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Abstract: Much research has been accomplished in the area of drone landing and specifically pose
estimation. While some of these works focus on sensor fusion using GPS, or GNSS, we propose
a method that uses sensors, including four Time of Flight (ToF) range sensors and a monocular
camera. However, when the descending platform is unstable, for example, on ships in the ocean,
the uncertainty will grow, and the tracking will fail easily. We designed an algorithm that includes
four ToF sensors for calibration and one for pose estimation. The landing process was divided into
two main parts, the rendezvous and the final landing. Two important assumptions were made for
these two phases. During the rendezvous, the landing platform movement can be ignored, while
during the landing phase, the drone is assumed to be stable and waiting for the best time to land.
The current research modifies the landing part as a stable drone and an unstable landing platform,
which is a Stewart platform, with a mounted AprilTag. A novel algorithm for calibration was used
based on color thresholding, a convex hull, and centroid extraction. Next, using the homogeneous
coordinate equations of the sensors’ touching points, the focal length in the X and Y directions can be
calculated. In addition, knowing the plane equation allows the Z coordinates of the landmark points
to be projected. The homogeneous coordinate equation was then used to obtain the landmark’s X
and Y Cartesian coordinates. Finally, 3D rigid body transformation is engaged to project the landing
platform transformation in the camera frame. The test bench used Software-in-the-Loop (SIL) to
confirm the practicality of the method. The results of this work are promising for unstable landing
platform pose estimation and offer a significant improvement over the single-camera pose estimation
AprilTag detection algorithms (ATDA).

Keywords: pose estimation; color thresholding; autonomous UAVs; pose estimation; image processing

1. Introduction

An introduction to this research is followed by a review of the recent pose estimation
techniques for unmanned aerial vehicles (UAVs).

1.1. Problem Statement

UAV-enabled services already range from food delivery to moon landing. They are
rapid, economical, and futuristic. Several tasks must work together to materialize drone
control and flight. These tasks include takeoff, landing, and hovering. To make these tasks
operational, a drone must have a full knowledge of its position (or “pose”) in space. Pose
estimation is an inseparable part of drone control, hence the plethora of research relating to
these tasks over the past few years.

To develop the sensor fusion approach, the proposed algorithm includes the collection
of distances from four sensors and their corresponding pixel coordinates at different
altitudes and utilizes the interpolated version of these data to project the focal length by
means of homogeneous coordinate equations. This information is then used for ToF sensor
and camera calibration. The ToF–camera calibration is employed to acquire the focal lengths
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in the x and y directions. Knowing the focal lengths and planar equations of the landing
surface, calculated by the mounted ToF sensors, and the landmark pixel coordinates, the
world Cartesian coordinates of the landmark, AprilTag, is obtained. In the final step, the
rigid body transformation of the landing platform and the camera is found by using the
projected coordinates.

Recently employed techniques use sensory data to retrieve information about drone
location and attitude angles. Some of the commonly used sensors are the Global Positioning
Systems (GPS), Inertial Measurement Units (IMU), the Global Navigation Satellite System
(GNSS), cameras, etc. The pose estimation task is even more challenging when the uncer-
tainties of the environment increase. These uncertainties are linked to fogs, signal jamming,
clouds, the unavailability of remote signals, and relatively fluctuating UAV stations, such
as a ship’s deck. However, the application of the GPS signal indoors and in some GPS-
denied environments is unattainable, making the pose estimation imprecise and in some
cases impossible [1]. Next, in defense-related design, signal jamming is considered, and
alternative sensors and algorithms are included to tackle distorted signals [2]. Camera data
are also reliable and usable when there is no occlusion and the light source is sufficient [3].
Furthermore, a downside to the INS inclusion in design is that they are heavy, bulky, and
require high-power consumption. Moreover, the presence of radio frequency interference
(RFI) can impose limitations in the system performance [4].

Few of the recent state-of-the-art studies focus on the more challenging positioning
of non-GPS unstable areas, such as marine environments, where the UAV stations are
unsteady. Moreover, the most reliable systems studied use multiple sensors to calculate
the pose. Hence, we concentrate the current work on addressing the problem using sensor
fusion. The advantages and novelties of the current research are manifold and can be listed
as follows:

• The first contribution would be increasing the accuracy of altitude estimation during
landing using range sensors, Time of Flight (ToF) sensors. This is a fit replacement for
Light Detection and Ranging (LIDAR), which is expensive and heavy for installation
on small-sized drones.

• Second, knowing the four ranges from the sensors, the equation of the descending
platform is calculated. Hence, this ameliorates the calculation accuracy of the landing
points in the real world in X and Y directions as well, letting X, Y, and Z be the world
coordinate system.

• The data from the range sensors are also used for the calculation of landing platform
Euler angles. Therefore, the proposed algorithm improves Euler angle estimation.

• Lastly, we employed sensor fusion that can operate completely in low light con-
ditions. The camera contributes to the calculation of the headings of the landing
platform; hence, the algorithm can be used in situations when the heading calculation
is insignificant.

1.2. Literature Review

Truong et al. (2020) employed Skip Connection and Network (DCSCN) topology
to create a super-resolution image-based posed estimation [5], while the authors of [6]
applied LightDenseYOLO for tag tracking, leading to an accurate localization of the tag
in the image. Another study concentrated on deep learning, utilizing SlimDeblurGAN
architecture to de-blur images for landing tag detection, leading to a better-quality image
when the image motion noise increased due to camera shaking or when gimbals are not
available for stabilization [7]. A multi-layer perceptron and ultrasonic sensors mounted on
the four arms of a quadrotor were used to estimate the landing surface suitability in [8].

