, including the estimation, guidance, and re-search model,
was added to a vehicle control computer software component (CSC) of a central control
system that acts as the brain of the USV. In addition, for the acoustic underwater commu-
nication between the USV and UUV, an acoustic telephone modem (ATM) was installed
on a strut instead of the SONAR. The ATM model was a Teledyne Benthos-916 with a
communication distance of 4 km, a medium frequency range of 16–21 kHz, and a housing
material depth of 500 m. Figure 2 shows a data flowchart related to the UUV tracking
algorithm. The essential data for processing the UUV tracking algorithm are two pieces
of navigation information: one is the USV navigation information received from the USV
autonomous navigation system; the other is the UUV navigation information received
from the UUV through the ATM. The tracking algorithm determines the USV command
information (i.e., velocity and heading) in the next step.

Figure 3 shows the UUV tracking algorithm’s procedure. When receiving the start
message from the remote control center, the UUV tracking algorithm starts operating. First,
the algorithm checks for abnormalities in its reception of the UUV navigation information,
and then estimates the UUV states (i.e., location [x, y], yaw [ψ], and velocity [V]). If there
are abnormalities, the algorithm counts the number of successive failures (N f ail) in the
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acoustic underwater communication. The guidance model sets the guidance mode and
calculates command information if N f ail is lower than a certain value (X) set by the user.
When N f ail > X, the algorithm goes to the re-search model to calculate the command
information. Finally, the algorithm updates the command information of the USV in the
next step. This procedure is repeated until it is terminated by the remote control center of
the USV.
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3. UUV Tracking Models and Simulation Results
3.1. Estimation Model

Due to the environmental characteristics of acoustic underwater communication,
such as unstable connection and long communication time, it is difficult for the USV to
estimate the UUV’s states (i.e., position, orientation, and velocity). This study describes
a system model of the EKF based on an estimation smoothing method to overcome the
lack of information caused by intermittent measurements of the UUV states [14–20]. The
state vector and system model indicating the UUV states can be expressed as shown in
Equations (1) and (2):

X = [x y ψ V]T (1)

Xk = F(Xk−1) + wk (2)

where, F(Xk−1) =


xk−1 + V cos(ψk−1)dt
yk−1 + V sin(ψk−1)dt

ψk−1 + ∆ψk−1dt
Vk−1 + ∆Vk−1dt


where Xk represents the state variables (i.e., location [x, y], yaw [ψ], and velocity [V]) in
step k, the nonlinear state transition function (F(Xk−1)) represents how the system changes
over time (k), and wk is the system noise entering the system, which affects state variables.

The yaw rate (∆ψ) and velcocity rate (∆V) of the control input based on the navigation
smoothing method are calculated using

(
∆ψ̂, ∆V̂

)
, which is the yaw rate and velocity rate

in stepk, and
(
∆ψavg, ∆Vavg

)
, which is the average yaw rate and velocity rate over the

previous N instances. Here, N is a specific number input by a user. Equation (3) exhibits
the summarized yaw rate and velocity rate. Equation (4) shows the measurement model.

(∆ψk, ∆Vk) =

(
∆ψ̂, ∆V̂

)
+ N ×

(
∆ψavg, ∆Vavg

)
N + 1

(3)

where,
(
∆ψavg, ∆Vavg

)
=

1
N

N

∑
i=1

(∆ψi, ∆Vi)

Zk = H(Xk−1) + vk (4)

where, H(Xk) =


x(navi, k)
y(navi, k)
ψ(navi, k)
V(navi, k)


where Zk represents the measurement values (i.e., location [xnavi, ynavi], yaw [ψnavi], and
velocity [Vnavi]) from the UUV through the acoustic underwater communication, H(Xk−1)
denotes a nonlinear state transition function presenting the relationship between the mea-
surement values and states variables, and vk is the measurement noise.