UAVs are now being used in public services, and thus they must have safe landing
measures in place, such as crowd detection. Castellano et al. (2020) took advantage of a fully
convolutional network (FCN) to train UAVs to automatically distinguish between crowded
and non-crowded areas [9]. UAV research is not limited to outdoor environments; indoor
spaces are also covered in drone research. A work conducted in an indoor environment
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was able to detect the center of a gate and the gate’s ROI based on a Single Shot Detector
(SSD) algorithm for indoor drone racing [10]. While that algorithm uses deep learning,
reinforcement learning, which includes reward- and penalty-based policy making, has
progressed at the same rate. Chang et al. (2020) utilized ArUco markers as a reference to
augment the accuracy of autonomous drones performing straight takeoff, flying forward,
and landing, based on Deep Reinforcement Learning (DRL) [11]. Deep Q-Networks (DQNs)
for navigation and Double Deep Q Networks (DDQNs) have been investigated for an
environment with noisy visual data, improving the system performance to generalize
efficiently in occluded areas [12].

As stated earlier, the complexity of UAV tasks increases significantly when the target
is not stationary. One approach to this issue was investigated using a Deep Deterministic
Policy Gradient (DDPG) algorithm, ameliorating the system practicality and continuous
UAV landing maneuvers on a moving platform [13]. A more complex environment for
testing algorithms is drone racing. Incorporating deep reinforcement learning and the
relative gate observations technique to fly through complex gates has been investigated
and appears promising for small-sized drones that can fly up to 60 km/h [14]. Although
recent research has used artificial intelligence (AI) for drone control and state estimations,
navigation-based techniques are at the center of most works. Several studies have addressed
the issues of state estimation by removing the uncertainty of the system using filters such as
the Kalman filter for linear motion, and nonlinear filters such as the extended Kalman filter
(EKF), unscented Kalman filter (UKF), and particle filters (PF) [15–20]. A combination of
the GPS, the nine degrees-of-freedom (DoF) IMU, and a barometer resulted in an accuracy
level of approximately 2 m [21]. A subsequent effort applied ultra-wideband technology,
low-cost IMU, and vision-based sensors to estimate the position of a mini drone. That same
work used an extended Kalman filter to eliminate uncertainty from the proffered algorithm,
resulting in a 10 cm accuracy [22]. A novel study compared the efficiency of the EKF and a
variation of the EKF, the UKF. Their results showed that the EKF algorithm’s accuracy drops
when the vehicle dynamics are low, as the linearization of the EKF will fail, and proved that
the UKF offers better accuracy with lower computational time [23]. Indoor drone navigation
has also employed PFs to remove uncertainty from ultra-wideband (UWB)-based position
estimation, with the results compared to those of an EKF. That work concluded that the
nonlinear filter offered 14% better accuracy when drone dynamics were linearized through
the extended Kalman filter (EKF) [18]. The work in [24] proposed infrared beacons along
with a narrowband filter, making use of particle filtering to fuse both IMU and visual data
to land a drone on the harsh situation of a makeshift runway in a GPS-denied situation.
That combination achieved acceptable accuracy for long-range pose estimation.

2. Proposing Camera and Range Sensor Homogeneous Fusion (CRHF)

Figure 1 provides the full pathway followed to estimate the state of the AprilTag in
the camera frame.
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Figure 1. Overview of camera and ToF base pose estimation using CRHF.

2.1. Camera Calibration

Several open-source and closed-source applications are available to calibrate the
monocular camera. Camera calibration theory uses the chessboard corners and size of
the chessboard to calculate the distance of the intrinsic, extrinsic, and principal point
parameters, or camera model, of a camera. A camera model can be written as follows:

s

 u
v
1

 =

 fx 0 cx
0 fy cy
0 0 1

 r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz




Xw
Yw
Zw
1

 (1)

where u and v are vertical and horizontal pixel coordinates. fx is the focal length in the
x direction, fy is the focal length in the y direction, cx is the camera principle point in
the x direction, and cy is the camera principle point in the y direction. rij is the rotational
component of the camera, tx is the translational component of camera, Xw is the real-world
location of the camera in the x direction, Yw is the real-world location of the camera in the y
direction, and Zw is the real-world location of the camera in the z direction.

The camera calibration procedures follow the steps below:

• Collect images;
• Convert them into a grayscale image;
• Calculate the chessboard corners from the grayscale image;
• Compute the real-word chessboard corners. The chessboard has a square size of 7 cm

and 7 × 10 corners; and
• Calculate the related camera projection matrix using Direct Linear Transformation

(DLT), defined as follows [25–29]:

λx = CX (2)

where X represents the world points, C is the camera matrix, λ is a scalar value, and x is an
image of the real world points in Equation (2). Figure 2 demonstrates the rover for camera
calibration process.
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Figure 2. Camera calibration by Rover and Stewart table.

The DLT algorithm is based on the following five steps:

1. The input image point coordinates determined by transform “T” normalization;
2. Camera projection matrix CN, camera matrix in frame number N, projected from the

normalized image points;
3. Camera matrix C as the CNT−1 denormalization;
4. The reprojected image point coordinates, xE, calculated by C and X multiplication;
5. The reprojection error calculation by Equation (3) [30,31]:

RepError =
∣∣∣x− xE

∣∣∣ (3)

A camera reprojection matrix can be represented as follows [32]:

C =

 fx 0 cx
0 fy cy
0 0 1

 (4)

where Cx, Cy, fx, and fy are the camera principal points in x and y coordinates and the focal
lengths in x and y coordinates, respectively.

• Use the two equations below, (5) and (6), to obtain radial distortion coefficients of the
camera [33,34].

xdistorted = x
(

1 + k1r2 + k2r4 + k3r6
)

(5)

ydistorted = y
(

1 + k1r2 + k2r4 + k3r6
)

(6)

in which x and y are the coordinates of the normalized image—undistorted pixel
position, xdistorted is the coordinate of the distorted pixel in the x direction, ydistorted is
the coordinate of the distorted pixel in the y direction, and k1, k2, and k3 are the lens’s
radial distortion coefficients. The magnitude of the radial distortion can be calculated
as follows [35–38]:

r2 = x2 + y2 (7)

• Utilize following equations to obtain tangential distortions (8) and (9) [35–38]:

xdistored = x +
[
2p1xy + p2

(
r2 + 2x2

)]
(8)

ydistorted = y +
[

p1

(
r2 + 2y2

)
+ 2p2xy

]
(9)

where x and y are in normalized image coordinates—undistorted pixel position, and p1
and p2 are the tangential distortion lens coefficients.
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2.2. Camera Calibration Implementation and Results

Camera calibration determines the inner camera parameter calculation, which is vital
for practical operations and calculations such as world-to-camera coordinate mapping.
The calibration guideline was followed using MATLAB Image Processing Toolbox User’s
Guide [39]. To implement camera calibration, a chessboard was mounted on a Stewart
platform and the whole system was placed on the back of a rover. The rover traveled in a
circular path.

Figure 3 illustrates the calibration process from below ground to some distance above
ground.
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The calibration was developed in a MATLAB script that creates a scenario as follows,
illustrated in Figure 4:

• The drone takes off.
• It hovers towards the surveillance point that includes all the rover paths and waits

without any movement.
• The drone takes 20 photos when the rover is traveling along the circular path.
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Figure 5 shows the detected points on the chessboard using the MATLAB camera
calibration application.
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The chessboard Stewart table set on the rover moves along the circular path, covering
all the coordinates of the camera’s pixels. All the photos are processed by the MATLAB
single-camera calibration application.

The camera calibration result in camera centric mode is illustrated in Figure 6.
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While in some references, such as [40], it is highly recommended to conduct the camera
calibration at the altitude that the camera is used, in the landing system camera calibration
processes, there is no single distance for the best calibration point since the UAV must
monitor behaviors of the landing platform until it touches the surface. In the current
research, the maximum ToF sensors’ range is selected as the calibration distance.
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The intrinsic matrix results for a simulator camera with 512 × 512 resolution is given
in Equation (10):

K =

 458.5 0 0
0 457.855 0

258.7735 252.308 1

 (10)

2.3. Camera ToF Calibration Implementation and Results

Figure 7 illustrates an overview of the camera and ToF calibration procedure.
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Figure 7. Camera ToF calibration overview.

The same radius color pads were used for each range sensor. The sensors are then
orthogonalized to the center of the allocated color pads (refer to Figure 8).
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At every altitude that the quadrotor rises to, the corresponding pixels are computed
using the color segmentation technique. To segment the color, the RGB image is first
converted to YCBCR format using Equation (11) [41]:

601Y
219′

CB
CR

 =

 16
128
128

+

 65.481 128.553 24.966
−37.797 −74.203 112

112 −93.786 −18.214

 ·
 R′

G′

B′

 (11)

where R′, B′, and G′ are the normalized versions of the RGB matrices. CB and CR are the
blue-difference and red-difference chroma components. The result of the summation and
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production is a 3 by 3 matrix. Hence, there are three channels for YCBCR representation. To
segment different colors, the pixel value must be limited to the corresponding color range.
To implement this limitation and segmentation, all the values in a specific range will be one
and the rest will be considered as zero. The range specifications are presented in Table 1.

Table 1. Color channel segmentation ranges.

Color Channel 1 Channel 2 Channel 3

Yellow 103 < Range1 < 255 0 < Range2 < 95 0 < Range3 < 255
Red 0 < Range1 < 160 0 < Range2 < 255 167 < Range3 < 255

Green 0 < Range1 < 255 0 < Range2 < 155 0 < Range3 < 90
Blue 0 < Range1 < 165 139 < Range2 < 255 0 < Range3 < 255

The color segmentation result is illustrated in Figure 9 in the masked format.
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Figure 9. Image and masked image, from left to right, using color segmentation.

To ensure that there is no hole in the segmented color, the convex hull is calculated on
the binary image. The convex hull is denoted as the smallest convex set that contains all
the pixels of a region represented in the Euclidean plane:

Xi
k =

(
Xk−1 ⊗ Bi

)
∪ A i = 1, 2, 3, 4 and k = 1, 2, 3, . . . (12)

where Bi is the structuring element of the binary image, ⊗ is element-wise multiplication
operator, ∪ is the union operator, and Xk is the set of convex sets which are lines connecting
points in the dataset, making a closed shape, expressed by Equation (13).