To test the estimation model, a Monte Carlo simulation was performed with the
proposed model (

.
EKF) compared to the constant EKF model. In the simulated scenario,

the UUV maneuvers at a velocity of 5 knots on an ellipsoidal path with curves and straight
lines, as shown in Figure 4. The execution cycle time of the estimation model is every
second until the UUV goes around the path. It is assumed that the USV receives the UUV
information (Zk) through acoustic underwater communication every 5 s. Table 1 defines
random error variables.
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Table 1. The random error variables of the estimation simulation.

Variable Probability
Distribution Unit

UUV

X (m) N
(
0.0, 0.52) Meter

Y (m) N
(
0.0, 0.52) Degree

Yaw (ψUUV ) N
(
0.0, 0.12) Radian

Velocity (VUUV ) N
(
0.0, 0.12) Knots

USV ATM success rate B (1.0, 0.8) -

The average of the root-mean-square error (RMSE) was calculated to evaluate both
methods. The iteration number of the Monte Carlo simulation was 1000 times. Table 2
shows the results of the average of RMSE for the distance, yaw, and velocity. The proposed
model-designed input control model is better than the constant EKF model. In particular,
the distance and yaw of the proposed EKF are close to the real UUV states. The proposed
EKF-designed input control model helps to estimate the UUV states, and ensures that the
USV can track the UUV stably.

Table 2. The results of the average of RMSE.

Method Distance (m) ψ V (m/s)

EKF 11.0658 0.9510 0.1543
.

EKF 7.3921 0.5930 0.1456

3.2. Guidance Model

For the USV to cooperate with the UUV, it needs to follow the UUV quickly and
stably. In this study, the multimode guidance model for following the UUV consists of
two guidance methods: One form of multimode guidance is line-of-sight (LOS); this is a
classical and simple technique for guiding a stationary target [21–24]. This technique of
approaching the rear of the UUV is stable, since the velocity vector of the USV is always
adjusted to face the UUV. However, this technique has difficulty approaching a UUV
quickly when that UUV is performing complicated maneuvers or is far away from the
USV [25]. Therefore, another guidance method called the collision course method (CCM)
is used to solve these problems. The CCM is a general missile guidance technique [26,27]
that calculates the angle of impact by reflecting a UUV’s velocity and course, and allows
the USV to quickly approach the UUV. In consideration of the two methods’ strengths
and weaknesses, multimode guidance selects one method depending on the separation
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distance between the USV and UUV. Equation (5) displays a simplified equation of the
multimode guidance:

DT =
(

DUUV × tan( βmin+βmax
2 )

)
i f ) DT < dm

DT = dm + γ
i f ) d(USV,UUV) > DT

Guidance Mode = CCM
ψUSV = α + sin−1(VUUV

VUSV
sin(θ − α))

else)
Guidance Mode = LOS
ψUSV = k× tan−1( xUUV−xUSV

yUUV−yUSV
)

(5)

where DT is the distance threshold for switching from the CCM to LOS, and is determined
according to the minimum (βmin) and maximum operation angles (βmax) of the ATM
and the operation depth (DUUV) of the UUV; dm is the minimum separation distance
between the USV and UUV, and γ is the safe distance. Furthermore, d(USV, UUV) denotes
the separation distance between the USV and UUV, ψUSV is the angle of the command
heading for the USV in the next step, α is the angle of the UUV from the USV, θ is the course
of the UUV, and (VUUV , VUSV) are the velocities of the UUV and USV, respectively. Finally,
k is the gain coefficient, and ((x, y)UUV , (x, y)USV) are the positions of the UUV and USV,
respectively. Figure 5 explicates the multimode guidance concept.
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Figure 5. The multimode guidance concept.

To evaluate the performance of the multimode guidance model, a simulation was
performed with the following time (FT) and following stability (FS) as sub-measures of
effectiveness (sub-MOE). The MOE is defined as the sum of two weighted sub-MOEs. The
weight of each sub-MOE is assigned as shown in Table 3.

Table 3. The weights of sub-MOEs in the guidance simulation.