Xi
0 = A and Dl = Xi

con (13)

where A is an arbitrary convex set, D is the converged convex subset, and subscript “conv”
is defined as the convergence of the sets in the sense that satisfies Equation (14).

Xi
k = Xi

k−1 (14)

Xi
k and Xi

k−1 are selected candidate subsets for the convex hull. Equation (15) can then
be used to find the convex hull of the binary image [42–44].

C(A) =
4
∪

i=1
Di (15)

Figure 10 depicts the result for Segmented binary and convex hull process.
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Figure 10. Segmented binary and convex hull results.

The convex hull is calculated to ensure that there is no non-uniform region of the
binary image. The centroid of the binary image is then calculated using Equation (16):

ϑx = 1
N

N
∑
i

xi

ϑy = 1
N

N
∑
i

yi

(16)

Figure 11 shows the centroid of each binary image, indicating the pixel correspondence
with each sensor. The accumulation of all the points shows the 3D point correspondence of
each pixel with respect to each sensor. The results are shown in Figure 12, where N is the
number of points in the image [45,46].
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Samples of the pixel and altitude data are summarized in Tables 2 and 3.

Table 2. First three frames’ centroid calculations.

Color C1—Frame1 C2—Frame2 C3—Frame3

Blue 400.0070961 112.909046 392.6057903 120.4082739 383.8957617 129.1591336
Green 399.5563178 399.9410627 392.0877826 392.3846207 383.3468678 383.720831
Yellow 112.5299193 400.1530166 119.9678525 392.630475 128.6982725 384.0305636

Red 112.8321163 112.9362624 120.3259779 120.4101189 129.0014117 129.1613991
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Table 3. First three frames’ corresponding distances relevant to the sensors.

Color C1—Distance Frame1 C2—Distance Frame2 C3—Distance Frame3

Blue 0.305179805 0.32637015 0.348936737
Green 0.304939508 0.32626918 0.34884578
Yellow 0.304848552 0.32633689 0.348892212

Red 0.304876596 0.326466531 0.349034697

There are two scenarios to pursue for pixel correspondent modeling:

• Curve fitting with the hyperbola parametric mode as “f (x) = a/x + c” and then finding
a and c parameters; and

• Interpolating between the found points.

The hyperbola parametric mode was chosen because the model of the object projection
in homogeneous coordinates is hyperbolic and can be represented as:

x = f
X
Z

, y = f
Y
Z

(17)

where x and y are pixel coordinates, and X, Y, and Z are the real-world coordinates of the
drone’s altitude. The perspective projection overview can be illustrated as in Figure 13.

Knowing each altitude’s corresponding pixel, it is easy to fit a hyperbola parametric
model from the acquired data so that calibration equations, such as Equation (18) for all
four range sensors and corresponding image pixels, can be obtained. Take as an example
sensor 1 with its blue-colored pad. The parametric mathematical model is:

f (x) = a/x + c (18)

Curve fitting seeks to find the “a” and “c” parameters from the provided data, where
“a” is the focal length and “c” is the principal point of the camera calculated from each
sensor. The Least Absolute Residuals (LAR) regression method, which finds the a curve that
minimizes the absolute difference of the residual, is used in tandem with the Levenberg–
Marquardt optimization algorithm. Figures 14 and 15 demonstrate the fitting results in
image plan (xc and yc) and range data.
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Using the curve fitting MATLAB application, the minimum error of the curve fitting
reached by the tool was 0.1323. However, to not sacrifice any accuracy, the fitting algo-
rithm was not used; instead, shape-preserving interpolation was utilized as a measure
for calibration. The interpolation error is inconsiderable when the number of points is
sufficient. In addition, the interpolation speed with the sample point, here 120 points, in
each pixel coordinate does not reduce the performance. Surprisingly, the execution of the
interpolation for one point is less than 0.03 s. Therefore, the second choice was selected,
using the interpolation technique. Table 4 shows the results of the curve fitting.

Table 4. Sensor distance to pixel curve fitting results.

Coordinate
Parameters

X Coordinate Y Coordinate

Coefficient trustworthiness 95% confidence 95% confidence

Coefficient value
a = −44.43 a = 44.43
c = 256.6 c = 256.6

Goodness of fit

SSE: 0.1409 SSE: 0.1323
R-square: 1 R-square: 1

Adj-R-square: 1 Adj-R-square: 1
RMSE: 0.03456 RMSE: 0.03348

Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) is a technique for interpo-
lating between a set of points. The procedures listed below can be employed to calculate
a PCHIP from a set of data. In the PCHIP algorithm, the value of f ′k at point xk can be
calculated by Equations (19) and (20). Assume hk = xk+1 − xk, dk = (yk+1 − yk)/hk is the
slope between two interpolating points xk+1, xk and w1 = 2hk + hk−1, w2 = hk + 2hk−1 are
PCHIP interpolation weights. The slope of the point between them has the equation:

f ′k =


(w1+w2)(

w1
dk−1

+
w2
dk

)
0

dk, dk−1 6= 0 & sign(dk) 6= sign(dk−1)

dk, dk−1 = 0 & sign(dk) = sign(dk−1)

(19)
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sign(x) =


1
0
−1

x > 0
x = 0
x < 0

(20)

where sign implies the sign function of a number, and w1 and w2 are the interpolation
weights [47]. Note that it is important to ensure that the end slopes are projected using a
one-sided scheme [48].

2.4. Calculation of the Planar Equation of the Landing Platform Beneath the Drone

Four sensors are used to calculate the landing surface planar equation. Figure 16
illustrates the position of the drone, indicated by a cross, using the four sensors, S1–S4.
Figure 16 depicts the platform at rest (a) and at a variable attitude (b).
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Equations (21)–(24) are utilized to transform the position of the sensors to the drone
camera frame.

ps1 = [−a1 × cos (AngleCam2Sensors) − a1 × cos (AngleCam2Sensors)0] (21)

ps2 = [−a2 × cos (AngleCam2Sensors)a2 × cos (AngleCam2Sensors)0] (22)

ps3 = [a3 × cos (AngleCam2Sensors)a3 × cos (AngleCam2Sensors)0] (23)

ps4 = [a4 × cos (AngleCam2Sensors) − a4 × cos (AngleCam2Sensors)0] (24)

The Euclidean distance is the distance between each sensor and the origin of the
drone, denoted as “o”, which is the same as the camera frame. In Equations (21)–(24), ”cos”
implies the cosine function and “AngleCam2Sensor” is assumed to be 45◦. To calculate the
plane equation, it is essential to first project the plane normal vector, as in the following
equations:

n̂ = (pst1 − pst2)× (pst2 − pst3) (25)

pst = [ psxy d i] (26)
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where n̂, psti, and psxy are the plane normal vector, the Cartesian coordinate of the touch-
ing point, and the sensor coordinate in the camera frame, respectively. Equation (27)
demonstrates the descending surface planar equation:

Pzl =
(d− n̂1 · PXl − n̂2 · PYl)

n̂3
(27)

in which PXl , PYl , Pzl , and n̂i, where i implies the range sensor number, are the Cartesian
coordinates of the points on the landing surface presented in the frame of the camera. The
variable “d” can be calculated by averaging all the sensors’ values. Figure 17 indicates the
normal vector of the descending platform, which is time-dependent.
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2.5. AprilTag Corner Detection

The AprilTag detection algorithm (ATDA) was followed by the MATLAB built-in
function. The algorithm was employed to obtain four corners of the descending landmark.
The scope of the current work is beyond the ATDA process, and any set of corners can be
used for pose estimation. The detection process can be itemized as listed below. For more
information, please refer to reference [49].

Corner detection process:

• Detect the line segments;
• Quad detection;
• Homography and extrinsic estimation; and
• Payload decoding.

2.6. Kalman Filter Implementation

One more step, Kalman filtering, must be considered to track the corner points found
by the corner detection process. This filter cannot track the corner points of the AprilTag for
a long time-span occlusion, due to the highly complex motion model of unstable landing
platforms such as the Stewart table used here. Hence, tracking algorithms including Kalman
filtering or even Lucas Kanade point tracking for short-period occlusions are suggested.

There are two main equations for Kalman filters that are well known in navigation
systems:

x(k) = Ax(k− 1) + Bu(k− 1) + w(k− 1) wk−1 ∼ N (0, Q) (28)

z(k) = Hx(k) + v(k) νk ∼ N (0, R) (29)

These relations are the process, Equation (28), and the measurement model, Equation (29),
with w(k− 1), v(k), x(k− 1), x(k), and z(k) representing the process noise, measurement
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noise, state at a previous time, the states of the system at the current time, and the measure-
ments at the current time, respectively. A and B are process model coefficients, while H is
measurement model coefficient. Two more phases are then executed in recursion over the
tracking process, the prediction and update phases. The prediction steps are defined below in
Equations (30) and (31):

x̂−k = Fx̂+k−1 + Buk−1 (30)

P−k = FP+
k=1F1 + Q (31)

where Q, P−k , x̂−k , F, and B are the Gaussian covariance and its prediction covariance error
state prediction, and the state transition and control input matrices, respectively. The
update phase follows the steps outlined in Equations (32)–(35):

ỹk = zk − Hxk (32)

Kk = P−k HT
(

R + HP−k HT
)−1

(33)

x̂+k = x̂−k + Kkỹ (34)

P+
k = (I − Kk H)P−k (35)

where ỹk, Kk, x̂+k , P+
k , and H are the measurement residual, Kalman gain, updated state

estimate, updated error covariance measurement matrices, and observation model, re-
spectively. All steps of the Kalman filter, including the prediction and update phase, are
repeated during the state estimation process [50,51].

2.7. Landmark World Coordinates Calculation

Using Equation (17), the 2D homogeneous equations of the landmark, here the April-
Tag, are as follows:

x1 = fx
X1

Z1
y1 = fy

Y1

Z1
(36)

x2 = fx
X2

Z2
y2 = fy

Y2

Z2
(37)

x3 = fx
X3

Z3
y3 = fy

Y3

Z3
(38)

x4 = fx
X4

Z4
y4 = fy

Y4

Z4
(39)

where fx, fy, xi, Xi, yi, and Yi are the focal length in the x direction, the focal length in the
y direction, landmark x in the pixel coordinates, landmark X in the world coordinates,
landmark y in the pixel coordinates, and landmark Y in the world coordinates, respectively.