Sub-MOE Weight (W)

FT = Following time WFT = 1
FS = Following stability WFS = 1
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Equation (6) shows the summarized MOE (G.MOE) of the guidance model:

G.MOE = FTmode ·WFT + FSmode ·WFT

FTmode =

(
1
n

n
∑

k=1
FT(mode, k)

)−1
×Min( Avg(FTLOS) ∼ Avg(FTMulti))

FSmode =

(
1
n

n
∑

k=1
FS(mode, k)

)
÷Max( Avg(FSLOS) ∼ Avg(FSMulti))

where, FS =


1,
2,
...

10,

0◦ ≤ |A| < 18◦

18◦ ≤ |A| < 36◦
...

162◦ ≤ |A| < 180◦

(6)

where n is the total number of simulations, and the following stability has a high score
when the USV is located close to the rear of the USV.

Figure 6 presents the simulation scenario. The simulation assumption is that the
USV, traveling at 15 knots, follows the UUV after connecting via acoustic underwater
communication. The UUV maneuvers in a straight line using the initial setting values of
a heading angle and velocity, and the simulation end time is 3000 s. Table 4 defines the
random error variables in the guidance simulation.
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Table 4. The random error variables of the guidance simulation.

Variable Probability Distribution Unit

UUV
Initial location

Range (R) U (1000, 2000) Meter
Azimuth (α) U (0, 360) Degree

Initial heading (ψUUV ) U (0, 360) Degree
Initial velocity (VUUV ) U (5, 10) Knots

Figure 7 shows the results of the Monte Carlo simulations (10,000 times) for the three
guidance modes. The CCM guidance mode requires less following time compared to
others; this means that the USV can quickly approach the UUV. In the case of the following
stability, the LOS guidance attains high scores, enabling the USV to follow the rear of the
UUV stably. Considering the two important sub-MOEs comprehensively, the multimode
guidance presents the most efficient result. By selecting the multimode guidance mode
according to the separation distance between the USV and UUV, the USV reduces the
approach time and maintains a stable position.
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3.3. Re-Search Model

The USV needs to perform a re-search when it loses acoustic underwater communi-
cation with the UUV due to an unexpected situation. Appropriate re-search models have
been widely studied [28–31]. Among them, Jeon’s research examines the effectiveness of
various re-search patterns by analyzing the re-search success rate for various target speeds;
the spiral and sector patterns are appropriate when the target velocity is under 10 knots [30].
The re-search time is an important sub-MOE for evaluating both of these re-search patterns.
To select an efficient re-search pattern, we performed an effectiveness analysis with two
sub-MOEs (re-search time and rate of re-search success), based on a simulation. The MOE
is defined as the sum of two weighted sub-MOEs. Table 5 shows how the weight of each
sub-MOE is assigned, and Equation (7) shows the summarized re-search MOE (R.MOE).

R.MOE = RTpattern ·WRT + RTpattern ·WRR

RTpattern =

(
1
n

n
∑

k=1
RT(pattern,k)

)−1
×Min

(
Avg

(
RTSpiral

)
, Avg(RTSector)

)
RRpattern =

(
1
n

n
∑

k=1
RR(pattern, k)

)
÷ Max

(
Avg

(
RRSpiral

)
, Avg(RRSector)

) (7)

where n is the total number of simulations, RT is the re-search time (s), RR is the re-search
success rate (%), and (WRT , WRR) are the weights for RT and RR, respectively.

Table 5. The weights of sub-MOEs in the re-search simulation.

Sub-MOE Weight (W)

RT = Re-search time WRT = 1
RR = Re-search success rate WRR = 1

Figure 8 presents the simulation scenario. The simulation assumption is that the USV
with 15 knots behind the UUV performs the re-search (i.e., sector or spiral pattern) after
losing acoustic underwater communication. Table 6 defines the random error variables
of the re-search simulation, and the simulation end time is 600 s. The condition of the
re-search success is the distance (<500 m) between the USV and UUV.

Figure 9 shows the results of the Monte Carlo simulations (1000 times) for the spiral
and sector patterns. The spiral pattern has a higher average rate of re-search success than
the sector pattern. In the case of the re-search time, the spiral pattern takes less time than
the sector pattern on average. To measure the effectiveness by comprehensively calculating
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the two factors, the spiral pattern is ~1.96 times better than the sector pattern, because the
spiral can re-search all orientations quicker than the sector pattern, with many straight
re-search sections. As a result of these findings, the spiral pattern was applied with the
re-search model.
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re-search time; (b) the MOE of the re-search patterns.