The homogeneous coordinates of the sensors’ touching points are represented as
follows:

Stx1 = fStx1
StX1

StZ1
Sty1 = fSty1

StY1

StZ1
(40)

Stx2 = fStx2
StX2

StZ2
Sty2 = fSty2

StY2

StZ2
(41)

Stx3 = fStx3
StX3

StZ3
Sty3 = fSty3

StY3

StZ3
(42)

Stx4 = fStx4
StX4

StZ4
Sty4 = fSt4

StY4

StZ4
(43)
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where fStxi and fStyi are focal length calculated by the touch points of sensor number i in x
and y directions, respectively. In each camera frame, a focal length will be calculated in
both the x and y directions. Equation (44) shows the focal length calculations.

f =


fx =

4
∑

i=1
fStxi

4

fy =

4
∑

i=1
fStyi

4

(44)

Calculation of the principal point, CP, of the homogeneous coordinates can be obtained
using the following equation:

CP =
d1 · Stp1 + d2 · Stp2 + d3 · Stp3 + d4 · Stp4

d1 + d2 + d3 + d4
(45)

where di and Stpi are the sensors’ measured distance and the corresponding pixel coordi-
nates of the touching sensors. The above equation states that when the points’ distances go
to infinity, the CP moves toward that point, and when all distances are equal, the CP will
be the average of the pixels. The real-world Z coordinates of each landmark point can be
calculated using Equations (46)–(49).

Z1 =
d

n̂1X1 + n̂2Y1 + n̂3
=

d
n̂1

x1
f x + n̂2

y1
f y + n̂3

(46)

Z2 =
d

n̂1X2 + n̂2Y2 + n̂3
=

d
n̂1

x1
f x + n̂2

y1
f y + n̂3

(47)

Z3 =
d

n̂1X3 + n̂2Y3 + n̂3
=

d
n̂1

x1
f x + n̂2

y1
f y + n̂3

(48)

Z4 =
d

n̂1X4 + n̂2Y4 + n̂3
=

d
n̂1

x1
f x + n̂2

y1
f y + n̂3

(49)

X1 =
Z1 · x1

fx
Y1 =

Z1 · y1

fy
(50)

X2 =
Z2 · x2

fx
Y2 =

Z2 · y2

fy
(51)

X3 =
Z3 · x3

fx
Y3 =

Z3 · y3

fy
(52)

X4 =
Z4 · x4

fx
Y4 =

Z4 · y4

fy
(53)

Equations (46)–(49) demonstrate the landmark Z coordinate calculation in the camera
frame, while Equations (50)–(53) demonstrate how the landmarks are calculated in the
camera’s X and Y coordinates. Figure 18 illustrates the focal length direction and principle
point location in an image frame.



Drones 2022, 6, 60 18 of 29

Drones 2022, 6, x FOR PEER REVIEW 19 of 31 
 

3 3
3

x

Z xX
f
⋅=  3 3

3
y

Z yY
f
⋅=  (52)

4 4
4

x

Z xX
f
⋅=  4 4

4
y

Z yY
f
⋅=  (53)

Equations (46)–(49) demonstrate the landmark Z coordinate calculation in the camera 
frame, while Equations (50)–(53) demonstrate how the landmarks are calculated in the 
camera’s X and Y coordinates. Figure 18 illustrates the focal length direction and principle 
point location in an image frame. 

 
Figure 18. Focal length in x and y directions and homogeneous principal point. 

2.8. Rigid Body Transformation Estimation of the AprilTag 
Rigid body transformation estimation helps to find the rotation and translation of 

points in 3D space. 
Assume that two sets of P1 and P2 points from two objects are known in their real-

world coordinates. To calculate the 3D rigid body, the algorithm undergoes the processes 
given by Equations (54)–(59) [51].   

1 1( )PC ave P=  (54)

2 2( )PC ave P=   (55)

1 1 1P Pn C P= −   (56)

2 2 2P Pn C P= −   (57)

where 
1 2
,P PC C  and 

1 2
,P Pn n  are the centroid and normal points, respectively, of the 

two-point sets. Next, 

11 2 2( , ) T
P PCov P P n n= ×  (58)

Figure 18. Focal length in x and y directions and homogeneous principal point.

2.8. Rigid Body Transformation Estimation of the AprilTag

Rigid body transformation estimation helps to find the rotation and translation of
points in 3D space.

Assume that two sets of P1 and P2 points from two objects are known in their real-
world coordinates. To calculate the 3D rigid body, the algorithm undergoes the processes
given by Equations (54)–(59) [51].

CP1 = ave(P1) (54)

CP2 = ave(P2) (55)

nP1 = CP1 − P1 (56)

nP2 = CP2 − P2 (57)

where CP1 , CP2 and nP1 , nP2 are the centroid and normal points, respectively, of the two-point
sets. Next,

Cov(P1, P2) = nT
P1
× nP2 (58)

Vect(U, S, V) =svd(C) (59)

where Cov(P1, P2) and U, S, and V are P1 and P2 covariance, left singular, singular, and
right singular vectors, respectively, and Vect is the vector representation of the data. C is a
rectangular matrix. Next, in the projection step, the rotation matrix is obtained from left
and right singular vectors, as follows:

R(t) = V × diag([ I(1, n) sign(det(U ×VT) ])×UT (60)

where diag and det are representations of the diagonal and determinant, respectively, of the
matrix, and where n is the size of the number of corresponding points minus one and I is
identity matrix. Finally, T(t) is calculated by Equation (61):

T(t) = CT
P2
− R(t)× CT

P1
(61)

in which superscript T indicates that the matrix is transposed. The transformation finds the
tag between dynamic and static states. The dynamic points used to find the transformations
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are the current time location of the AprilTag points in the camera frame, and the static
points are imaginary AprilTag points that are fixed in the camera frame and at zero altitude.
The imaginary static AprilTag points’ matrix is expressed as:

WC
Stat(AP) =


−tagSize/2
tagSize/2
tagSize/2
tagSize/2

tagSize/2
tagSize/2
−tagSize/2
−tagSize/2

0
0
0
0

 (62)

where the superscript C and subscript Stat denote points in the camera frame and static
imaginary points, respectively.

3. Experimental Setups

The simulation time step selected for this work is 50 ms with the physics engine of
Bullet, with the version 2.78, and balanced speed. The data transfer protocol used is legacy
remote API, which is lightweight and allows the transfer of data in languages including
C/C++, Java, Python, MATLAB, and Octave. We utilize MATLAB R2021a, student version,
for the computation side and CoppeliSim, EDU version 4.2.0 (rev. 5), for the simulation side.

The tests were performed using two experimental platforms: one static and the other
highly dynamic, as shown Figure 19.
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calibration and the drone state estimation. The sensors are assumed to be under the 

Figure 19. Static and dynamic platform tests bench from right to left.

The proposed method used MATLAB and a state-of-the-art simulator called Cop-
peliaSim in real-time Software-in-the-Loop (SIL) to prove the viability and practicality of
the proffered algorithm. The proposed method used four range sensors and a camera
for the calibration and the drone state estimation. The sensors are assumed to be under
the propellers and distributed equally. Figure 20 indicates the four ToF sensors and a
downward camera in the middle of a UAV, showing their installation on the drone.
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Figure 20. The quadrotor test configuration test.

All four sensors are used to obtain precise camera–Time of Flight (ToF) calibration
data; the middle camera was used for the heading calculation in the drone pose estimation.
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The landing bench is based on a Stewart platform with relatively highly unstable rotation
and translation movement.

Figure 21 shows the landing platform setup with allowable movement, including
rotations and translations.
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Figure 21. Unstable landing platform and possible directions of movements, imposed on AprilTag.

Before launching into the full algorithm exploration, it is worth mentioning that an
important assumption was made about the immobile drone and variable attitude landing
platform: during the landing, the drone is located over the platform and the pose is assumed
to be as illustrated in Figure 22.
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Figure 22. Stable flying quadrotor and variable attitude landing.

4. Results and Discussion

This section describes the system performance for each test platform in terms of the
Euler angle and translation. An analysis of the results is then presented, followed by our
recommendations for future work.

4.1. Static Platform

For the static platform, the proposed algorithm performed with remarkable accuracy.
Figure 23 illustrates corner point coordinate estimation.
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Figure 23. Real-world corner points in a camera frame using CRHF.

The ground trust (GT) for this simple tag had no rotation and translation only in the
z-axis with a value of two meters. The results of the developed algorithm are as follows:

Tc
Apr =

[
0 0 1.995

]
Rotmc

Apr =

 1 0 0
0 1 0
0 0 1


The only error was posed in the z direction, with an error value of 0.005 m. It was quite

a different case for the dynamic platform, as presented next. From the results Tc
Apr and

Rotmc
Apr subscript and superscript, it can be inferred that it shows AprilTag’s translation

and rotation in the camera frame.

4.2. Dynamic Platform

The dynamic platform was tested for 120 iterations of simulations. The translational
results are illustrated in Figure 24 in three subplots, showing the translation in the X, Y, and
Z directions. In the X direction, in Figure 24, both algorithms followed GT closely and have
similar tracking performance. However, regarding the translational error for ATDA and
CRHF, indicated in mean absolute error Table 5, the proposing algorithm proved a slightly
better performance. CRHF also indicated notable improvement in the Y direction. As it can
be inferred from the Z direction subplot of Figure 24, using data from ToF sensors led to a
significant amelioration of the pose estimation in the UAV downward camera frame. In
Figure 25, the three subplots to assess the performance of the system in angle estimation for
pitch, roll, and yaw, which are the rotation around the X-, Y-, and Z-axes, respectively. At 50,
140, and 180 s of simulation, in the Figure 25 pitch estimation subplot, ADTA demonstrated
major inaccuracies, while this behavior was compensated to a great extent for the CRHF,
having a slight deviation from GT at 140 s. The roll estimation result in the same Figure
indicates a better estimation using CRHF technique for the last 70 s, between 130 and 200 s.
Both techniques demonstrate an almost identical performance for the yaw calculation, with
a negligible improvement by CRHF regarding Table 5.



Drones 2022, 6, 60 22 of 29

Drones 2022, 6, x FOR PEER REVIEW 24 of 31 
 

 
Figure 24. Translations in the X, Y, and Z directions of CRHF. 

 
Figure 25. Pitch, roll, and yaw for 120 s simulation. 

Finally, the trajectory of the platform motion estimation was calculated for the CRHF, 
ATDA, and GT. Figure 26 shows the 3D plots of the Stewart table trajectory in Cartesian 
coordinates of the drone downward camera frame. Figures 26a–d depict a multi-view tra-
jectory plot in the XZ, YZ, XY, and XYZ directions, respectively. As it can be seen in the 
XZ view in Figure 26a, the proposing system significantly tackles the error in the X and Z 
directions. Figure 26b illustrates a noticeable improvement of landing platform pose esti-
mation in the Y and Z directions. In bird’s-eye view, or drone downward camera view, in 
X and Y directions depicted in Figure 26c, the plot verifies the better performance of the 
CRHF compared to the ATDA algorithm. Figure 26d depicts the 3D view of the landing 

Figure 24. Translations in the X, Y, and Z directions of CRHF.