4. Implementation and Results

A test of the tracking algorithm’s performance was carried out at sea in May 2020. The
tracking algorithm was loaded into the vehicle control CSC of the U-Tracer USV. Since the
UUV has not yet been developed, a virtual UUV was simulated and prepared to transmit
the information about the virtual UUV states via radio communication from the USV
control center to the USV. The purpose of this test was to validate the USV’s tracking
stability. The conditions of the sea test were as shown in Table 7.
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Figure 10a,b show the USV operation screens at the remote control center on land in
case of Scenarios 1 and 2, respectively. In Scenario 1, the USV, at a velocity of 5 knots, was
under autonomous navigation 350 m away from the virtual UUV, which operated at 4 knots
and maneuvered in the shape of a triangle. After changing the autonomous navigation
mode to the UUV tracking mode, the USV followed the virtual UUV to use the tracking
algorithm. The guidance mode switched from CCM mode to LOS mode within the distance
threshold of ~350 m. This result shows that the USV quickly approached the virtual UUV
in CCM mode and stably followed the rear of the virtual UUV in LOS mode. In Scenario 2,
the USV, at a velocity of 5 knots, was under autonomous navigation 350 m away from the
virtual UUV, which operated at 4 knots and maneuvered in the shape of a straight line.
The USV approached the virtual UUV in CCM mode until a communication breakdown.
When N f ail > 20, the USV performed the re-search in the spiral pattern to find the virtual
UUV. After reconnecting the communication, the USV followed the virtual UUV in CCM
mode. This result shows that the USV can perform the re-search in unexpected situations.
In addition, in spite of periodically receiving virtual UUV states approximately every 5 s,
the USV stably followed the rear of the virtual UUV while maintaining a desirable distance.

Table 7. The conditions of the sea test.

Parameter Contents Value

Scenario
S1 Estimation/guidance
S2 Estimation/guidance/re-search

Communication
(USV—virtual UUV)

Cycle 5 s
Number of successive failures

(
N f ail) 20 counts

USV
Initial mode Autonomous navigation

Initial velocity 5 knots
Execution cycle of algorithm 1 s

Virtual UUV
Initial velocity 4 knots

Maneuvering path Triangle (S1)
Straight (S2)
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5. Conclusions and Future Work

The UUV tracking algorithm for the USV was designed and implemented for the
acoustic underwater communication environment, which has unstable and long commu-
nication times for complementary cooperation between the USV and the UUV. The UUV
tracking algorithm consists of the estimation model designed by the EKF with the smooth-
ing method for estimating UUV states, the multimode guidance model for following the
UUV, and the re-search model with the spiral pattern for re-searching the UUV when
disconnected from acoustic communication for a certain amount of time. To verify the
stability and validity of the proposed tracking algorithm, the performance of each model
was tested based on the simulation environment. In the estimation model, the proposed
EKF-designed input control model helps to estimate the UUV states, and ensures that
the USV can track the UUV stably. In the multimode guidance model, the USV reduces
the approach time and maintains a stable position according to the separation distance
between the USV and UUV. In the re-search model, the spiral pattern is more efficient than
the sector pattern because the spiral can re-search all orientations quickly. In addition, the
algorithm was loaded onto the USV (U-Tracer) and tested using a virtual UUV on the sea.
The USV followed and re-searched the virtual UUV while maintaining the proper distance
and velocity, in spite of periodically receiving virtual UUV states approximately every 5 s
and disconnecting the communication.

The global market for complementary cooperation between the USV and the UUV is
expected to grow in the near future. Future work should explore how the USV cooperates
with a developed UUV using the designed tracking algorithm on the sea. Furthermore, this
study could contribute to investigations of the ocean floor, searching for sunken ships and
aircraft, and monitoring marine life in the private sector.
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