Table 5. Mean absolute error comparison of CRHF and ATDA algorithms.

Mean Absolute Error ATDA CRHF

Translations (meters) 0.0157 0.0129 0.0687 0.0047 0.0042 0.0051
Angles (degrees) 3.9043 1.7684 1.7859 1.4239 1.5231 1.3290
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Figure 25. Pitch, roll, and yaw for 120 s simulation.

Finally, the trajectory of the platform motion estimation was calculated for the CRHF,
ATDA, and GT. Figure 26 shows the 3D plots of the Stewart table trajectory in Cartesian
coordinates of the drone downward camera frame. Figure 26a–d depict a multi-view
trajectory plot in the XZ, YZ, XY, and XYZ directions, respectively. As it can be seen in the
XZ view in Figure 26a, the proposing system significantly tackles the error in the X and
Z directions. Figure 26b illustrates a noticeable improvement of landing platform pose
estimation in the Y and Z directions. In bird’s-eye view, or drone downward camera view,
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in X and Y directions depicted in Figure 26c, the plot verifies the better performance of the
CRHF compared to the ATDA algorithm. Figure 26d depicts the 3D view of the landing
platform movement and provides a better view for the improvement of altitude estimation.
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Figure 26. Trajectory plots for pose estimation for the camera, CRHF, and GT-XZ view (a), YZ view
(b), XY view (c), and XYZ view (d).

CRHF transitional errors for X, Y, and Z directions, in meters, are demonstrated in
Figure 27. The highest error happens at 170 s and belongs to altitude estimation of the table.
While the error was lower for the Z direction at 140 s, the X and Y directions demonstrate
the highest errors. During the rest of the periods, the error stays less than 0.01 m, showing
better and stable altitude estimation.
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Figure 27. CRHF translational absolute errors.

Figure 28 plots the Euler angle estimation error of the CRHF for pitch, roll, and yaw
in degrees. The highest error belongs to heading estimation with around 2.5 degrees and
happened at 52 s. The second highest is for roll error, which peaked at around 2.3 at 50 s.
However, disregarding the 0 s error, the plot demonstrates errors of less than 2 degrees in
the remaining time.
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Figure 28. CRHF angular absolute errors.

Figure 29 provides the error plot of ATDA Euler angle estimation for the Stewart
table. At 140 and 170 s, roll estimation error peaked toward 5 degrees and shows the most
dramatic value. The next highest error was at 52 s with around 4.2 degrees. During the rest
of the time, ATDA demonstrated error lower than 2.8 degrees, higher than that of CRHF’s
angular error value. Figure 30 shows ATDA algorithm translational errors, highlighting
significant attitude estimation error. However, ATDA demonstrated errors of less than 0.02
in the X and Y directions.
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The averages of these errors over the whole simulation period are summarized in
Table 5 for both algorithms. It is readily evident from the table that the proposing algorithm
strikingly ameliorated the altitude estimation in the Z direction. In addition, Table 5
demonstrates a significant improvement in the X and Y directions. The Euler angles
estimation summary for the landing table reveals a significant accuracy of pitch estimation
and slightly lower error for the yaw and roll.

5. Conclusions and Future Work

The results of this work reveal a notable improvement in translational as well as angu-
lar pose estimation compared to the AprilTag navigation algorithm, but with the expense
of adding range sensors. The main motivation for developing such a system development
is the problem of highly unstable ship deck landing platforms. Their instability makes the
landing of emergency medical services (EMS) and heavyweight drones quite problematic.
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The results achieved here suggest that reducing translational error could be possible via
alternative pose estimation techniques such as projective geometry. The current research
addresses the issue of relatively unstable UAV landings. The proposed method considered
the sensor fusion algorithm based on range sensors and a camera to address the accuracy
of the pose estimation for the unstable platform using CRHF. The fusion technique uses
a calibration method that makes sensor touch points available for calculation of camera
focal lengths of the camera. Then, these focal lengths are employed to calculate the world
coordinates of the landmark corner points. In the final stage, using rigid body transfor-
mation, the pose of the AprilTag is obtained in the frame of the drone downward camera.
The research also considers static and dynamic landing platforms to assess the developed
technique. The findings from the current work verify a better accuracy for pose estimation
in rotational angles of roll, pitch, and yaw and translational estimations in the X, Y, and Z
directions for the landing platform when compared to ATDA.

Different cameras, including fisheye and monocular cameras, have various radial and
tangential distortion models. In our future work, we would like to evaluate the possibility
of camera radial distortion model calculation through range sensor data to lower the
projection errors. Next, an autonomous UAV design considers two phases for landing
system development. These are rendezvous, when the UAV moves toward the landing
point, and final landing, which we considered in our research. Further study is required to
address the pose estimation for the rendezvous phase of the flight using sensor fusion by
different sensors such as IMU and camera. The concept of artificial intelligence must not be
neglected in machine vision algorithm developments. Neural networks, for example, have
significant potential for black box modeling, which does not use mathematical models;
hence, it is highly advisable to use it for the tasks including landing surface detection and
roughness measurement of the landing area. Finally, our next targeted future work is to use
reinforcement learning technique to teach a drone to conduct landings in more complicated
scenarios, such as landing on a rover that is moving in a complex path.
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